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Abstract. Mixture models have been widely used in marketing research and epidemiology
to capture heterogeneity in endogenous latent variables among individuals. However, when
collinearity between endogenous latent variables at the component level is present, some component-
specific path coefficients will be zero. In this paper, a systematic computational algorithm is
developed to identify parameters that need to be constrained to be zero and to address other
issues including the initialization procedure, the provision of standard errors of estimates, and
the method to determine the number of components. The proposed algorithm is illustrated
using simulated data and a real data set concerning emotional behaviour of preschool children.
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1 Introduction

Regression models involving latent variables (or constructs) are very common in the marketing
research and epidemiology [2, 3]. With this approach, simultaneous regression equations are
adopted to model the relationships between multiple dependent (endogenous) latent variables
and independent (exogenous) latent variables. Let ηj and ξj denote the vectors of endogenous
and exogenous latent variables for the jth individual (j = 1, . . . , n), respectively. The “inner”
model is specified in terms of q simultaneous regression equations as

Bηj + Γξj = ζj , (1)

where B is a q × q matrix with q being the number of endogenous latent variables, Γ is a
q × p matrix where p is the number of exogenous latent variables, and ζj is a random vector
of residuals. The matrices B and Γ represent the (path) coefficients relating to the endogenous
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and exogenous latent variables, respectively, in the inner model. The relationships between the
latent variables and the manifest variables, either reflective indicators or formative measures,
are specified in the “outer” model [3]. Estimation of model parameters and values for latent
variables can be proceed with two different approaches. The structural equation modelling
(SEM) approach attempts to reproduce the covariance matrix of the observed measures, while
the partial least squares (PLS) approach focuses on maximizing the variance of the endogenous
variables explained by the exogenous variables.

In many real problems, the presence of heterogeneity among individuals in terms of different
path coefficients is prevalence. Such kind of heterogeneity is due to different individual perception
of latent variables and can be captured in the regression modelling via a finite mixture model
approach [3, 10]. With the PLS approach to regression models with latent variables, it is assumed
that the endogenous latent variables ηj (j = 1, . . . , n) come from a mixture of a finite number,
say g of multivariate normal distributions in some unknown proportions π1, . . . , πg that sum to
one:

f(ηj ; Ψ) =
g∑
i=1

πiφ(ηj ;µij ,Σi) (j = 1, . . . , n), (2)

where µij = (I −Bi)ηj −Γiξj is the mean vector of the ith component, where I is an identity
matrix, and Σi = diag(σ2

i ) is a diagonal matrix constructed from the vector σ2
i , which represents

the variance of the random residuals ζij (i = 1, . . . , g). In (2), Ψ is the vector of all the unknown
parameters containing π1, . . . , πg−1 and the free parameters in Bi, Γi, and Σi for i = 1, . . . , g.
From (1), the conditional multivariate normal density is given by

φ(ηj ;µij ,Σi) =
|Bi|»

(2π)q|Σi|
exp{−1

2(Biηj + Γiξj)
TΣ−1

i (Biηj + Γiξj)}, (3)

where the superscript T denotes vector transpose.
While mixtures of multivariate normal distributions are generically identifiable (that is, the

model is unique up to a permutation of the component labels; see [4, 7]), mixtures of regression
models with latent variables arisen from (1) and (2) are not identifiable unless some elements of
matrices Bi and Γi (i = 1, . . . , g) are constrained to zero [3]. In practice, the links between the
latent variables represented by simultaneous regression equations in the inner model are usually
hypothetical models pre-specified based on a researcher’s own experience. When collinearity
between endogenous latent variables at the component level is present, some component-specific
path coefficients will be zero. However, the setting up of such parameter constraints at present is
somewhat arbitrary. There are also issues of initialization procedure, provision of standard errors
of parameter estimates for statistical inference, and determination of the number of components
g in the mixture model [7]. In this paper, we tackle these issues by developing a systematic
computational algorithm for the implementation of mixtures of regression models with latent
variables and sparse coefficient parameters as presented in (1) and (2).

The rest of the paper is organized as follows: Section 2 describes the expectation-maximization
(EM) algorithm for the iterative computation of maximum likelihood (ML) estimates of the mix-
ture model and the procedure to identify sparse coefficient parameters. Also, we show how to
initialize the algorithm, to obtain standard errors using a bootstrap resampling approach, and
to determine the value of g. In Section 3, we present simulation studies to illustrate the appli-
cability of the proposed algorithm in terms of the accuracy of the final model derived and the
corresponding estimate biases. We show in Section 4 the application of the proposed method to
a real data set. Section 5 ends the paper with further discussion.
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2 Algorithm for fitting mixture of sparse regression models

The proposed algorithm applies directly to the scores of endogenous and exogenous latent vari-
ables, ηj and ξj , calculated using an iterative scheme of standard PLS on the observed manifest
variables with specification based on the constraints ofB and Γ for all individuals (j = 1, . . . , n);
see [3, 10]. The “aggregate” predictors of B and Γ estimated in the PLS procedure may also be
used to guide the initial estimates for Bi and Γi (i = 1, . . . , g) in the mixture model.

Maximum likelihood estimation and parameter constraint

The fitting of the mixture model (2) to latent variables ηj and ξj (j = 1, . . . , n) obtained by

PLS can be implemented using ML. An estimate Ψ̂ is obtained by solving the log likelihood
equation iteratively via the EM algorithm [8]. An appealing property of the EM algorithm
is that the likelihood is not decreased after each iteration. Within the EM framework, each
individual is conceptualized to have arisen from one of the g components of the mixture model
and the unobservable component-indicator vector zj is treated as missing data. Precisely, the
ith element zij of zj is taken to be one or zero according as the jth individual does or does not
come from the ith component (i = 1, . . . , g; j = 1, . . . , n). On the (k+ 1)th iteration of the EM
algorithm, the E-step computes the so-called Q-function, which is the conditional expectation
of the complete-data log likelihood using the current fit for Ψ:

Q(Ψ; Ψ(k)) =
g∑
i=1

n∑
j=1

τ
(k)
ij {log πi + log φ(ηj ;µij ,Σi)}, (4)

where we simply have to calculate

τ
(k)
ij =

π
(k)
i φ(ηj ;µ

(k)
ij ,Σ

(k)
i )∑g

h=1 π
(k)
h φ(ηj ;µ

(k)
hj ,Σ

(k)
h )

(i = 1, . . . , g; j = 1, . . . , n), (5)

which is the posterior probability that the jth individual belongs to the ith component of the
mixture; see [7].

The M-step updates the estimate of Ψ by the new value Ψ(k+1) of Ψ that maximizes the
Q-function with respect to Ψ. It can be seen from (4) that the maximization with respect to
the mixing proportions and coefficient parameters can be obtained separately as follows:

π
(k+1)
i =

n∑
j=1

τ
(k)
ij /n Σ

(k+1)
i =

∑n
j=1 τ

(k)
ij (B

(k)
i ηj + Γ

(k)
i ξj)

T (B
(k)
i ηj + Γ

(k)
i ξj)∑n

j=1 τ
(k)
ij

B
(k+1)
i =

n∑
j=1

τ
(k)
ij Γ

(k)
i ξjη

T
j

 n∑
j=1

τ
(k)
ij ηjη

T
j

−1

Γ
(k+1)
i =

n∑
j=1

τ
(k)
ij B

(k)
i ηjξ

T
j

 n∑
j=1

τ
(k)
ij ξjξ

T
j

−1

(6)

In addition to the parameter constraints specified under the hypothetical model in (1) under
(2), extra constraints at the component level may be required in the formulation of the final
mixture model when collinearity between some endogenous variables is present. In this paper, we
propose the following systematic scheme to determine which additional component-parameters
in Bi (i = 1, . . . , g) need to be constrained to be zero:
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1. Perform model estimation without any additional constraints;

2. Monitor the log likelihood values at each iteration and the parameter estimates of Bi (i =
1, . . . , g);

3. Determine if the algorithm converges or not (failure to convergence is indicated by either
singularity of Bi or decrease of log likelihood values due to estimate in Bi, say bilm, being
very close to zero, such as being less than 0.000001 in absolute value7);

4. Constrain the parameter bilm, if convergence fails to achieve in (3), to be zero and then
rerun the model estimation;

5. Repeat (2) and (4) to constrain one parameter at a time8 until convergence of model
estimation is achieved.

Initialization, computation of standard errors, and model selection

With applications where the log likelihood equation has multiple local maxima, the EM algorithm
should be implemented from a wide choice of initial parameter values in an attempt to search
for all local maxima [7, 8]. The proposed algorithm provides three options to initialize the EM
algorithm, where the user can either (a) specify initial estimates of the unknown parameters
(such as those guided by estimates obtained by the standard PLS); (b) use random groupings of
the data to get initial estimates of the unknown parameters; or (c) run the EM algorithm from
different random starts as in (b) and use the set of parameter estimates corresponding to the
largest likelihood value as initial values for obtaining the final model.

With the proposed algorithm, the standard errors of the estimates of Ψ are obtained using
the bootstrap resampling method with replacement, where the number of bootstrap replications
is taken to be 100 [7].

In the absence of any prior information as to the number of components present in the data,
we can monitor the increase in log likelihood function as the value of g increases in order to
determine an appropriate value of g. At any stage, the choice of g = g0 versus g = g0 + 1 can
be made by using some information-based criterion, such as the Bayesian Information Criterion
(BIC) [9] or by a bootstrap resampling approach to assess the null distribution (and hence the
p-value) of the likelihood ratio test statistic [7]; see also [5] and [6]. There is also the integrated
classification likelihood (ICL) criterion [1]. Other criteria for the determination of g, including
the Akaike Information Criterion (AIC), the consistent AIC (CAIC), and the entropy measure
(EN), have been considered specifically within the marketing research [3, 10]. Comparison of
these methods in the general context of mixture models has been reported [7].

3 Simulation experiments

In this section, we study the performance of the proposed computational algorithm for fitting
mixtures of sparse regression models. We consider a marketing research setting with p = 5
exogenous and q = 7 endogenous variables. Let ξ = (ξ1, . . . , ξ5)T and η = (η1, . . . , η7)T be the
scores of exogenous and endogenous variables, respectively, with the subscript j that indicates
the jth individual dropped, the 7 simultaneous regression equations that define the path model
are given by

7 Other thresholds close to zero may be used and the choice should not affect the results.
8 If constraints in multiple parameters are needed, sensitivity analysis may be used to determine the order.
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η1 = γ11ξ1 + ζ1; η5 = γ54ξ4 + ζ5;

η2 = γ22ξ2 + ζ2; η6 = γ65ξ5 + ζ6;

η3 = b32η2 + ζ3; η7 = b74η4 + b75η5 + b76η6 + ζ7,

η4 = b41η1 + b43η3 + γ43ξ3 + ζ4; (7)

which imply that the specifications for Bi and Γi (i = 1, . . . , g) are:

Bi =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 -bi32 1 0 0 0 0

-bi41 0 -bi43 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 -bi74 -bi75 -bi76 1


and Γi =



-γi11 0 0 0 0
0 -γi22 0 0 0
0 0 0 0 0
0 0 -γi43 0 0
0 0 0 -γi54 0
0 0 0 0 -γi65

0 0 0 0 0


(8)

In the simulation experiments, it is assumed that there are g = 3 groups of individuals and
the total number of individuals is n = 1000. Each vector of the exogenous latent variable scores
ξj (j = 1, . . . , 1000) was generated independently from a multivariate normal distribution with
mean vector and covariance matrix as

Mean =

â
-0.063
-0.131
-0.012
0.080

-0.013

ì
and Cov. =


1.14 0.66 0.72 0.45 0.57
0.66 1.19 0.53 0.29 0.43
0.72 0.53 1.01 0.48 0.58
0.45 0.29 0.48 0.99 0.47
0.57 0.43 0.58 0.47 1.01

 . (9)

The parameter values for Ψ with reference to (8) are given in Table 1; these parameter values are
based on a fitted mixture model we have obtained on a real data set. Realizations of component
membership were generated in which an individual has a probability of πi to belong to the
ith component (i = 1, 2, 3). Given the component membership, realizations of ηj were then
generated from the corresponding component density φ(ηj |µij ,Σi) as in (2) under (7).

To illustrate the proposed scheme presented in Section 2 for the constraint of additional
component-parameters in Bi (i = 1, 2, 3), we consider collinearity between the seventh η7 and
the forth η4 endogenous latent variables in (7) for the first component. This implies that both
parameters b175 and b176 are zero, with a very small σ2

17; see Table 1. Using a data set of n = 1000
scores generated as above, we first consider a mixture model without any additional constraints
on parameters in Bi (see Equation (8)). The algorithm fails to converge as the estimate of b175

has a value smaller than 0.000001. We then consider a model with an additional constraint of
b175 = 0. The algorithm again fails to converge as the estimate of b176 has a value smaller than
0.000001. We thus constrain b176 = 0 as well. This final model with two additional constraints
(b175 = 0 and b176 = 0) converges.

Ten independent simulation experiments were conducted to assess the generalization perfor-
mance of the proposed algorithm for fitting mixtures of sparse regression models. Such evaluation
is based on the accuracy of the final model derived, the misclassification rate, and the bias of
estimates. In all ten experiments, the algorithm identifies the correct final model with two addi-
tional constraints in b175 and b176 (the rate of correctly identifying sparse coefficients is 100%).
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Parameter i = 1 i = 2 i = 3 Parameter i = 1 i = 2 i = 3

πi 0.42 0.46 0.12 γi54 0.63 0.50 0.17
bi32 0.97 0.64 0.67 γi65 1.02 0.94 -0.80
bi41 0.60 0.14 0.27 σ2

i1 0.07 0.64 0.39
bi43 0.32 0.40 0.32 σ2

i2 0.09 0.89 0.68
bi74 0.87 0.20 0.49 σ2

i3 0.07 0.60 0.44
bi75 0.00 0.27 0.11 σ2

i4 0.02 0.47 0.35
bi76 0.00 0.24 0.21 σ2

i5 0.58 0.82 0.82
γi11 0.91 0.67 0.74 σ2

i6 0.01 0.01 0.73
γi22 1.16 0.49 0.29 σ2

i7 1E-6 0.86 0.87
γi43 0.03 0.39 0.22

Table 1: Parameter values for a 3-component mixture model (Simulation experiments).

Parameter i = 1 i = 2 i = 3 Parameter i = 1 i = 2 i = 3

πi -0.001 0.010 -0.009 γi54 -0.003 0.008 -0.017
bi32 0.001 0.018 -0.043 γi65 0.001 0.001 -0.048
bi41 -0.002 0.003 0.003 σ2

i1 -0.001 0.006 0.031
bi43 -0.004 0.002 0.010 σ2

i2 0.003 -0.005 0.022
bi74 -0.001 -0.008 0.045 σ2

i3 0.002 -0.003 -0.018
bi75 — -0.011 0.016 σ2

i4 0.001 -0.005 -0.011
bi76 — 0.001 0.040 σ2

i5 0.006 -0.001 -0.033
γi11 0.001 -0.006 0.003 σ2

i6 0.001 0.001 0.009
γi22 0.002 0.011 0.008 σ2

i7 0.000 -0.006 0.067
γi43 0.001 -0.004 -0.011

Table 2: Average bias of estimates for a 3-component mixture model (Simulation experiments).

The average misclassification rate is 0.0137. The average bias of estimates are presented in Table
2. It can be seen that no appreciable bias is observed in the estimation of Ψ.

4 Real example: Emotional behaviour of preschool children

This real example is based on the Early Head Start Research and Evaluation (EHSRE) project
conducted from 1996 to 2001. The data set is available from the Inter-University Consortium for
Political and Social Research (ICPSR) at http://www.icpsr.umich.edu. It contains data about
2977 children under 3 years who were randomized to receive designed Early Head Start (EHS)
services or to seek their own early childhood care in their community; see, for example, [12].

In the current study, we considered n = 1498 individuals with complete observations in
eight manifest variables and focus on the conceptual model described in [12] for hypothesized
relationships among maternal mental health, parenting stress, parent-child routines, and child
emotional development. The endogenous and exogenous latent variables of the hypothetical
model are presented in Figure 1. In the inner model, there are p = 1 exogenous (maternal
mental health) and q = 3 endogenous (parenting stress, parent-child routine and child emotional
development) latent variables. The 3 simultaneous regression equations that define the path
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model are given by

η1 = γ11ξ1 + ζ1; η3 = b31η1 + b32η2 + ζ3.

η2 = b21η1 + ζ2; (10)

The standard PLS analysis is implemented using the “plspm” package in R [11] to obtain
the scores for the 4 latent variables corresponding to the path model presented in Figure 1. The
proposed algorithm is then used to fit mixtures of regression models to the scores of the latent
variables with g = 1 to g = 5. No additional parameter constraints are necessary. Using the BIC,
we identified two groups of individuals. The larger group (i = 1, n1 = 1434) of individuals have
all links in the hypothetical inner model significant; see Table 3 for the estimates of the path
coefficients. Comparing to the majority, the smaller group (n2 = 64) of individuals have smaller
impact from maternal mental health on parenting stress (γ211), and from parenting stress and
parent-child routine on child emotional development (b231 and b232). A post-hoc analysis finds
that these two groups are significantly different in RACE (p-value = 0.001; see Table 3), but not
in the program allocated, child gender, child overweight indicator, and maternal age at birth.

Figure 1: Hypothetical inner model relating maternal mental health, parenting stress, parent-
child routines, and child emotional development

Group bi21 bi31 bi32 γi11 Race = Hispanic

i = 1 -0.178 (0.032) -0.194 (0.033) 0.142 (0.028) 0.423 (0.021) 312/1357∗ (23.0%)
i = 2 -0.159 (0.039) -0.074 (0.035) 0.071 (0.062) 0.237 (0.105) 26/61∗ (42.6%)

Table 3: Estimates (standard errors) of path coefficients for a 2-component mixture model and
proportion of Hispanic children (∗ Missing data exist in both groups).

5 Discussion

We have developed a computational algorithm for fitting mixtures of regression models with
latent variables and sparse coefficient parameters. The algorithm adopts a systematic scheme
to determine which additional component-parameters in the matrices of path coefficients Bi

need to be constrained to be zero. Simulated and real data sets have been used to illustrate
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the applicability of the proposed algorithm. The method can be readily adopted for component
distributions that are not multivariate normal.
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