
December 16, 2003 10:18 WSPC/117-ijseke 00148

International Journal of Software Engineering
and Knowledge Engineering
Vol. 13, No. 6 (2003) 579–592
c© World Scientific Publishing Company

MODEL-BASED CLUSTERING IN GENE EXPRESSION

MICROARRAYS: AN APPLICATION TO BREAST CANCER DATA

J. C. MAR and G. J. MCLACHLAN∗

Department of Mathematics, University of Queensland, Australia
∗gjm@maths.uq.edu.au

In microarray studies, the application of clustering techniques is often used to derive
meaningful insights into the data. In the past, hierarchical methods have been the pri-
mary clustering tool employed to perform this task. The hierarchical algorithms have
been mainly applied heuristically to these cluster analysis problems. Further, a major
limitation of these methods is their inability to determine the number of clusters. Thus
there is a need for a model-based approach to these clustering problems. To this end,
McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for
the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as
a model-based approach, we present a case study involving the application of EMMIX-
GENE to the breast cancer data as studied recently in van ’t Veer et al. [10]. Our analysis
considers the problem of clustering the tissue samples on the basis of the genes which is a
non-standard problem because the number of genes greatly exceed the number of tissue
samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of
genes down to a more computationally manageable size. The results from this analysis
also emphasise the difficulty associated with the task of separating two tissue groups on
the basis of a particular subset of genes. These results also shed light on why supervised
methods have such a high misallocation error rate for the breast cancer data.
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1. Introduction

The complexity and magnitude of DNA microarray data have inundated researchers

with a flood of new bioinformatic challenges. The data generated by these exper-

iments necessitate the use of specialised statistical tools in order to make reliable

inferences about the data. In this paper we discuss the application of a model-based

approach to cluster analysis for gene expression microarrays.

Cluster analyses have previously demonstrated their utility in the elucidation of

unknown gene function, the validation of gene discoveries, and the interpretation of

biological processes; see [1, 3, 5] for example. The aim of a typical cluster analysis

is to organise genes or tissue samples (data produced by separate hybridisations)

into clusters displaying similar patterns of gene expression. Initially, hierarchical

(distance-based) methods were applied to these cluster analysis problems. These

clustering algorithms are largely heuristically motivated and there exist a number of
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unresolved issues associated with their use, including how to determine the number

of clusters. As commented by Yeung et al. [11], “in the absence of a well-grounded

statistical model, it seems difficult to define what is meant by a ‘good’ clustering

algorithm or the ‘right’ number of clusters.”

To overcome these difficulties attention is now turning towards a model-based

approach to the analysis of microarray data; see [4, 7, 8, 11]. For example, by

adopting a finite mixture model for the distribution of each observation, Yeung

et al. [11] were advocates of a model-based approach to the clustering of the genes

on the basis of the tissue samples. The present paper considers the problem of

clustering the tissues on the basis of the genes. This is a more challenging problem

to consider in a mixture model framework, since the number of observations to be

clustered (the tissue samples) is typically small relative to the number of genes in

each tissue sample.

A recent application of microarray technology involves its use in the develop-

ment of patient-tailored therapies to target complex, highly heterogeneous diseases.

The work of van ’t Veer et al. [10] used microarray experiments on three patient

groups who had different classes of breast cancer tumours. The overall goal of the

experiment was to identify a set of genes that could distinguish between the differ-

ent tumour groups based on their gene expression information for a given tumour

sample. We use the data set produced by van ’t Veer et al. [10] as the basis for our

analysis using the mixture model-based clustering algorithm, EMMIX-GENE [7].

The results of this analysis shed light on why it is such a difficult problem

to distinguish between the two tissue groups (disease-free and metastases) and

consequently why supervised methods have such a high error rate for this data set,

as noted by Tibshirani and Efron [9].

2. EMMIX-GENE: A Mixture Model-based Clustering Algorithm

The EMMIX-GENE algorithm consists of three stages (see [7] for more specific

details). The first is a filtering step designed to isolate the most informative genes

to be considered in the cluster analysis. For all genes in the original data set mixtures

of t distributions are fitted, and each gene is assigned a value –2logλ where λ is the

likelihood ratio statistic that tests for the presence of a single component versus

two components in the fitted mixture model. Clearly genes that display a strong

differential expression across different tumour groups will have a significantly larger

likelihood ratio statistic, whereas those genes bearing little change across tumour

groups will receive a lower score. Thus values assigned to each gene for –2logλ

form the basis of a filter wherein only genes with likelihood ratio scores above a

user-specified threshold are retained for further analysis.

The second stage involves grouping the retained set of genes into a user-specified

number of clusters. The genes are clustered into groups, using Euclidean distance

with a view to representing the genes within a group by their mean. If a clustering

is sought on the basis of the totality of the genes, then it can be obtained by fitting
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a mixture model to these group means.

However, it may be that the number of group means N is too large to fit a

normal mixture model with unrestricted component-covariance matrices. In this

circumstance EMMIX-GENE has a third and optional step allowing for the fitting

of mixtures of factor analyzers. The use of mixtures of factor analyzers reduces the

number of parameters by imposing the assumption that the correlations between

the genes can be expressed in a lower space by the dependence of the tissues on

q(q < N) unobservable factors.

In addition to clustering the tissues on the basis of all of the genes, there may be

interest in seeing whether the different groups of genes lead to different clustering

of the tissues when each is considered separately. For example, only a subset of the

genes may be useful in identifying certain subtypes of the cancer being studied.

3. Description of the Experimental Data Set

In van ’t Veer et al. [10], microarray experiments were performed on 98 primary

breast cancers acquired from three groups of patients: 44 representing a good prog-

nosis group, (i.e. those who remained metastasis free after a period of more than

5 years), 34 from a poor prognosis group (those who developed distant metastases

within 5 years), and 20 representing a hereditary form of cancer, due to a BRCA1

(18 tumours) or BRCA2 (2 tumours) germline mutation.

Each microarray experiment involved an initial set of 24,881 genes. To reduce

the number of genes to something more computationally manageable, van ’t Veer

et al. [10] applied a pre-processing filter in which only genes with both a P−value

of less than 0.01 and at least a two fold difference in more than five out of the

ninety-eight tissues for the gene were retained. This filter effectively reduced the

initial set of genes to 4,869. The current paper makes use of the same pre-processing

filter, working with the 4,869 retained genes.

The focus of the study by van ’t Veer et al. [10] was to identify a subset of genes

that would be useful in predicting the disease outcome of any given tissue sample.

They anticipated that this gene signature could be applied as a diagnostic screen

to select patients that would benefit from certain therapies over others.

4. Clustering Genes on the Basis of Tissue Samples Using

EMMIX-GENE

As can be seen by the heat map displayed in Fig. 1, the task of discerning an

underlying class structure in the data on the basis of the full set of 4,869 genes is

extremely difficult.

For the present breast cancer data set, the heat maps of the genes in a group

tend to mainly support the same breakup of the 98 tissues. To illustrate this, we list

in Figs. 2 to 4 the heat maps for the top three groups G1, G2, and G3, which contain

146, 93, and 61 genes, respectively. Important features to note from these heat maps

are that they each indicate a change in gene expression is apparent between the
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Fig. 1. Heat Map Displaying the Initial Set of 4,869 Genes on the 98 Breast Cancer Tumours 

(Each Row Refers to a Gene and each Column to a Tumour). 

 
For the present breast cancer data set, the heat maps of the genes in a group tend to mainly 

support the same breakup of the 98 tissues. To illustrate this, we list in Figures 2 to 4 the heat maps 

for the top three groups G1, G2, and G3, which contain 146, 93, and 61 genes, respectively. Important 

features to note from these heat maps are that they each indicate a change in gene expression is 

apparent between the sporadic (first 78 tissue samples) and hereditary (last 20 tissue samples) 

tumours. For instance, in Figure 2, the genes in this cluster are generally down-regulated for the 

former group of tumours, and up-regulated in the latter. Genes in G2 were largely constant in 

expression across the sporadic tumours but notably down-regulated for the hereditary tumours.  

Additionally, the final two tissue samples, which represent the two BRCA2 tumours show 

consistent patterns of expression in each of the clusters that are different from those exhibited by the 

set of BRCA1 tumours. 

It can be seen from these groups that the problem of trying to distinguish between the two classes, 

patients who were disease-free after 5 years Π1 and those with metastases within 5 years Π2, is not 

straightforward on the basis of the gene expressions. 
 

 

Fig. 2. Heat Map of Genes in Group G1. 
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sporadic (first 78 tissue samples) and hereditary (last 20 tissue samples) tumours.

For instance, in Fig. 2, the genes in this cluster are generally down-regulated for the

former group of tumours, and up-regulated in the latter. Genes in G2 were largely

constant in expression across the sporadic tumours but notably down-regulated for

the hereditary tumours.

Additionally, the final two tissue samples, which represent the two BRCA2 tu-

mours show consistent patterns of expression in each of the clusters that are different
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Fig. 3. Heat Map of Genes in Group G2. 

 

 

Fig. 4. Heat Map of Genes in Group G3. 

5 An Unsupervised Classification Analysis Using EMMIX-GENE 

The first step of the EMMIX-GENE algorithm was used to select the most relevant genes from this 

filtered set of 4,869 genes, further reducing the number to 1,867. The 1,867 retained genes were 

clustered into forty groups using the second step of the EMMIX-GENE algorithm, and the majority of 

gene groups produced were reasonably cohesive and distinct. Based upon these forty group means, 

the tissue samples were clustered into two and three components using a mixture of factor analyzers 

model with q = 4 factors.   

6 Investigating the Usefulness of the Selection of Relevant Genes 

In clustering the genes, van’t Veer et al. [10] relied upon an agglomerative hierarchical algorithm to 

organise the genes into dominant genes groups. Two of these clusters were highlighted in the paper 

and the genes contained in these two groups correspond to biologically significant features. We 

denote Cluster A as the group of genes van’t Veer et al. [10] have identified as containing genes co-

regulated with the ER-α gene (ESR1) and Cluster B as the group containing “co-regulated genes that 

are the molecular reflection of extensive lymphocytic infiltrate, and comprise a set of genes expressed 

in T and B cells”. Both of these clusters contain 40 genes. 

Of these 80 genes, the first step of the EMMIX-GENE algorithm select-genes retains only 

47 genes (24 from Cluster A, 23 from Cluster B). When compared to the 40 groups that the 
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from those exhibited by the set of BRCA1 tumours.

It can be seen from these groups that the problem of trying to distinguish

between the two classes, patients who were disease-free after 5 years Π1 and those

with metastases within 5 years Π2, is not straightforward on the basis of the gene

expressions.
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5. An Unsupervised Classification Analysis Using EMMIX-GENE

The first step of the EMMIX-GENE algorithm was used to select the most relevant

genes from this filtered set of 4,869 genes, further reducing the number to 1,867.

The 1,867 retained genes were clustered into forty groups using the second step

of the EMMIX-GENE algorithm, and the majority of gene groups produced were

reasonably cohesive and distinct. Based upon these forty group means, the tissue

samples were clustered into two and three components using a mixture of factor

analyzers model with q = 4 factors.

6. Investigating the Usefulness of the Selection of Relevant Genes

In clustering the genes, van ’t Veer et al. [10] relied upon an agglomerative hier-

archical algorithm to organise the genes into dominant genes groups. Two of these

clusters were highlighted in the paper and the genes contained in these two groups

correspond to biologically significant features. We denote Cluster A as the group

of genes van ’t Veer et al. [10] have identified as containing genes co-regulated with

the ER-α gene (ESR1) and Cluster B as the group containing “co-regulated genes

that are the molecular reflection of extensive lymphocytic infiltrate, and comprise

a set of genes expressed in T and B cells”. Both of these clusters contain 40 genes.

Of these 80 genes, the first step of the EMMIX-GENE algorithm select-genes

retains only 47 genes (24 from Cluster A, 23 from Cluster B). When compared to

the 40 groups that the cluster-genes step of the EMMIX-GENE algorithm produces,

subsets of these 47 genes appeared inside several of these 40 groups (see Table 1

below).

Table 1. Comparing clusters constructed by a hierarchical algo-
rithm with those produced by the EMMIX-GENE algorithm.

Cluster index Number of genes Percentage
(EMMIX-GENE) matched matched (%)

2 21 87.5
Cluster A 3 2 8.33

14 1 4.17

17 18 78.3
Cluster B 19 1 4.35

21 4 17.4

The motivation behind select-genes is to isolate the most informative genes to be

used for the cluster analysis. For any clustering algorithm, genes that lack distinctive

expression pattern changes across different tumour groups only serve to confuse the

clustering algorithm and increase the number of misallocation errors made.

The 21 genes that appear in Cluster A have been grouped in the second cluster

constructed by EMMIX-GENE. In Fig. 5 (below), these genes demonstrate clear

expression changes for the three groups of tumours (indicated by the vertical blue

lines).
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Fig. 5. Genes Retained by EMMIX-GENE Appearing in Cluster A. 
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tumour groups. 

 

Fig. 5. Genes retained by EMMIX-GENE appearing in Cluster A.

For the remaining sixteen genes that were rejected by select-genes but belong

to Cluster A, it is evident from Fig. 6 that these genes bear very little information

in distinguishing between the tumour groups.

The heat maps displayed in Figs. 7 and 8 display the corresponding information

for the genes in Cluster B. The genes in Fig. 7 (those retained by EMMIX-GENE)

show much variation across the tumour groups. In contrast, the genes in Cluster

B (those rejected by EMMIX-GENE) show little variation between the tumour

groups.

The expression profile of the gene that received the highest –2logλ value is shown

in Fig. 9. This gene is notably up-regulated for the disease-free tumour group and

the metastases tumour group, and down-regulated in the hereditary tumour group.

An expression profile is shown in Fig. 10 for a gene which appeared in Cluster

A, but whose value of –2logλ was not high enough for it to be retained by the select-

genes step. The overall expression of the gene is essentially unchanging, however

excessively large values for the seventeenth disease-free patient in the first tumour

group and the sixth BRCA patient in the third tumour group appear to dominate

the expression profile. These outliers seem to account for this gene’s inclusion in

Cluster A.
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Fig. 6. Genes Rejected by EMMIX-GENE Appearing in Cluster A. 

      

The heat maps displayed in Figures 7 and 8 display the corresponding information for the genes in 

Cluster B.  The genes in Figure 7 (those retained by EMMIX-GENE) show much variation across the 

tumour groups. In contrast, the genes in Cluster B (those rejected by EMMIX-GENE) show little 

variation between the tumour groups. 

 

 
Fig. 7. Genes Retained by EMMIX-GENE Appearing in Cluster B. 

Fig. 6. Genes rejected by EMMIX-GENE appearing in Cluster A.
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Fig. 7. Genes Retained by EMMIX-GENE Appearing in Cluster B. Fig. 7. Genes retained by EMMIX-GENE appearing in Cluster B.

7. Clustering Tissue Samples on the Basis of Gene Groups Using

EMMIX-GENE

Turning now to the problem of clustering tissues on the basis of gene expression,

we investigate the clusters constructed by the EMMIX-GENE algorithm in light of

the genuine tissue grouping.
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Fig. 8. Genes Rejected by EMMIX-GENE Appearing in Cluster B. 

 

 The expression profile of the gene that received the highest –2logλ value is shown in Figure 9. 

This gene is notably up-regulated for the disease-free tumour group and the metastases tumour group, 

and down-regulated in the hereditary tumour group. 

 

 

Fig. 9. Expression Profile for the Gene with the Highest –2logλ Value. 
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value of –2logλ value was not high enough for it to be retained by the select-genes step. The 

overall expression of the gene is essentially unchanging, however excessively large values for the 

seventeenth disease-free patient in the first tumour group and the sixth BRCA patient in the third 

tumour group appear to dominate the expression profile. These outliers seem to account for this 
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The tissue samples can be subdivided into two groups corresponding to the

78 sporadic tumours and 20 hereditary tumours. Figure 11 shows the two-cluster

assignment produced by EMMIX-GENE with respect to this genuine grouping (pink

vertical lines denote the three tumour groups; black denotes the hereditary tumour
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Fig. 10. Example of A Gene Rejected by select-genes But Retained by Cluster A. 
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 Clearly EMMIX-GENE has correctly clustered the majority of the hereditary tumours 

(misallocation error of 1/20), although 37 of the sporadic tumours were incorrectly assigned to the 

cluster of hereditary tumours.  

 

 
Fig. 11. Comparing EMMIX-GENE Cluster Assignments with the Genuine Two Group Structure. 

 

The set of sporadic tumours have been divided into good and poor prognosis groups (i. e. 44 

patients who continued to be disease-free after 5 years, and 34 patients who developed metastases 

within 5 years, respectively). Hence we also considered the partitioning of the tissues into three 

clusters, corresponding to the disease-free, metastases, and hereditary groups. Figure 12 shows the 

tissue samples rearranged according to the three cluster assignments allocated by EMMIX-GENE 

when a mixture of factor analyzers model with q = 4 factors. 
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cluster, white denotes the sporadic tumour cluster; grey distinguishes the genuine

grouping).

Clearly EMMIX-GENE has correctly clustered the majority of the hereditary

tumours (misallocation error of 1/20), although 37 of the sporadic tumours were

incorrectly assigned to the cluster of hereditary tumours.

The set of sporadic tumours have been divided into good and poor prognosis

groups (i.e. 44 patients who continued to be disease-free after 5 years, and 34

patients who developed metastases within 5 years, respectively). Hence we also

considered the partitioning of the tissues into three clusters, corresponding to the
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Fig. 12. Comparing EMMIX-GENE Cluster Assignments with a Genuine Three-Group Structure. 

Using a mixture of factor analyzers model with q = 8 factors, we would misallocate 7 out of the 

44 members of Π1 and 24 out of the 34 members of Π2; one member of the 18 BRCA1 samples would 

be misallocated.  

The misallocation rate of 24/34 for the second class Π2 is not surprising given the gene 

expressions as summarized in the groups of genes (see Figures 2 to 4). Also, one has to bear in mind 

that we are classifying the tissues in an unsupervised manner without using the knowledge of their 

true classification. But even when such knowledge was used (supervised classification) in van’t Veer 

et al. [10], the reported error rate was approximately 50% for members of Π2 when allowance was 

made for the selection bias in forming a classifier on the basis of an optimal subset of the genes [2]. 

Further analysis of this data set in a supervised context by Tibshirani and Efron [9] confirms the 

difficulty in trying to discriminate between the disease-free class Π1 and the metastases class Π2. 

8 Assessing the Number of Tissue Groups 

We also considered the choice of the number of components g to be used in our normal mixture. The 

likelihood ratio statistic λ was adopted for this purpose, and we used the resampling approach of 

McLachlan [6] to assess the P-value. This is because the usual chi-squared approximation to the null 

distribution of –2logλ is not valid for this problem, due to the breakdown in regularity conditions. We 

proceeded sequentially, testing the null hypothesis H0: g = g0 versus the alternative hypothesis H1: g = 

g0 + 1, starting with g0 = 1 and continuing until a non-significant result was obtained. We concluded 

from these tests that g = 3 components were adequate for this data set. 

9 Investigating Underlying Signatures with Other Clinical Indicators 

For each of the tumour samples in this data set, additional clinical predictors containing information 

about histological grade, angioinvasion and lymphocytic infiltrate was included. We investigated 

whether the three clusters constructed by EMMIX-GENE followed patterns according to these 

biological indicators. The tumour samples have been ordered in Figure 13 according to the three 

clustered groups.  

Tumours assigned to Cluster 3 appear to match tumours labelled ER positive, while the majority 

of tumours in Clusters 1 and 2 were ER negative. A close association was also noted between tumours 

assigned to Cluster 1 and a histological grade of 3, while the tumours in Clusters 2 and 3 were more 

likely to have a histological grade of 1 or 2. Some association was visible between Clusters 1 and 2 

and the lymphocytic infiltrate score, where the majority of tumours in these clusters had scores of 0, 

while tumours in Cluster 3 had scores of 1. Indicators related to angioinvasion did not bear a strong 

association with the EMMIX-GENE clusters. These observations were consistent with those reported 

by van’t Veer et al. [10]. 

 

Fig. 12. Comparing EMMIX-GENE cluster assignments with a genuine three-group structure.

disease-free, metastases, and hereditary groups. Figure 12 shows the tissue samples

rearranged according to the three cluster assignments allocated by EMMIX-GENE

when a mixture of factor analyzers model with q = 4 factors.

Using a mixture of factor analyzers model with q= 8 factors, we would misal-

locate 7 out of the 44 members of Π1 and 24 out of the 34 members of Π2; one

member of the 18 BRCA1 samples would be misallocated.

The misallocation rate of 24/34 for the second class Π2 is not surprising given

the gene expressions as summarized in the groups of genes (see Figs. 2 to 4). Also,

one has to bear in mind that we are classifying the tissues in an unsupervised

manner without using the knowledge of their true classification. But even when

such knowledge was used (supervised classification) in van ’t Veer et al. [10], the

reported error rate was approximately 50% for members of Π2 when allowance

was made for the selection bias in forming a classifier on the basis of an optimal

subset of the genes [2]. Further analysis of this data set in a supervised context by

Tibshirani and Efron [9] confirms the difficulty in trying to discriminate between

the disease-free class Π1 and the metastases class Π2.

8. Assessing the Number of Tissue Groups

We also considered the choice of the number of components g to be used in our

normal mixture. The likelihood ratio statistic λ was adopted for this purpose, and

we used the resampling approach of McLachlan [6] to assess the P−value. This is

because the usual chi-squared approximation to the null distribution of –2logλ is not

valid for this problem, due to the breakdown in regularity conditions. We proceeded

sequentially, testing the null hypothesis H0: g = g0 versus the alternative hypothesis

H1: g = g0 + 1, starting with g0 = 1 and continuing until a non-significant result

was obtained. We concluded from these tests that g = 3 components were adequate

for this data set.
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Fig. 13. Comparing EMMIX-GENE Cluster Assignments with Other Clinical Indicators. 

10 Discussion  

In this study, we have demonstrated how the model-based algorithm EMMIX-GENE can be applied 

to cluster a limited number of tissue samples (98  breast cancer tumours) on the basis of  subsets of 

genes selected from an initial set of 24, 881 genes. The filtered set of 4,869 genes was further reduced 

by using the selection option of EMMIX-GENE to eliminate those genes that showed little variation 

across the 98 breast cancer tumours. The 1,867 genes so retained were then clustered into forty 

groups. Based on the means of these forty groups, the tissue samples were clustered into two and three 

clusters using a mixture of factor analyzers model with q = 4 factors.  

  

 Identification of the clusters produced by EMMIX-GENE with the externally existing classes Π1 

(disease-free group), Π2 (metastases group), and Π3 (BRCA), gives an error rate that is not small.  

However, this clustering is consistent with the gene expressions as displayed in the heat maps for the 

40 groups of similar genes. For example, in the first three groups given in Figures 2 to 4, it can be 

seen that those tissues of class Π2   that have been misallocated to Π1 ( Π3) have similar gene 

expression patterns to those of the majority of the tissues in class Π1 (Π3).  Likewise, the tissues of 

class Π1 that have been misallocated to Π2   have similar gene expression patterns to those of the 

majority of the tissues in class Π2.   This comparison provides some insight into why even in a 

supervised context there is difficulty in trying to discriminate between the disease-free class Π1 and 

the metastases class Π2 .  
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Fig. 13. Comparing EMMIX-GENE cluster assignments with other clinical indicators.

9. Investigating Underlying Signatures with Other

Clinical Indicators

For each of the tumour samples in this data set, additional clinical predictors con-

taining information about histological grade, angioinvasion and lymphocytic in-

filtrate was included. We investigated whether the three clusters constructed by

EMMIX-GENE followed patterns according to these biological indicators. The tu-

mour samples have been ordered in Fig. 13 according to the three clustered groups.

Tumours assigned to Cluster 3 appear to match tumours labelled ER negative,

while the majority of tumours in Clusters 1 and 2 were ER positive. A close as-

sociation was also noted between tumours assigned to Cluster 1 and a histological

grade of 1, and, to a lesser degree, a grade of 2, while the tumours in Clusters 2 and

3 were more likely to have a histological grade of 3. Some association was visible

between Clusters 1 and 2 and the lymphocytic infiltrate score, where the majority

of tumours in these clusters had scores of 0, while tumours in Cluster 3 had scores

of 1. Indicators related to angioinvasion did not bear a strong association with the

EMMIX-GENE clusters. These observations were consistent with those reported

by van ’t Veer et al. [10].
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10. Discussion

In this study, we have demonstrated how the model-based algorithm EMMIX-

GENE can be applied to cluster a limited number of tissue samples (98 breast

cancer tumours) on the basis of subsets of genes selected from an initial set of 24,

881 genes. The filtered set of 4,869 genes was further reduced by using the selec-

tion option of EMMIX-GENE to eliminate those genes that showed little variation

across the 98 breast cancer tumours. The 1,867 genes so retained were then clus-

tered into forty groups. Based on the means of these forty groups, the tissue samples

were clustered into two and three clusters using a mixture of factor analyzers model

with q = 4 factors.

Identification of the clusters produced by EMMIX-GENE with the externally

existing classes Π1(disease-free group), Π2(metastases group), and Π3(BRCA), gives

an error rate that is not small. However, this clustering is consistent with the

gene expressions as displayed in the heat maps for the 40 groups of similar genes.

For example, in the first three groups given in Figs. 2 to 4, it can be seen that

those tissues of class Π2that have been misallocated to Π1(Π3) have similar gene

expression patterns to those of the majority of the tissues in class Π1(Π3). Likewise,

the tissues of class Π1that have been misallocated to Π2have similar gene expression

patterns to those of the majority of the tissues in class Π2. This comparison provides

some insight into why even in a supervised context there is difficulty in trying to

discriminate between the disease-free class Π1 and the metastases class Π2.
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