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In the context of cancer diagnosis and treatment, we consider the
problem of constructing an accurate prediction rule on the basis of
a relatively small number of tumor tissue samples of known type
containing the expression data on very many (possibly thousands)
genes. Recently, results have been presented in the literature
suggesting that it is possible to construct a prediction rule from
only a few genes such that it has a negligible prediction error rate.
However, in these results the test error or the leave-one-out
cross-validated error is calculated without allowance for the se-
lection bias. There is no allowance because the rule is either tested
on tissue samples that were used in the first instance to select the
genes being used in the rule or because the cross-validation of the
rule is not external to the selection process; that is, gene selection
is not performed in training the rule at each stage of the cross-
validation process. We describe how in practice the selection bias
can be assessed and corrected for by either performing a cross-
validation or applying the bootstrap external to the selection
process. We recommend using 10-fold rather than leave-one-out
cross-validation, and concerning the bootstrap, we suggest using
the so-called .632+ bootstrap error estimate designed to handle
overfitted prediction rules. Using two published data sets, we
demonstrate that when correction is made for the selection bias,
the cross-validated error is no longer zero for a subset of only a few
genes.

As explained by Xiong et al. (1), there is increasing interest
in changing the emphasis of tumor classification from
morphologic to molecular. In this context, the problem is to
construct a classifier or a prediction (discriminant) rule R that
can accurately predict the class of origin of a tumor tissue with
feature vector x, which is unclassified with respect to a known
number g (=2) of distinct tissue types. Here the feature vector
x contains the expression levels on a very large number p of genes
(features). In many applications g = 2, corresponding to cancer
and benign tumors. To train the rule R, there are available n
tumor tissue samples, denoted by xi,. . . , X,, of known classifi-
cation. These data are obtained from n microarrays, where the
jth microarray experiment gives the expression levels of the p
genes in the jth tissue sample x; of the training set. A useful
account of microarray technology and the use therein of the
latest discriminant analysis techniques may be found in Dudoit
etal. (2). Also, Xionget al. (3) and Zhang et al. (4) have provided
a concise account of previous work on discriminant analysis for
this technology, which has been considered also in refs. 5-9,
among other papers. Note that we are considering here only the
supervised classification of tumor tissue samples and not the
unsupervised classification (cluster analysis) of them as, for
example, is done in refs. 10-15.

In a standard discriminant analysis, the number of training
observations # usually is much larger than the number of feature
variables p, but in the present context of microarray data, the
number of tissue samples 7 is typically between 10 and 100, and
the number of genes p is in the thousands. This situation presents
a number of problems. First, the prediction rule R may not be
able to be formed by using all p available genes. For example, the
pooled within-class sample covariance matrix required to form
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Fisher’s linear discriminant function is singular if n < g + p.
Second, even if all the genes can be used as, say, with a
Euclidean-based rule or a support vector machine (SVM; refs. 9,
16, and 17), the use of all the genes allows the noise associated
with genes of little or no discriminatory power, which inhibits
and degrades the performance of the rule R in its application to
unclassified tumors. That is, although the apparent error rate
(AE) of the rule R (the proportion of the training tissues
misallocated by R) will decrease as it is formed from more and
more genes, its error rate in classifying tissues outside of the
training set eventually will increase. That is, the generalization
error of R will be increased if it is formed from a sufficiently large
number of genes. Hence, in practice consideration has to be
given to implementing some procedure of feature selection
for reducing the number of genes to be used in constructing the
rule R.

A number of approaches to feature-subset selection have been
proposed in the literature (18). All these approaches involve
searching for an optimal or near optimal subset of features that
optimize a given criterion. Feature-subset selection can be
classified into two categories based or whether the criterion
depends on the learning algorithm used to construct the pre-
diction rule (19). If the criterion is independent of the prediction
rule, the method is said to follow a filter approach, and if the
criterion depends on the rule, the method is said to follow a
wrapper approach.

Regardless of how the performance of the rule is assessed
during the feature-selection process, it is common to assess the
performance of the rule R for a selected subset of genes by its
leave-one-out cross-validated (CV) error. But, if it is calculated
within the feature-selection process, there is a selection bias in
it when it is used as an estimate of the prediction error. As to be
made more precise in Correction For Bias Selection, an external
cross-validation (20) should be undertaken subsequent to the
feature-selection process to correct for this selection bias. Al-
ternatively, the bootstrap (21-23) can be used.

Previous Results

For three published data sets including the two considered in this
paper, Xiong et al. (1) reported that Fisher’s linear discriminant
rule R formed with only two or three genes via sequential
forward selection can achieve 90% or more accuracy of classi-
fication. During the selection process, the set S of all available
tissue samples was used to carry out the feature selection in the
training of R. To evaluate the accuracy of R for the chosen subset
of genes, they randomly partitioned the tissue samples into two
sets: a training set (S;) and a test set (S2). The rule R then was
trained on S; and tested on S,. The test error rate of R thus
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formed then was averaged over 200 such partitions (24). But this
evaluation does not take into account the selection bias, because
the test error is based on S,, which as a subset of S is used in the
selection of the genes for R. Thus this test error gives too
optimistic an assessment of the prediction error, although this
bias is offset to some extent by the fact that the training subset
S, is smaller in size than the full training set S. For example, for
the selected subset of three genes, they reported that for a 95/5%
split of the data set into training/test sets, Fisher’s rule had an
(average) test error of 10.7 and 0% for the colon and leukemia
data sets, respectively (see table 3 in ref. 1). This result contrasts
with an estimated prediction error of ~15 and ~5% for the colon
and leukemia data sets, respectively, as given by cross-validation
and the bootstrap when correction for the selection bias is
undertaken (discussed in Correction For Bias Selection).

In other work, Zhang et al. (4) demonstrated on the colon data
(11) how a classification tree based on three genes had an error
of only 2% after a localized validation. However, if these genes
had been selected from the p = 2,000 available genes on the basis
of some or all of the tissue samples used to train the classification
tree, then this estimated error still would have a selection bias
present in it.

Guyon et al. (9) noted for the leukemia data set that a support
vector with recursive feature elimination (RFE) discovers two
genes that yield a zero leave-one-out error. However, they relied
on the internal CV error, which does not take into account the
selection bias. In our results, we shall demonstrate that a
selection bias is incurred with the RFE procedure in selecting
genes for an SVM.

Before we proceed to present our results, we briefly describe
two approaches for assessing the selection bias in practice.

Correction for Bias Selection

As explained above, the CV error of the prediction rule R
obtained during the selection of the genes provides a too-
optimistic estimate of the prediction error rate of R. To correct
for this selection bias, it is essential that cross-validation or the
bootstrap be used external to the gene-selection process. Of
course a straightforward method of estimating the error rate of
a prediction rule R is to apply it to a test sample that has been
chosen randomly from the training tissue samples that are
available. However, because the tissue samples in the test set
must not be used in the training of the rule R, it means that R
has to be formed from a reduced set of tissue samples. Given
that the entire set of available tissue samples is relatively small,
in practice one would like to make full use of all available
tissue samples in the gene selection and training of the prediction
rule R.

Cross-Validation. With M-fold cross-validation of a prediction rule
R, the training set is divided into M nonoverlapping subsets of
roughly equal size. The rule is trained on M — 1 of these subsets
combined together and then applied to the remaining subset to
obtain an estimate of the prediction error. This process is
repeated in turn for each of the M subsets, and the CV error is
given by the average of the M estimates of the prediction error
thus obtained. In the case of M = n, where each observation
(tissue sample) in the training set is deleted in turn before it is
allocated by the rule formed from the remaining (n — 1)
observations, we obtain the so-called leave-one-out CV error.
In the present context where feature selection is used in
training the prediction rule R from the full training set, the same
feature-selection method must be implemented in training the
rule on the M — 1 subsets combined at each stage of an (external)
cross-validation of R for the selected subset of genes. Of course,
there is no guarantee that the same subset of genes will be
obtained as during the original training of the rule (on all the
training observations). Indeed, with the huge number of genes
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available, it generally will yield a subset of genes that has at most
only a few genes in common with the subset selected during the
original training of the rule.

The leave-one-out CV error is nearly unbiased, but it can be
highly variable. This proved to be the case in the present context
where the prediction rule is formed from a relatively small subset
of the available genes. Hence we considered 10-fold (M = 10)
cross-validation, which gives a more biased but less variable
estimate than the leave-one-out CV error. Leave-one-out cross-
validation for bias correction due to gene selection has been
considered in refs. 25 and 26 and by D. V. Nguyen and D. M.
Rocke (personal communication).

Bootstrap Approach. Suitably defined bootstrap procedures (22,
23) can reduce the variability of the leave-one-out error in
addition to providing a direct assessment of variability for
estimated parameters in the prediction rule. Also, if we take the
number of bootstrap replications K to be less than 7, it will result
in some saving in computation time relative to leave-one-out
cross-validation.

As discussed by Efron and Tibshirani (22), a bootstrap
smoothing of leave-one-out cross-validation is given by the
leave-one-out bootstrap error B1, which predicts the error at a
point x; only from bootstrap samples that do not contain the
point x;. To define B1 more precisely, suppose that K bootstrap
samples of size n are obtained by resampling with replacement
from the original set of n classified tissue samples. We let R L be
the bootstrap version of the rule R formed from the kth
bootstrap sample in exactly the same manner that R was formed
from the original training set using the same gene-selection
procedure. Then the (Monte Carlo) estimate of B1 on the basis
of the K bootstrap samples is given by

Bl= ), E;/n,

j=1

where

K K
Ej= 2 LiQu| 2 In

k=1 k=1

and Iy is one if x; is not contained in the kth bootstrap sample
and is zero otherwise, and Qj is one if R, misallocates x; and is
zero otherwise.

Typically, Bl is based on ~.632n of the original data points,
and it was confirmed in the case where there is no feature
selection that it closely agrees with half-sample cross-validation
(23). Thus B1 is upwardly biased and Efron (23) proposed the
.632 estimator,

B.632 = .368 X AE + .632 X B1,

for correcting the upward bias in B1 with the downwardly
biased AE.

For the present problem where the prediction rule is an overfit
as a consequence of its being formed from a very large number
of genes relative to the number of tissues, we need to use the
so-called .632+ estimator, B.632+, which puts relatively more
weight on the leave-one-out bootstrap error B1. It was proposed
by Efron and Tibshirani (22) for highly overfit rules such as
nearest-neighbors, where the AE is zero. The .632+ estimate is
defined as

B.632+ = (1 — w)AE + wBl, [1]

where the weight w is given by

Ambroise and McLachlan



.632

w
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and where
_B1- AE 5
r= 7)/ —AE [2]

is the relative overfitting rate and vy is the no-information error
rate that would apply if the distribution of the class-membership
label of the jth tissue sample did not depend on its feature vector
x;. It is estimated by

8
y= > pill—q), [3]

i=1

where p; is the proportion of the (original) tissue samples from
the ith class, and g; is the proportion of them assigned to the ith
class by R. The rate r may have to be truncated to ensure that it
does not fall outside the unit interval [0,1] (22). The weight w
ranges from .632 when r = 0 (yielding B.632) to 1 whenr = 1
(yielding B1).

The B.632+ estimate hence puts more weight on the bootstrap
leave-one-out error Bl in situations where the amount of
overfitting as measured by B1 — AE is relatively large. It thus is
applicable also in the present context where the prediction rule
R is overfitted because of feature selection.

Backward Elimination with SVM

We consider two well known data sets in the microarray liter-
ature: the colon data analyzed initially by Alon ef al. (11) and the
leukemia data first analyzed in Golub et al. (5). Both data sets
consist of absolute measurements from Affymetrix oligonucle-
otide arrays: the first contains n = 62 tissue samples on p = 2,000
human gene expressions (40 tumors and 22 normal tissues), and
the second contains n = 72 tissue samples on p = 7,129 genes (47
cases of acute lymphoblastic leukemia and 25 cases of acute
myeloid leukemia).

We first illustrate the selection bias incurred for an SVM with
linear kernel. We considered the selection procedure of Guyon
et al. (9), who used a backward selection procedure that they
termed RFE. The selection considers all the available genes,
because subset selection can be undertaken very quickly for an
SVM using the vector weights as selection criteria.

We let CV1IE denote the CV (leave-one-out) internal error
that does not correct for the selection bias. We let CV10E denote
the CV 10-fold error obtained by an external cross-validation,
which thus corrects also for the selection bias. The .632+
bootstrap error estimate, B.632+, was formed by using K = 30
bootstrap replications for each of the 50 splits of a full train-
ing set.

To illustrate the size of the selection bias for the colon data set,
we split it into a training and a test set each of size 31 by sampling
without replacement from the 40 tumor and 22 normal tissues
separately such that each set contained 20 tumor and 11 normal
tissues. The training set is used to carry out gene selection and
form the error rate estimates AE, CVI1IE, and CV10E for a
selected subset of genes. An unbiased error rate estimate is given
by the test error, equal to the proportion of tissues in the test set
misallocated by the rule. We calculated these quantities for 50
such splits of the colon data into training and test sets. For the
leukemia data set, we divided the set of 72 tissues into a training
set of 38 tissues (25 acute lymphoblastic leukemia and 13 acute
myeloid leukemia) and a test set of 34 tissues (22 acute lym-
phoblastic leukemia and 12 acute myeloid leukemia) for each of
the 50 splits. The average values of the error rate estimates are
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Fig. 1.  Error rates of the SVM rule with RFE procedure averaged over 50
random splits of the 62 colon tissue samples into training and test subsets of
31 samples each. TE, test error.

plotted in Fig. 1, and the corresponding averages for the
leukemia data are plotted in Fig. 2. The error bars on the test
error refer to the 95% confidence limits.

It can be seen from Fig. 1 that the true prediction error rate
as estimated by the test error is not negligible, being above 15%
for all selected subsets. The lowest value of 17.5% occurs for a
subset of 2° genes. Similarly, for the leukemia data set, it can be
seen from Fig. 2 that the selection bias cannot be ignored when
estimating the true prediction error, although it is smaller (=5%)
for this second set as the leukemia classes acute lymphoblastic
leukemia and acute myeloid leukemia are separated more easily.

Concerning the estimation of the prediction error by 10-fold
cross-validation and the bootstrap, it can be seen that CV10E has
little bias for both data sets. For the colon data set, the bootstrap
estimate B.632+ is more biased. However, B.632+ was found to
have a slightly smaller root mean squared error than CV10E for
the selected subsets of both data sets. Efron and Tibshirani (22)
comment that future research might succeed in producing a
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Fig. 2.  Error rates of the SVM rule with RFE procedure averaged over 50
random splits of the 72 leukemia tissue samples into training and test subsets
of 38 and 34 samples, respectively. TE, test error.
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better compromise between the unbiasedness of cross-validation
and the reduced variance of the leave-one-out bootstrap. It
would be of interest to consider this for the present problem,
where there is also feature-selection bias to be corrected for.

We observed comparable behavior of the SVM rule formed
using all the available tissue samples (62 and 72 tissue samples
for the colon and leukemia data sets, respectively). As to be
expected for training samples of twice or near twice the size, the
(estimated) bias was smaller: between 10 and 15% for the colon
data set and between 2 and 3% for the leukemia data set.

It can be seen from Figs. 1 and 2 that the estimated prediction
rate according to B.632+ and CV10E remains essentially con-
stant as genes are deleted in the SVM until ~64 or so genes when
these estimates start to rise sharply. The CV1IE error, which is
uncorrected for selection bias, also starts to rise then. Hence
feature selection provides essentially little improvement in the
performance of the SVM rule for the two considered data sets,
but it does show that the number of genes can be reduced greatly
without increasing the prediction error.

Itis of interest to note that the plot by Guyon et al. (9) for their
leave-one-out CV error is very similar to our plot of CV1IE in
Fig. 1. However, for this data set, Guyon et al. transformed the
normalized (logged) data further by a squashing function to
“diminish the importance of outliers,” which could have an
effect on the selection bias. For example, for this data set there
is some doubt (7) as to the validity of the labels of some of the
tissues, in particular, tumor tissues on patients 30, 33, and 36 and
normal tissues on patients 8, 34, and 36 as labeled in ref. 11.
When we deleted these latter tissue samples, the selection bias
of the rule was estimated to be almost zero. But in a sense this
is to be expected, for if all tissue samples that are difficult to
classify are deleted, then the rule should have a prediction error
that is close to zero regardless of the selected subset of genes.

Forward Selection with Fisher's Rule

We now consider the selection bias incurred with a sequential
forward selection procedure for the rule based on Fisher’s linear
discriminant function. For the selection of genes for Fisher’s
rule, we first reduced the set of available genes to 400 for each
data set to reduce the computation time. This exercise was
undertaken by selecting the top 400 genes as ranked in terms of
increasing order of the average of the maximum (estimated)
posterior probabilities of class membership. This initial selection
will incur some (small) bias, which we shall ignore here in our
illustrative examples. The forward selection procedure was ap-
plied with the decision to add a feature (gene) based on the
leave-one-out CV error. Here we used all the available tissue
samples (62 for the colon and 72 for the leukemia data sets) to
train the Fisher rule, and thus there was no test set available in
each case. The cross-validation and bootstrap estimates of the
prediction error of Fisher’s rule formed via forward selection of
the genes are plotted in Figs. 3 and 4 for the colon and leukemia
data sets, respectively.

Considering the colon data set, it can be seen in Fig. 3 that the
leave-one-out CV error, CV1IE (with the selection bias still
present), is optimized (6.5%) for only three genes. However, the
CV error CV10E, which has the selection bias removed, is
approximately equal to 15% for more than seven genes. The fact
that the estimates B.632+ and CV10E are ~15% for eight or so
genes for the colon data set would appear reasonable given that
this set has six tissues, the class of origin of which is in some
doubt.

Similarly, it can be seen in Fig. 4 that the selection bias
incurred with forward selection of genes for Fisher’s rule on the
leukemia data set is not negligible. As a consequence, although
the leave-one-out error CV1IE is zero for only three selected
genes, the 10-fold CV error CV10E and the bootstrap B.632+
error estimate are ~5%.
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Fig.3. Error rates of Fisher's rule with stepwise forward selection procedure

using all the colon data (62 samples).

The results described above for CVIIE for Fisher’s rule
formed via forward selection of the genes are in agreement with
the results of Xiong et al. (1). Their error rate corresponding to
our CV1IE was reported to be equal to 6.5 and 0% for the colon
and leukemia data sets, respectively (see table 2 in ref. 1).

Comparing the performance of forward selection with Fisher’s
rule to backward elimination with SVM, we found that the latter
procedure leads to slightly better results, with a 2 or 3%
improved error rate for both data sets. When trying forward
selection with SVM, we found very similar results to that
obtained with Fisher’s rule with a comparable number of genes.
Hence it seems that the selection method and the number of
selected genes are more important than the classification method
for constructing a reliable prediction rule.

Discussion

For two data sets commonly analyzed in the microarray litera-
ture, we have demonstrated that it is important to correct for the
selection bias in estimating the prediction error for a rule formed
by using a subset of genes selected from a very large set of
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Fig.4. Error rates of Fisher’s rule with stepwise forward selection procedure

using all the leukemia data (72 samples).
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available genes. To illustrate this selection bias further, we
generated a no-information training set by randomly permuting
the class labels of the colon tissue samples. For each of these 20
no-information sets, an SVM rule was formed by selecting genes
by the RFE method, and the AE and the leave-one-out CV error
CVIIE were calculated. The average values of these two error
rates and the no-information error vy (Eq. 3) over the 20 sets are
plotted in Fig. 5, where we also plotted the average value of the
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CVI10E and B.632+ error estimates that correct for the selection
bias. It can be seen that although the feature vectors have been
generated independently of the class labels, we can form an SVM
rule that has not only an average zero AE but also an average
CVI1IE error close to zero for a subset of 128 genes and ~10%
for only eight genes in the selected subset. It is reassuring to see
that the error estimates CV10E and B.632+, which correct for
the selection bias, are between 0.40 and 0.45, consistent with the
fact that we are forming a prediction rule on the basis of a
no-information training set.

From the three examples presented, it can be seen that it is
important to recognize that a correction for the selection bias be
made in estimating the prediction error of a rule formed by using
genes selected from a very large set of available genes. It is
important also to note that if a test set is used to estimate the
prediction error, then there will be a selection bias if this test set
was used also in the gene-selection process. Thus the test set
must play no role in the feature-selection process for an unbiased
estimate to be obtained.

Given that there is usually only a limited number of tissue
samples available for the training of the prediction rule, it is
not practical for a subset of tissue samples to be put aside for
testing purposes. However, we can correct for the selection
bias either by cross-validation or the bootstrap as implemented
above in the examples. Concerning the former approach, an
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