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Introduction We look at the structure of the minimal trellises of generalised Reed-
Muller (GRM)-codes. We determine how these trellis behave locally and use this to
determine their state complexity. We give minimal span generator matrices (MSGMs)
for these codes with an application to parallelism in uniform sectionalisations of their
minimal trellises. The results generalise some of those in [2].

Generalised Reed—Muller codes We denote the finite field with ¢ elements by F,. We
put P,(m) equal to those polynomials in IF,[X1, ..., X,;,| of degree no more than ¢ —1 in
each variable and for 0 < v < m(q — 1) — 1 we put P,(v, m) equal to those P in P;(m)
of total degree no more than v. For a fixed ordering cp < o1 < ... < agm_; of F and
P € P,(v,m) we put ev(P) = (P(a), P(ay), ..., P(agm_1)). Then GRM, (v, m) or just
GRM(v,m) is {ev(P) : P € P,(v,m)}. We put k(v,m) = dim(GRM (v, m)).

Trellises A trellis for a length n code C is a graph whose vertices are placed at n + 1
depths, here labelled —1 to n — 1. There is a single root vertex at depth —1 and a single
final vertex at depth n — 1. Paths through the trellis, passing through one vertex at each
depth, are in one-to—one correspondence with the codewords.

Trellis structure determines the speed of Viterbi decoding. Trellis complexities, such as
state complexity (SC), give measures of decoding complexity. Parallel structure in a
trellis can lead to quicker decoding using parallel processing.

When C is linear it has a minimal trellis T(C) which minimises many trellises complex-
ities. The SC of a code is the SC of its minimal trellis and is considered a fourth code
parameter. Unlike the other code parameters equivalent codes can have different SC.

Local behaviour of T(GRM(v,m)) For —1 <4 < n—1 we put s;(C) = log, |V;| where
V; is the set of vertices at depth i of T(C). The SC of C is then s(C) = max{s;(C) :
—1 <i <n—1}. Also we write b; ;(C) for log, |B; ;| where B;; is the set of branches
between depths i and j in T(C). With C; = {c € C : ¢ = (cy,---,¢,0,...,0)} and
Cr={ceC:c=(0,...,0,¢i11,---,Cn_1)} it is well-known that

5i(C) = dim(C) — dim(C;") — dim(C;") and b;;(C) = dim(C) — dim(C;") — dim(C;").

We refer to an i where dim(C; ) = dim(C;_;) + 1 as a point of fall (PofF) and an i
where dim(C;") = dim(C;",) — 1 as a point of gain (PofG). Knowledge of where the
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PsofF and PsofG are gives a local description of the trellis of C. We write §;(C) and
7 (C) respectively for the number of PsofF and PsofG before and including i. Thus

We identify F, with {0,...,¢—1}. For a; = (i1, ..., im) € Fy* we put [a;| = > 7)" ix. The
ordering of the codewords of GRM (v, m) is determined by an ordering ap < ... < qgm_1
of IF(’]”. This ordering is a monomial ordering if ¢ < ji,..., ¢y < jn, implies that o; < a;.
Then we say that GRM (v, m) is monomially ordered. Our characterisation of the PsofF
and PsofG of GRM (v, m) generalises [2, Propositionl.1]

PROPOSITION 1 If GRM (v, m) is monomially ordered then i is a PofG of GRM(v, m)
if and only if |o;| < v and i is a PofF of GRM(v,m) if and only if |c;| > m(q —1) — v.

Thus as for RM—codes if GRM (v, m) has a total degree ordering then its SC attains the
Wolf upper bound, min{k(v,m),k(m(¢ — 1) — nu — 1, m)} (as it does with its extended
cyclic ordering). In fact as for RM-—codes it is known that the SC of GRM-—codes is
minimised with lexicographical ordering, [3], which is a monomial ordering. From now on
we take GRM (v, m) with lexicographic ordering which we refer to as standard ordering.
Thus o; = (41, .. .,in) if and only if i = 37, i;¢’ ! is the g—ary expansion of i. We just
write ¢ for o;.

SC of GRM (v, m). For a trellis function f € {s,b,s;, b; ;,7,6,T}) we write f(v, m) for

F(GRM(v,m)). The following symmetry property of T'(v,m) is well-known for RM-
codes with standard ordering.

PROPOSITION 2 For —1 <i<j <q™—1, bj;(v,m) = bgm_j_9gm_i—o(v,m). In particu-
lar si(v,m) = sgm_;_2(v, m).

The SC of RM-—codes is known, [1], and is perhaps most simply determined using the
recurrence relation of [4], as in [2]. We do not have a generalisation of this recurrence
relation. Instead we use that for ag™ ! <i < (a+1)¢g™ ! -1

si(v,m) = Yi—ggm-1(V —a,m—1) = §;_ggm-1 (v +a —q+1,m — 1) + sggm-1_1 (v, m).

Thus we put oy(v,a,m —1) :=~v,(v—a,m—1) —6,(v+a— g+ 1,m— 1) and note that
it is straightforward to determine from Proposition 1 that

—

Sagm-1-1(v,m) = ; (kv —Im—-1)—k(v+1l—q+1),m—1)). (1)

Il
=]

We put @ = |¢/2]|. Then for g odd we have o, (v, Q, m—1) = s,(v—Q, m—1). Fortunately
SC is attained in the range Q¢™ ! < i < (a+1)¢™ ! — 1. So we get by induction

PROPOSITION 3 Forq odd the SC of GRM (v, m) is attained at (Q, ..., Q) and s(v,m) =
Z;":_Ol Sgqm-i-1—1(V — jQ, m — j), where squm-i-1_1(v — jQ, m — j) is given by (1).
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For even ¢q we get that for bg™ 2 < u < (b+1)g™ 2 — 1, 0y (v,a,m — 1) is equal to
Yu—bgm—2(V —a — b, m — 2) — 0y_pgm—2(V +a+b—2(q —1),m — 2) + opgm—2_1(v,a,m).

Thus for (Q —1)¢™? <u < Qg™ ?* -1, 0,(v,Q,m — 1) = sy_(g-1)gm—2(v — g+ 1,m —
2) + o(g-1)gm—2(v, @, m). Fortunately s;(v,m) is maximised in the range Q¢™ * < i <
Q¢ +(Q—1)gm* — L

PROPOSITION 4 For q even the SC of GRM (v, m) is attained at (..., Q—1,Q,...,Q —
1,Q) (and hence at (...,Q,Q —1,...,Q,Q — 1)) and
(m—1)/2
stym) = Y sqgmora(v—jlg—1),m— 2j)
=0
(m—3)/2
+ Y ogeygm-ea (v — (g —1),Qm —2j — 1). (2)
=0

As in Proposition 3 the first term in the right-hand side of (2) is given by (1). A similar
identity holds for the second term. For ¢ = 2 this second term disappears and we get the
known result s(v, m) = Y2570V (k(v — j,m — 2j — 1) — k(v —j — 1,m — 2j — 1)).

For v < m(q — 1)/2 total degree or cyclic ordering of GRM (v, m) gives SC equal to
k(v, m) which for ¢ odd can be shown by induction to be equal to

m—1 Q-1

Y kv-jQ—-lm—j-1)+k(v—3jQ+1l—qg+1,m—j—1)).
j 0

7=0 I=

Thus the saving in SC of using standard ordering in this case is 2 Z;”:_Ol lQ:Bl k(v—37Q+
l—q+1,m—j—1). Similar calculations can be done for the other cases.

Minimal Span Generator Matrices for GRM—codes A generator matrix of a linear
code can be used to construct a trellis for the code. An MSGM is a generator matrix
which gives the minimal trellis. As for any linear code it is possible to determine an
MSGM for a given GRM-code from any generator matrix for the code. Here we give a
general form MSGM for the family of GRM—codes.

For0<a<g—1weputr,(X)=X(X-1)---(X—¢+1)/(X—a)and for 1 <n < m we
put R(n+1) equal to the set of those polynomials of the form 74(,41)(Xn+1) = - Ta(m) (Xm)
for some 0 < a(n+1),...,a(m) <¢g—1. Alsofor S,_; C...CS; C{1,...,n—1} and
0<r<t<qg—2weput ¢1(Si,...,8-1,71t)(X1,...,X,) equal to

Xn...(Xn—q—i—l)
HXZ.... H (X —q+2) <(Xn—7‘)-"(Xn—Q+2+t_r)>

€S i€Sq-1

and ¢o(S1,...,S-1,7,t)(X1,...,X,) equal to

H(X—z—q—i—l)... H (Xi—l) ((Xn_r_1)...(Xn—q—{—1—{—t—’f’))'

1€S51 1€S¢—1



For 0 <l <m(¢g—1)—1, Q(,n— 1) is the set of those polynomials of the form ¢; — g5
forsome 0 <r <g—2,r<t<g—2and S, 1 C...C S C{l1,...,n— 1} such that
|S1] 4+ ...+ |Sg1l=1—t. Then with R-Q ={r-q:r € R,q € Q},

THEOREM 5 Form>1and0<v<m(¢g—1)—1

v/(¢—1)
G(v,m) = |ev U Qv—s(g—1),m—-—s—1)-R(m—s+1) }

is an MSGM for GRM(v,m).

Theorem 5 gives generalisations of [2, Propositions 3.3 and 3.10]. A ¢“—way sectionali-
sation is one in which each section has length ¢™~%. Writing ||v, m, ¢*|| for the number
of parallel subtrellises and < v, m, ¢%,[ > for the number of branches between connected
states at depths (I —1)¢™ ™ — 1 and l¢g™ ™ — 1 (0 <1 < ¢“) in a ¢"-way sectionalisation
of T(v,m) we get

COROLLARY 6 For 1 < u < m, log,||lv,m,q¢"|| = k(v,m —u) — k(v — 1,m — u) and
log, <v,m,q",l >= k(v — (¢ — 1)u,m — u).

It is known that < v,m,q", 1 > is independent of | for RM-codes. It follows from
Corollary 6.2 that this is true for all ¢. It is stated in [5] that sectionalisations of trellises
for binary codes with more than two branches between adjacent connected states are
disadvantageous. From Corollary 6 we have ||v,m,¢%|| > 1 and < v, m, ¢%,1 >< q if and
onlyif v/(¢g—1) <u<m-—v/(qg—1).
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