
COMPLETION OF

PARTIAL LATIN SQUARES

Benjamin Andrew Burton

Honours Thesis

Department of Mathematics

The University of Queensland

Supervisor: Dr Diane Donovan

Submitted in 1996

Author’s archive version

Available from http://www.maths.uq.edu.au/~bab/papers/

Abstract

In this thesis, the problem of completing partial latin squares is examined. In particular,
the completion problem for three primary classes of partial latin squares is investigated.
First, the theorem of Marshall Hall regarding completions of latin rectangles is discussed.
Secondly, a proof of Evans’ conjecture is presented, which deals with partial latin squares
of order n containing at most n − 1 entries. Finally, we investigate an open problem
regarding completions of k-staggers, which are partial latin squares in which each row and
column contains exactly k entries, and each value is used exactly k times.

For this final problem, results are presented for a number of special cases. Compu-
tational results are obtained, and on the basis of these, conjectures are drawn. Finally,
possible methods of proof for these conjectures are discussed.

Acknowledgments

First and foremost, thanks must go to my supervisor, Diane Donovan, for her fruitful
advice, for hearing out my ideas, however bizarre, and for always being there.

Secondly, I must thank Craig Eldershaw for his assistance in computer-related matters,
and for causing the honours room much entertainment by bringing down the entire maths
department network.

Finally, I would like to thank all the honours students, without whom I might have
had this finished some time earlier. But it wouldn’t have been nearly as much fun.

Contents

1 Introduction 3

1.1 Preliminary Definitions . 4

1.1.1 Partial Latin Squares . 4

1.1.2 Extensions and Completions . 5

1.2 Hall’s Theorem . 6

2 Completing a Latin Rectangle 9

2.1 Theorem Statement . 9

2.2 Proofs . 10

2.2.1 Proof using Hall’s Theorem . 11

2.2.2 Constructive Proof . 12

3 Evans’ Conjecture 19

3.1 Outline . 19

3.2 A Partial Result . 20

3.3 Back Diagonal Constructions . 27

3.4 Permuting Rows and Columns . 38

3.5 Smetaniuk’s Proof Completed . 43

4 Completing a k-Stagger 47

4.1 Preliminary Definitions . 47

4.1.1 k-Staggers . 47

4.1.2 Transversals . 48

4.1.3 Orthogonal Latin Squares . 48

4.2 Existence of k-Staggers . 50

4.3 Completions . 52

4.3.1 1-Staggers . 52

4.3.2 2-Staggers . 54

4.3.3 Potential Proof of First Conjecture 55

4.3.4 A General Conjecture . 59

5 Conclusion 61

Bibliography 63

A Computer Search Source Code 65

A.1 Source for boolean.h . 65

A.2 Source for tset.h . 65

A.3 Source for tset.cc . 67

A.4 Source for output.h . 70

1

A.5 Source for output.cc . 70
A.6 Source for stagfunc.h . 71
A.7 Source for allstag.h . 71
A.8 Source for allstag.cc . 72
A.9 Source for sinfo.h . 73
A.10 Source for sinfo.cc . 74
A.11 Source for intstack.h . 77
A.12 Source for intstack.cc . 78
A.13 Source for stagger.cc . 78

2

Chapter 1

Introduction

This thesis examines the general problem of completing partial latin squares. A latin
square of order n is an n × n array of cells, filled with elements of {1, . . . , n} in such a
fashion that no element appears more than once in the same row or column. A partial
latin square is also such an array, but may contain empty cells. The question of completion
can then be phrased as follows:

Given a partial latin square P , is it possible to fill the empty cells of P so that
a latin square is obtained?

This thesis aims to answer this question for particular classes of partial latin squares P .

Chapter 1 presents a series of preliminary definitions and small results. Following
these, a theorem of Philip Hall is presented regarding systems of distinct representatives
of sets. Hall’s Theorem will be utilised many times throughout this thesis.

Chapter 2 then proves our first completion theorem. Originally proven by Marshall
Hall, this shows that any partial latin square in which the first r rows are filled and
the remaining rows are empty can be completed. A proof using Philip Hall’s theorem is
presented, followed by my own proof, which contains within it a direct construction for
completing such partial latin squares.

Chapter 3 is devoted to proving our second completion theorem, which is Evans’ Con-
jecture. This states that any partial latin square of order n, in which at most n − 1 cells
have been filled, can always be completed. While the proof is based around that of Smeta-
niuk, as presented in the literature, it has been considerably elaborated. In particular, the
proof of correctness for one of its central constructions is entirely my own.

Finally, Chapter 4 examines k-staggers, which are partial latin squares for which each
row and column contains precisely k entries, and each element of {1, . . . , n} appears exactly
k times. The material presented in this chapter, except for a small section on orthogonal
latin squares, is entirely my own work. After proving that a k-stagger of order n exists
whenever k ≤ n, we examine for which values of k and n it is true that all k-staggers of
order n have completions.

A complete solution to this problem is produced for the case k = 1. Although the case
k = 2 is not completely solved, a number of computational results are obtained. From
these, a series of conjectures is formed. The chapter then finishes with details on how
these conjectures might be proven.

3

1.1 Preliminary Definitions

1.1.1 Partial Latin Squares

We will let the natural numbers, denoted by N, be the set

{1, 2, 3, . . .}.

Our first task is to define a partial latin square (PLS). Intuitively, we desire for a
PLS of order n to be an n × n array, some of whose locations contain values from the set
{1, . . . , n}. In addition, a PLS cannot contain the same value more than once in any given
row or column. We will now present a formal definition, and then examine the relationship
between it and our intuitive idea.

Definitions 1.1.1. Let S be a set. Then S3 is the set of all ordered triples over S, defined
by

S3 = S × S × S.

Similarly, S2 is the set of all ordered pairs over S, defined by

S2 = S × S.

Definitions 1.1.2. Let n ∈ N, and let S be a set of size n. Let P ⊆ S3 have the following
property:

• For any i, j ∈ S, P contains:

– at most one triple of the form (i, j, x);

– at most one triple of the form (j, x, i);

– at most one triple of the form (x, i, j).

Then we say P is a partial latin square, or PLS, of order n. We call S the base set of
P . An element of P is called an entry in P .

We will always let S = {1, . . . , n}, unless otherwise stated. In particular, for our
purposes, this means that two PLSs of the same order can be assumed to have the same
base set.

Definitions 1.1.3. Let P be a PLS with base set S. Let e = (r, c, v) be an entry in P .
Then r, c and v are called the row, column and value of e respectively.

An ordered pair (r, c) ∈ S2 is called a location, or a cell. If l = (r, c) is a location and
e = (r, c, v), we say l is the location, or cell, of entry e. We also say that value v occupies,
or appears in, cell l of P . If there is no entry of the form (r, c, v) in P , we say cell l is
empty.

We can now see how our formal definition relates to our intuitive idea of a PLS. The
conditions given in Definitions 1.1.2 correspond to the following concepts:

• Each location contains at most one value;

• Each value occurs at most once in any given row (the row latin condition);

• Each value occurs at most once in any given column (the column latin condition).

4

Example 1.1.4. A PLS of order 3 is shown below.

1 3

1

2

Remark. The attraction of our formal definition (Definitions 1.1.2) is that it is symmetri-
cal about rows, columns and values. This means, for instance, that any theorem regarding
the rows of a PLS immediately implies a corresponding theorem regarding the columns
and another regarding the values found within a PLS.

This principle will be referred to as the principle of symmetry. An example of its use
can be found in Section 2.1.

Definition 1.1.5. A latin square is a PLS, with base set S, satisfying the following
property:

• For any i, j ∈ S, P contains:

– exactly one triple of the form (i, j, x);

– exactly one triple of the form (j, x, i);

– exactly one triple of the form (x, i, j).

We can again relate this definition to a more intuitive concept of a latin square.

Remark. A latin square is a PLS containing an entry in every possible cell.

Notice also that the definition of a latin square is again symmetrical in rows, columns
and values, and thus also allows use of the principle of symmetry.

1.1.2 Extensions and Completions

We now examine the concept of a PLS being a “subsquare” of another PLS.

Definition 1.1.6. Let P, Q be PLSs. Then we say Q is an extension of P if:

• P and Q have the same order;

• P ⊆ Q (recalling from Definitions 1.1.2 that both P and Q are subsets of S3, where
S is their common base set).

Intuitively, Q is an extension of P if and only if Q contains all the entries of P .

Example 1.1.7. Q is an extension of P in the example below.

P =

1 3

1

2

, Q =

1 2 3

3 1

3 2

.

Definitions 1.1.8. Let P be a PLS. A completion of P is an extension of P that is in
fact a latin square.

If P has a completion, we say P is valid. If P has no completion, we say P is invalid.

Example 1.1.9. In the following example, L is a completion of P . Note that this implies
that P is valid.

P =

1

2

3

, L =

1 3 2

3 2 1

2 1 3

.

5

Example 1.1.10. Through sufficient case analysis, it can be shown that the following
PLS Q has no completion. Note that this implies that Q is invalid.

Q =

1 3

1

2

So it can be seen that not all partial latin squares have a completion. The remainder
of this thesis will be devoted to determining exactly which PLSs can be completed.

1.2 Hall’s Theorem

A result that will be used throughout this thesis is Hall’s Theorem, also called the Marriage
Theorem, first proven by Philip Hall in 1935. Before we can present it, however, we need
to provide a new definition.

Definitions 1.2.1. Let n ∈ N and let S1, . . . , Sn be finite sets. A system of distinct
representatives, or SDR, for the Si is a sequence 〈s1, . . . , sn〉, where:

• si ∈ Si, for each i;

• the si are distinct.

We call si the representative of Si, for each i.

Example 1.2.2. If S1 = {3}, S2 = {1, 3} and S3 = {1, 2}, then a SDR for the Si is
〈3, 1, 2〉.

Example 1.2.3. Let S1 = {1, 3, 4}, S2 = {2}, S3 = {1}, S4 = {1, 2}. Then there is no
SDR for these sets.

This can be seen as follows. The representative for S2 must be 2, and the representative
for S3 must be 1. But, since representatives must be distinct, this leave no possible
representative for S4.

Theorem 1.2.4 (Hall’s Theorem). Let n ∈ N and let S1, . . . , Sn be finite sets. Then a
SDR for these sets exists if and only of the following condition is satisfied:

• For all k ∈ {0, . . . , n} and all choices Si1 , . . . , Sik of k sets in our collection (where
i1, . . . , ik are distinct), |Si1 ∪ . . . ∪ Sik | ≥ k.

Intuitively, this condition states that the union of any k sets in our collection must
contain at least k elements, and that this must be true for every choice of k and every
subsequent choice of k sets.

Example 1.2.5. Consider Example 1.2.2. We will examine each choice of k in turn.

• If k = 0, the union of 0 sets contains at least 0 elements, as required.

• If k = 1, the possible unions are S1 = {3}, S2 = {1, 3} and S3 = {1, 2}. All of these
unions contain at least 1 element, as required.

• If k = 2, the possible unions are S1 ∪ S2 = {1, 3}, S1 ∪ S3 = {1, 2, 3} and S2 ∪ S3 =
{1, 2, 3}. All of these unions contain at least 2 elements, as required.

6

• If k = 3, the only possible union is S1 ∪ S2 ∪ S3 = {1, 2, 3}, which contains at least
3 elements, as required.

Thus, by Hall’s Theorem, a SDR for sets S1, S2 and S3 exists (as was displayed in Exam-
ple 1.2.2).

Example 1.2.6. Consider Example 1.2.3. Choose k = 3, and notice that S2 ∪ S3 ∪ S4 =
{1, 2}. This is a union of 3 sets, but contains only 2 elements. Thus the required condition
is not satisfied, and so by Hall’s Theorem, no SDR exists for sets S1, S2, S3 and S4 (as was
noted in Example 1.2.3).

A proof of Hall’s Theorem will now be presented, which is an extension of the proof
given in [6].

Proof. Our proof will proceed via strong induction on n (note that strong induction in
general requires no initial case, such as n = 1). Let r ∈ N. Our inductive hypothesis is
that Theorem 1.2.4 is true whenever 0 < n < r. We must then prove it true for n = r.

Throughout this proof, the condition presented in Theorem 1.2.4 (i.e. that the union
of any k sets must contain at least k elements) will simply be referred to as “the given
condition”.

So let n = r. First, we shall prove that the existence of a SDR implies the satisfaction
of the given condition. Say the SDR 〈s1, . . . , sn〉 exists for the given sets S1, . . . , Sn. Now
choose any k ∈ {0, . . . , n} and any k sets Si1 , . . . , Sik from our collection (where i1, . . . , ik
are distinct). Then, since sj ∈ Sj for each j, the union Si1 ∪ . . . ∪ Sik contains all of
si1 , . . . , sik . Furthermore, these k representatives are distinct (by definition of a SDR).
Thus the union of these k sets contains at least k elements.

Conversely, we shall now assume that the given condition holds, and from this prove
the existence of a SDR.

If n = 1, the result is trivial. Since the single-set union S1 contains at least 1 element,
say s1, a SDR is then 〈s1〉.

Thus we may assume n > 1. We will now split into two cases.

• Say that, for all k ∈ {1, . . . , n−1} and all choices of k sets in our collection, the union
of these k sets contains at least k + 1 elements. Then, in particular, S1 cannot be
empty. So choose some representative s1 ∈ S1. It follows that, for all k and all choices
of k sets Si1\{s1}, . . . , Sik\{s1} from S2\{s1}, . . . , Sn\{s1}, the union of these k sets
must contain at least k elements (since we already know that |Si1 ∪ . . .∪Sik | ≥ k+1,
and at most one element, namely s1, has been removed).

Thus we may apply our inductive hypothesis to the n− 1 sets S2\{s1}, . . . , Sn\{s1},
producing distinct representatives s2, . . . , sn. Notice then that sj ∈ Sj for all 2 ∈
{2, . . . , n}, and that none of s2, . . . , sn can be equal to s1. Hence 〈s1, s2, . . . , sn〉 is a
SDR for the original sets S1, . . . , Sn.

• Alternatively, say there is some k ∈ {1, . . . , n − 1} and some k sets Si1 , . . . , Sik

whose union contains exactly k elements (from the given condition, it cannot con-
tain fewer). Then apply the inductive hypothesis upon sets Si1 , . . . , Sik to produce
distinct representatives si1 , . . . , sik .

Now remove any occurrences of si1 , . . . , sik from the remaining n − k sets, and call
the resultant sets derived sets. Say we can find some l and some choice of l derived

7

sets whose union contains fewer than l elements. Then let the original sets from
which these were derived be Sj1 , . . . , Sjl

. It follows then that

|Sj1 ∪ . . . ∪ Sjl
∪ {si1 , . . . , sik}| < l + k.

However, since |Si1∪. . .∪Sik | = k and this union contains all of si1 , . . . , sik , it follows
that the union is exactly {si1 , . . . , sik}. Thus

|Sj1 ∪ . . . ∪ Sjl
∪ Si1 ∪ . . . ∪ Sik | < l + k,

contradicting the given condition.

So, for all l and all choices of l derived sets, the union of these l sets contains at least
l elements. Thus we can apply the inductive hypothesis to the n − k derived sets,
producing a SDR. Let sj be the representative of the set derived from Sj , for each j
(where j 6= im, for 1 ≤ m ≤ k). Notice that there are exactly n − k such values for
j.

Notice also, from the definition of the derived sets, that sj ∈ Sj for each j (again
where j 6= im, for 1 ≤ m ≤ k), and that none of these sj can be equal to any of the
sim , for 1 ≤ m ≤ k. Hence, combining the representatives sj with si1 , . . . , sik , we
obtain a SDR for the entire collection S1, . . . , Sn.

So, in all cases, a SDR exists.

8

Chapter 2

Completing a Latin Rectangle

This chapter introduces our first completion theorem, first proven by Marshall Hall in
1945, which states that a PLS of order n, with r rows filled and the remaining n− r rows
empty, can always be completed.

Two proofs of this theorem will be presented. One of these will be an application of
Philip Hall’s Theorem, and the other is my own “bare hands” constructive proof.

Note that, throughout this thesis, “Hall’s Theorem” will continue to refer to the the-
orem of Philip Hall (Theorem 1.2.4).

2.1 Theorem Statement

Before the theorem is presented, we need to provide a necessary definition.

Definition 2.1.1. Let r, n ∈ N, with r ≤ n. Then an r×n latin rectangle is defined to be
a PLS of order n, in which the first r rows are completely filled and the remaining n − r
rows are completely empty.

Example 2.1.2. In the following example, P is a 3 × 4 latin rectangle.

P =

1 2 3 4

2 3 4 1

3 4 1 2
.

The completion theorem of Marshall Hall can then be phrased as follows:

Theorem 2.1.3. Every latin rectangle is valid (i.e. has a completion).

Example 2.1.4. For instance, the latin square L (shown below) is a completion of P in
Example 2.1.2.

L =

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

.

We can use the principle of symmetry (described in Section 1.1.1) to deduce the fol-
lowing immediate corollaries of Theorem 2.1.3:

9

Corollary 2.1.5. Let r, n ∈ N, with r ≤ n. Let P be a PLS of order n, in which the
first r columns are completely filled (i.e. are used in n entries) and the remaining n − r
columns are completely empty (i.e. are not used at all).

Then P is valid.

Example 2.1.6. In the following example, P is a PLS satisfying the given conditions,
and L is a completion of P .

P =

1 2 5

2 3 1

3 1 4

4 5 3

5 4 2

, L =

1 2 5 4 3

2 3 1 5 4

3 1 4 2 5

4 5 3 1 2

5 4 2 3 1

.

Corollary 2.1.7. Let r, n ∈ N, with r ≤ n. Let P be a PLS of order n, in which the first
r values are used in n entries and the remaining n − r values are not used at all.

Then P is valid.

Example 2.1.8. In the following example, P is a PLS satisfying the given conditions,
and L is a completion of P .

P =

1 2 3

3 1 2

2 1 3

1 3 2

3 2 1

, L =

1 2 4 3 5

3 5 1 2 4

2 4 5 1 3

4 1 3 5 2

5 3 2 4 1

.

We can also derive the following corollary of Theorem 2.1.3, simply by reordering rows
within the PLS:

Corollary 2.1.9. Let r, n ∈ N, with r ≤ n. Let P be a PLS of order n, in which some r
rows are completely filled and the remaining n − r rows are completely empty.

Then P is valid.

Example 2.1.10. In the following example, P is a PLS satisfying the given conditions,
and L is a completion of P .

P =

1 2 3 4

2 3 4 1
, L =

1 2 3 4

3 4 1 2

2 3 4 1

4 1 2 3

.

Similar corollaries can be drawn from Corollaries 2.1.5 and 2.1.7.

2.2 Proofs

As described at the beginning of this chapter, two proofs of Theorem 2.1.3 will be pre-
sented. The first utilises Hall’s Theorem (Theorem 1.2.4), and the second is my own direct
constructive proof.

10

2.2.1 Proof using Hall’s Theorem

This proof is an extension of the proof given in [2].

Proof. Let P be an r × n latin rectangle, where r ≤ n. We will proceed by induction
on t to prove that P can be extended to form a t × n latin rectangle Pt, where t =
r, r + 1, . . . , n − 1, n.

The case t = r is trivial. The PLS Pr = P is an r × n latin rectangle that is an
extension of P .

Now we proceed to the inductive step. Let r < t ≤ n, and assume that P can be
extended to form a (t − 1) × n latin rectangle Pt−1. We must prove that P can also be
extended to form a t × n latin rectangle Pt.

Rows 1, . . . , (t − 1) of Pt−1 are filled, and rows t, . . . , n are empty. So, if we can show
that the tth row of Pt−1 can be filled with the the integers 1, . . . , n without breaking either
the row latin or column latin conditions, then the PLS produced (call it Pt) will be a t×n
rectangle that is an extension of Pt−1, and hence of P .

So let Ui be the set of values appearing in column i of Pt−1, for i = 1, . . . , n. Then Ui

is the set of values that cannot be placed in location (t, i) without breaking the column
latin condition (recall that location (t, i) represents the ith cell in row t). So let Si = S\Ui

for all i, where S = {1, . . . , n}. Then Si is the set of values that can be placed in location
(t, i) without breaking the column latin condition. For instance, using the following PLS:

P2 =

1 2 3 4

3 1 4 2
,

the corresponding Si are:

S1 = {2, 4},

S2 = {3, 4},

S3 = {1, 2},

S4 = {1, 3}.

Now say we can find a SDR 〈s1, . . . , sn〉 for S1, . . . , Sn. It follows that this SDR must
consist of the integers 1, . . . , n in some order. Then, for each i, we may insert value si

into location (t, i), thus producing a PLS for which the column latin condition holds, since
si ∈ Si for all i. Furthermore, since all of 1, . . . , n have been inserted into row t, the row
latin condition is still true. Thus we have filled in row t of Pt−1 in the required fashion.

So all that remains is to show that a SDR exists for S1, . . . , Sn. To the contrary, say
there is no SDR. Then there is some k and some choice of sets Si1 , . . . , Sik whose union
contains less than k elements.

Now, since exactly t − 1 rows of Pt−1 are filled, each column of Pt−1 contains exactly
t − 1 entries. Thus, for each j, we have

|Sij | = |S\Uij | = n − (t − 1) = n − t + 1.

So, if we were to write out all the elements of Si1 , followed by the elements of Si2 , and so
on up to Sik , we would have written a total of k · (n − t + 1) elements.

However, since the union Si1∪. . .∪Sik contains less than k elements, there must be less
than k different values appearing in this written list. Hence, by the pigeonhole principle,

11

at least one value must appear more than (n − t + 1) times, i.e. at least one value must
belong to at least (n − t + 1) of the Si.

So, since Si = S\Ui for each i, we see that at least one value belongs to less than t− 1
of the Si, i.e. it appears in less than t−1 columns. However, since exactly t−1 rows of the
PLS are filled, each with the integers 1, . . . , n exactly once each, every value must appear
exactly t − 1 times in Pt−1. Furthermore, since no value can appear twice in the same
column, it follows that every value appears in exactly t−1 columns. Thus a contradiction
has been reached.

So the required SDR exists, the corresponding Pt can be produced, and the induction
can be followed through to show that there exists a n × n latin rectangle Pn which is an
extension of P . But an n × n latin rectangle is simply a latin square, and so the required
theorem has been proved.

Example 2.2.1. We will continue the example presented in the proof. A SDR for the sets
S1, . . . , S4 is 〈4, 3, 2, 1〉. Thus the first empty row can be filled with these values, giving
the latin rectangle

P3 =

1 2 3 4

3 1 4 2

4 3 2 1
.

A similar procedure is used to fill in the last row, thus producing an entire latin square.

2.2.2 Constructive Proof

The proof presented here is my own constructive proof. As in the previous proof, it
involves filling the empty rows, one at a time. However, rather than relying upon existence
theorems, a direct construction is provided for filling in these rows. While the proof is
therefore longer, the construction presented may be used in situations where an explicit
algorithm for completing a latin rectangle is required (for instance, in computational
combinatorics).

Construction 2.2.2. Let P be a (t − 1) × n latin rectangle, where 1 ≤ t ≤ n. What
follows is a construction for filling in row t of P in such a manner that the row latin and
column latin conditions are preserved, thus producing a t × n latin rectangle.

In order to fill in row t, we must place values into cells (t, 1), (t, 2), . . ., (t, n). We
will assume that the first k of these cells (i.e. (t, 1), . . ., (t, k)) have been filled without
violating either the row latin or column latin conditions, and we shall now describe how
to fill in cell (t, k + 1). By repeatedly following this procedure, the entire row t can be
filled in.

Defining value sets:

So, for each i, let Ui be the set of values currently occurring in column i, excluding
any value that may have been placed in cell (t, i). Let S = {1, . . . , n}, and let Si = S\Ui.
Thus Si is the set of values that may be placed in cell (t, i) without violating the column
latin condition.

Consider the following example, which will be referred to throughout our construction.

12

Our inital latin rectangle is P , as shown below.

P =

1 5 3 4 2 7 8 6

4 8 5 6 1 3 7 2

5 7 6 8 3 1 2 4

7 4 8 1 6 2 5 3

8 2 7 3 5 6 4 1
.

For the purposes of illustration, we will assume that we have already begun to fill the
empty cells of P . Say our current state is as shown below.

1 5 3 4 2 7 8 6

4 8 5 6 1 3 7 2

5 7 6 8 3 1 2 4

7 4 8 1 6 2 5 3

8 2 7 3 5 6 4 1

3 6 1 2 4 5

.

Here we are in the process of filling row t = 6. The first k = 6 cells contain values, and
our current task is to place a value in cell (6, 7). In this case, the corresponding Ui and Si

are:

U1 = {1, 4, 5, 7, 8}, S1 = {2, 3, 6},

U2 = {2, 4, 5, 7, 8}, S2 = {1, 3, 6},

U3 = {3, 5, 6, 7, 8}, S3 = {1, 2, 4},

U4 = {1, 3, 4, 6, 8}, S4 = {2, 5, 7},

U5 = {1, 2, 3, 5, 6}, S5 = {4, 7, 8},

U6 = {1, 2, 3, 6, 7}, S6 = {4, 5, 8},

U7 = {2, 4, 5, 7, 8}, S7 = {1, 3, 6},

U8 = {1, 2, 3, 4, 6}, S8 = {5, 7, 8}.

In general, note that the currently existing PLS satisfies both the row latin and column
latin conditions. So, in order to avoid violating either of these conditions whilst filling row
t, the following requirements are necessary and sufficient:

• Any value placed in cell (t, i) must be in Si, for all i;

• Any two values placed in row t must be different.

These requirements will be referred to as the insertion conditions.

Initial construction attempt:

Recall that our aim from this point onwards is simply to fill cell (t, k + 1). If there
is an element x ∈ Sk+1 that has not already been placed in row t, we can thus insert it

13

into cell (t, k + 1). The insertion conditions will be satisfied, and hence our task will be
complete.

In our example, Sk+1 = S7 = {1, 3, 6}. However, each of 1, 3 and 6 have already
been used in row t = 6. So we cannot use a simple insertion as described above. Instead,
something more sophisticated will be required.

Constructing index sets:

So assume now that each element of Sk+1 already appears in row t. In particular, say
these elements appear in cells {(t, i) | i ∈ I1}, where I1 ⊆ {1, 2, . . . , n} (so I1 is the set of
columns in which these values appear).

In our example, the elements of S7 appear in cells (6, 1), (6, 2) and (6, 3). Thus
I1 = {1, 2, 3}.

In general, if I ⊆ {1, 2, . . . , n}, we will let ǫ(I) denote the set {ǫ(t, i) | i ∈ I}, where
ǫ(x, y) denotes the value in cell (x, y). So in our example, where I1 = {1, 2, 3}, we have
ǫ(I1) = {3, 6, 1}. In fact, in general, by definition of I1, we have ǫ(I1) = Sk+1. Note also
that ǫ(I ∪ J) = ǫ(I) ∪ ǫ(J), for all sets I, J ⊆ {1, 2, . . . , n}. This then implies that, for all
sets I, J ⊆ {1, 2, . . . , n}, if I ⊆ J , we have ǫ(I) ⊆ ǫ(J).

Furthermore, if I ⊆ {1, 2, . . . , n}, we will let SI denote the set
⋃

i∈I Si. So in our
example, where I1 = {1, 2, 3}, we have

SI1 = S1 ∪ S2 ∪ S3 = {2, 3, 6} ∪ {1, 3, 6} ∪ {1, 2, 4} = {1, 2, 3, 4, 6}.

In general, our insertion requirements imply that, for any I ⊆ {1, 2, . . . , n}, we have
ǫ(I) ⊆ SI , since the entry in cell (t, i) must be in Si, for all i ∈ I. Note also that
SI∪J = SI ∪ SJ , for all I, J ⊆ {1, 2, . . . , n}.

In the general case, we continue to construct index sets I2, I3, . . . as follows. We will
later show that this construction must terminate at some point.

1. Say the last set constructed was Im (so, to begin with, m = 1).

2. If SIm
contains an element x that has not yet been placed in row t, we say the

sequence 〈I1, . . . , Im〉 is ecstatic, and we stop constructing index sets.

3. Otherwise, consider the set SIm
\ǫ(I1 ∪ . . . ∪ Im). We will prove shortly that this

set cannot be empty. Since we know that every element of SIm
has been placed in

row t, we know that every element of SIm
\ǫ(I1 ∪ . . . ∪ Im) has been placed in row t.

In particular, say they appear in locations {(t, i) | i ∈ Im+1} (so Im+1 is the set of
columns in which these values appear). This then defines set Im+1, and we return
to step 1.

Note then that every element of SIm
occurs either in ǫ(I1 ∪ . . . ∪ Im) or in ǫ(Im+1).

So

SIm
⊆ ǫ(I1 ∪ . . . ∪ Im) ∪ ǫ(Im+1) = ǫ(I1 ∪ . . . ∪ Im ∪ Im+1).

Note also that Im+1 is non-empty, since SIm
\ǫ(I1 ∪ . . .∪ Im) is non-empty. Further-

more, say we can find some x satisfying x ∈ Im+1 and x ∈ Ij , for some j ≤ m.
Then, since x ∈ Ij , the value in cell (t, x) belongs to ǫ(I1 ∪ . . .∪ Im). However, since
x ∈ Im+1, the value in cell (t, x) belongs to SIm

\ǫ(I1 ∪ . . . ∪ Im). But no value can
belong to both of these sets. Thus Im+1 is disjoint from each of I1, . . . , Im.

14

Proof that SIm
\ǫ(I1 ∪ . . . ∪ Im) is non-empty:

Recall that we promised to show that the set SIm
\ǫ(I1 ∪ . . . ∪ Im) cannot be empty.

We will now prove this claim. Say, on the other hand, that this set is in fact empty. Then
SIm

⊆ ǫ(I1∪ . . .∪Im). However, recall also that, for each j ≤ m−1, SIj
⊆ ǫ(I1∪ . . .∪Ij+1).

This in turn gives

SIj
⊆ ǫ(I1 ∪ . . . ∪ Ij+1) ⊆ ǫ(I1 ∪ . . . ∪ Im).

Combining this with the previous note, we see that SIj
⊆ ǫ(I1 ∪ . . . ∪ Im), for all j ∈

{1, . . . , n}. Thus

SI1∪...∪Im
⊆ ǫ(I1 ∪ . . . Im).

So let I0 = I1 ∪ . . . ∪ Im. Then SI0 ⊆ ǫ(I0). However, it was noted earlier that ǫ(I) ⊆ SI ,
for any I. Thus SI0 = ǫ(I0).

Recall now that Sk+1 = ǫ(I1). So, in fact, we have SI0 ∪ Sk+1 = ǫ(I0) ∪ ǫ(I1) = ǫ(I0),
since I1 ⊆ I0. Thus SI0∪{k+1} = ǫ(I0).

Let us now examine what we have. I0 is a non-empty set of columns, all of which
contain an entry in row t (by definition of the index sets Ij). Let s = |I0|. Furthermore,
column (k + 1) does not contain an entry in row t. Hence |I0 ∪ {k + 1}| = s + 1. Define
I ′ = I0 ∪ {k + 1}.

Note also that, since ǫ(I0) is the set of all values appearing in row t and columns in
I0, we have |ǫ(I0)| = |I0| = s. Hence |SI′ | = |ǫ(I0)| = s, and |I ′| = s + 1.

So we have found s+1 sets from the collection S1, . . . , Sn (namely {Si | i ∈ I ′}), whose
union contains only s elements. Let these sets be Si1 , . . . , Sis+1

. Since the union contains
only s elements, there are n − s values belonging to none of the Sij . Hence these n − s
values occur in each of columns i1, . . . , is+1, even when excluding row t, and so account
for at least (n − s)(s + 1) of the entries in these s + 1 columns. Any entries in row t are
to be excluded until further notice. Thus the remaining s values can account for at most
(t− 1)(s + 1)− (n− s)(s + 1) = (t−n + s− 1)(s + 1) of the entries in these s + 1 columns,
since each column contains a total of t − 1 entries. Now

(t − n + s − 1)(s + 1) = ts + t + s2 + s − ns − n − s − 1

= s(s − n + t) + (t − n − 1)

< s(s − n + t),

since t ≤ n. So these s values account for less than s(s − n + t) entries in the columns
contained in I0, and so at least one of these values occurs less than (s − n + t) times in
these columns. Let this value be x.

Furthermore, in the remaining (n− (s+1)) = (n− s− 1) columns not contained in I0,
x can appear at most n − s − 1 times, since x can appear in each column at most once.
Thus, in total, x appears in less than (s − n + t) + (n − s − 1) = t − 1 columns.

However, since each of the (t− 1) filled rows of Pt−1 contains each value exactly once,
x must appear exactly (t− 1) times. So, since it can appear in each column at most once,
x must appear in exactly (t − 1) columns. We have thus arrived at a contradiction.

Thus SIm
\ǫ(I1 ∪ . . . ∪ Im) is non-empty.

Proof that construction terminates:

Since the sets I1, I2, . . . are non-empty and disjoint, and their elements all belong to the
finite set {1, . . . , n}, it follows that there can only be finitely many such index sets. Thus

15

our index set constructions must terminate due to the existence of an ecstatic sequence
〈I1, . . . , Im〉.

Illustration of index sets:

The construction of index sets is now illustrated for our example. Recall that I1 =
{1, 2, 3} and SI1 = {1, 2, 3, 4, 6}. All of these values occur in row t = 6, so we must continue
to construct index sets. Recall also that ǫ(I1) = {1, 3, 6}. Thus SI1\ǫ(I1) = {2, 4}. These
values occur in columns 4 and 5, so I2 = {4, 5}.

Now we have

SI2 = S4 ∪ S5 = {2, 5, 7} ∪ {4, 7, 8} = {2, 4, 5, 7, 8}.

This contains the value 7, which has not yet been placed in row t = 6. Thus the sequence
〈I1, I2〉 is ecstatic, and we stop constructing index sets.

Finding columns:

In general, assume we have an ecstatic sequence 〈I1, . . . , Im〉. We will now describe
how to fill cell (t, k + 1).

Since this sequence is ecstatic, there is some xm ∈ SIm
that does not already appear

in row t. Then xm ∈ Scm , for some cm ∈ Im. Let xm−1 be the entry in cell (t, cm).

Now, from the definition of Im, we have xm−1 ∈ SIm−1
. So xm−1 ∈ Scm−1

, for some
cm−1 ∈ Im−1. Let xm−2 be the entry in cell (t, cm−1).

In general, for each i ∈ {m − 1, m − 2, . . . , 1}, we notice that, from the definition of
Ii+1, we have xi ∈ SIi

. So xi ∈ Sci
, for some ci ∈ Ii. Then let xi−1 be the entry in

cell (t, ci). We continue this procedure until c1 and x0 have been evaluated. Finally, by
definition of I1, we know x0 ∈ Sk+1.

This procedure will be illustrated using our example. Recall that we found an ecstatic
sequence 〈I1, I2〉, where I1 = {1, 2, 3} and I4 = {4, 5}. We also found the value 7 ∈ SI2

that has not yet been placed in row t = 6. So let x2 = 7. Since 7 belongs to both S4 and
S5, we have a choice of columns to use as c2. We shall choose c2 = 5. Then the entry in
cell (6, 5) is 4, so we define x1 = 4.

Now we need to find column c1 ∈ I1 = {1, 2, 3} satisfying x1 = 4 ∈ Sc1 . In this case,
4 ∈ S3. So we define c1 = 3. Finally, the entry in cell (6, 3) is 1, so we let x0 = 1.

Filling cells:

At this stage, we are ready to fill in our cells! The procedure is as follows:

• For i = 1, 2, . . . , m, remove the value in cell (t, ci) and replace it with the value xi.

• Place value x0 in cell (t, k + 1).

This then fills cell (t, k + 1) as required, without emptying any of the cells already
filled.

Since xi ∈ Si for i = 1, . . . , m and x0 ∈ Sk+1, the column latin condition is not violated
by our construction. Furthermore, the only new value placed in row t is xm, which (by
definition) does not already occur in row t. The remaining values are simply shifted
around. In general, for i = 0, 1, . . . , (m− 1), the value xi is removed from cell (t, ci+1) and
placed into cell (t, ci). Thus any two values appearing in row t are different. Hence the

16

insertion requirements are satisfied, and so the resulting PLS satisfies both the row latin
and column latin conditions.

Furthermore, the PLS obtained is still an extension of our original latin rectangle,
since the cells that were altered (namely (t, c1), . . ., (t, cm)) were empty in our original
latin rectangle P .

Consider our example. Recall that

x2 = 7, c2 = 5,

x1 = 4, c1 = 3,

x0 = 1.

So we replace cell (6, 5) with 7 and cell (6, 3) with 4. Finally, the value 1 is inserted into
the empty cell (t, k + 1) = (6, 7). The resulting PLS is shown below.

1 5 3 4 2 7 8 6

4 8 5 6 1 3 7 2

5 7 6 8 3 1 2 4

7 4 8 1 6 2 5 3

8 2 7 3 5 6 4 1

3 6 4 2 7 5 1

This procedure for filling cell (t, k + 1) can be reiterated until the entire row is filled.
Then, in turn, each row can be filled until the entire PLS has been filled. This then
produces a completion of our original latin rectangle.

In our example, we have now filled cells (6, 1), . . . , (6, 7), and so we let k = 7. Our
next task is then to fill cell (t, k + 1) = (6, 8). Thankfully, this is easier than filling the
previous cell, since S8 contains the value 8, which does not yet appear in row t = 6. Thus
we simply insert value 8 into cell (6, 8). This then completes row 6. So we now let t = 7
and k = 0, and the procedure is continued. A possible final completion of our original
latin rectangle P is shown below.

1 5 3 4 2 7 8 6

4 8 5 6 1 3 7 2

5 7 6 8 3 1 2 4

7 4 8 1 6 2 5 3

8 2 7 3 5 6 4 1

3 6 4 2 7 5 1 8

6 1 2 7 4 8 3 5

2 3 1 5 8 4 6 7

The proof of Theorem 2.1.3 is now as follows:

Proof. Let P be an r×n latin rectangle. If r < n, then Construction 2.2.2 can be used to
extend P to an (r + 1) × n latin rectangle. If r + 1 < n, we use Construction 2.2.2 again
to produce an (r + 2) latin rectangle. This procedure is continued until an n × n latin
rectangle has been produced. This is then a latin square that is a completion of P , and
so P is valid.

17

18

Chapter 3

Evans’ Conjecture

This chapter is devoted to a second completion theorem, known as Evans’ Conjecture.
Originally proposed by Trevor Evans in 1960, this theorem states that any PLS of order
n containing at most n − 1 entries is valid (i.e. can be completed). However, at the time
it remained unproven (hence the name “Evans’s Conjecture”). In the years following,
many partial results were produced, one of which will be presented in this chapter (The-
orem 3.2.1). However, it was not until 1981 that a complete proof was provided, in this
case by Bohdan Smetaniuk [5].

We will begin by formally presenting Evans’ Conjecture in the form of a conjecture.
Then, after producing some brief illustrations, we will develop a certain amount of neces-
sary background theory. Following this, Smetaniuk’s proof of Evans’ Conjecture will be
discussed.

3.1 Outline

Evans’ Conjecture is then as follows.

Conjecture 3.1.1. Let P be a PLS of order n. If P contains at most n− 1 entries, then
P is valid.

Example 3.1.2. In the illustration below, P is a PLS of order 5 containing 4 entries, and
L is a completion of P .

P =

1

3

3 4

, L =

1 4 5 3 2

5 2 3 1 4

3 1 2 4 5

2 3 4 5 1

4 5 1 2 3

.

Notice also that the upper bound of n − 1 entries is, in a sense, the best possible, as
illustrated by the following result, based upon an example from [5].

Lemma 3.1.3. Let n ∈ N, where n > 1. Then there exists a PLS of order n, containing
exactly n entries, which is invalid (i.e. has no completion).

Proof. Let P be the PLS constructed as follows:

• The value 1 is placed in cells (1, 1), . . ., (n − 1, n − 1);

• The value 2 is placed in cell (n, n);

19

• All other cells remain empty.

The corresponding PLS for n = 4 is shown below.

1

1

1

2

We can show that P has no completion as follows. Let L be a completion of P . Then
the value 1 must appear once in each row of L, and so in particular it must appear in row
n of L. Furthermore, it cannot occur in any of the cells (n, 1), . . ., (n, n − 1), since the
value 1 already appears in cell (i, i), for each i ∈ {1, . . . , n − 1}. in columns 1, . . . , n − 1.
Thus the value 1 must appear in cell (n, n), and so we have a contradiction (since 2 has
already been placed in cell (n, n)).

Hence P is a PLS of order n, containing exactly n entries, and is invalid.

3.2 A Partial Result

The following result is a special case of Evans’ Conjecture, and was proven by Curt Lindner
in 1970, well before a proof for Evans’ Conjecture was known. This result will come into
use later, during the discussion of Smetaniuk’s proof.

Theorem 3.2.1. Let P be a PLS of order n, containing at most n − 1 entries. If these
entries lie in at most n/2 of the rows of P , then P is valid.

The following proof is an extension of that given in [4].

Proof. This proof will use similar techniques to those used in the proof of Theorem 2.1.3
presented in Section 2.2.1.

For the time being, we will assume that P contains exactly n − 1 entries. The case in
which P contains fewer entries will be dealt with at the end of this proof.

Permuting Rows

Let P be a PLS of order n, containing at most n−1 entries, and say these entries occur
in at most n/2 distinct rows of P . In particular, say exactly m of the rows of P contain
entries (where m ≤ (n/2)). Then it is possible to permute the rows of P , using some
permutation α, in order to obtain a new PLS Q that satisfies the following properties:

• Rows 1, 2, . . . , m of Q contain entries, and rows m + 1, m + 2, . . . , n of Q are empty.

• Let ri denote the number of entries in row i of Q, where i ∈ {1, . . . , m}. Then
r1 ≥ r2 ≥ . . . ≥ rm.

For instance, let P be the following PLS of order n = 6:

P =

1 4

5

3 4

.

20

Note that P contains 5 ≤ 6 − 1 entries, and that these entries lie within m = 3 ≤ (6/2)
distinct rows of P . So, using the permutation1 α = (1 4 3 5 2), we can rearrange the rows
of P to form Q as shown below.

Q =

1 4

3 4

5
.

It then follows that the values of ri for i ∈ {1, . . . , m = 3} are as follows:

r1 = 2;

r2 = 2;

r3 = 1.

In general, we will show that the rows of Q can be filled, one at a time, until a
completion L′ of Q is produced.

Filling the first row:

First, we will consider row 1 of Q, which contains n − r1 empty cells. Without loss of
generality, let these be cells (1, 1), (1, 2), . . ., (1, n − r1).

Now let R1 be the set of values already appearing in row 1. Furthermore, for all
i ∈ {1, . . . , n − r1}, let Ci be the set of values already appearing in column i. Then Ci

and R1 together represent the set of values that cannot be placed in cell (1, i) without
violating either the row latin or column latin condition. So, for each i ∈ {1, . . . , n − 1},
let Si = S\(Ci ∪R1), where S = {1, . . . , n}. Then Si represents the set of values that may
be placed in cell (1, i) without violating either the row latin or column latin condition.

Consider the example below, obtained from Q above by permuting columns so that
cells (1, 1), . . ., (1, 4) = (1, 6 − r1) are empty.

1 4

3 4

5

In this case, R1 = {1, 4}. The corresponding Ci and Si are then:

C1 = {}, S1 = {2, 3, 5, 6},

C2 = {3}, S2 = {2, 5, 6},

C3 = {}, S3 = {2, 3, 5, 6},

C4 = {4}, S4 = {2, 3, 5, 6}.

In general, if we can find a SDR 〈s1, . . . , sn−r1
〉 for S1, . . . , Sn−r1

, we can place value si

in cell (1, i), for each i ∈ {1, . . . , n− r1}. Let the resulting PLS be Q1. Because si ∈ Si for

1Throughout this thesis, all permutations will be written using cycle notation.

21

each i, the column latin condition holds for Q1. Furthermore, none of s1, . . . , sn−r1
will

be equal to any of the values previously existing in row 1. Finally, because s1, . . . , sn−r1

are distinct, none of these values will be equal to each other. Thus row 1 will contain
n distinct values, and the row latin condition for Q1 will also hold. So Q1 will be an
extension of Q in which the first row has been completely filled (and the remaining cells
have been left untouched).

In the above example, a SDR for S1, . . . , S4 is 〈3, 6, 5, 2〉. So the first row can then be
completed as shown below.

Q1 =

3 6 5 2 1 4

3 4

5
.

We will now show in general that a SDR for S1, . . . , Sn−r1
must exist. This will be

proven using Hall’s Theorem.

Choose any k ∈ {0, . . . , n− r1} and any k sets from the above collection. Let these be
Si1 , . . . , Sik . If k = 0, the union of 0 sets contains at least 0 elements, as required.

So let 1 ≤ k ≤ n − r1. We will consider two cases.

• Say one of the sets Ci1 , . . . , Cik is empty. Let this set be Cij . Then Sij = S\R1, and
so |Sij | = n − r1 ≥ k. Hence |Si1 ∪ . . . ∪ Sik | ≥ k.

• Otherwise, none of Ci1 , . . . , Cik are empty. So each of columns i2, . . . , ik contains
at least one entry. Furthermore, row 1 contains another r1 entries (these occur in
columns n − r1 + 1, . . . , n respectively).

Hence, since Q contains at most n − 1 entries, column Ci1 can contain at most
(n− 1)− (k − 1)− r1 = n− k − r1 entries. Since Si1 = S\(Ci1 ∪R1), it follows that

|Si1 | ≥ |S| − |Ci1 | − |R1| ≥ n − (n − k − r1) − r1 = k.

So again we have |Si1 ∪ . . . ∪ Sik | ≥ k.

Thus, in either case, |Si1 ∪ . . . ∪ Sik | ≥ k. So, by Hall’s Theorem, sets S1, . . . , Sn−r1
have

a SDR, as required.

Thus the first row of Q can be filled, as described above, to produce the PLS Q1.

Filling rows 2, . . . , m:

Assume that we have filled rows 1, . . . , t of Q, where 1 ≤ t ≤ m − 1, to produce the
extension Qt of Q. We will show that row (t + 1) can now be filled, producing a new
extension Qt+1 of Q.

To begin with, we will show that

r1 + r2 + . . . + rt ≥ 2t. (i)

Otherwise, say this is not the case. Then

r1 + r2 + . . . + rt ≤ 2t − 1,

22

and so

(n − 1) − (r1 + r2 + . . . + rt) ≥ (n − 1) − (2t − 1) = n − 2t ≥ 2m − 2t, (ii)

since m ≤ (n/2). However, the left hand side of this equation represents the number
of entries appearing in rows t + 1, t + 2, . . . , m. There are (m − t) such rows (note that
m − t > 0, since t ≤ m − 1). Since at least 2(m − t) entries appear in these rows, one of
these rows must contain at least two entries.

Since r1 ≥ r2 ≥ . . . ≥ rm, we can then deduce that rows 1, 2, . . . , t must each contain
at least two entries. Thus r1 + r2 + . . . + rt ≥ 2t. But this is (i), which was assumed to be
false. Hence a contradiction arises.

So equation (i) is true.

Recall now that we are extending Qt by filling row (t+1), which already contains rt+1

elements. Without loss of generality, let the empty cells of row (t + 1) be (t + 1, 1), . . .,
(t + 1, n − rt+1). Then define the following sets:

• Let Rt+1 be the set of all values already appearing in row (t + 1) of Qt.

• For i = 1, . . . , n − rt+1, let Ci be the set of all values already appearing in column i
of Qt, excluding those in rows 1, . . . , t. Specifically, Ci contains all values appearing
in any of the cells (t + 1, i), (t + 2, i), . . ., (m, i).

• For i = 1, . . . , n − rt+1, let Ti be the set of all values already appearing in column
i of Q, but including only those in rows 1, . . . , t. Specifically, Ti contains all values
appearing in cells (1, i), (2, i), . . ., (t, i).

• For i = 1, . . . , n − rt+1, let Si = S\(Ci ∪ Ti ∪ Rt+1), where S = {1, . . . , n}.

Then, for each i, sets Ci, Ti and Rt+1 together represent the values that cannot be
placed in cell (t+1, i) without violating either the row latin or column latin condition. So
Si is the set of values that can be placed in cell (t + 1, i) without violating either of these
conditions.

Consider the following example, obtained from Q1 above by rearranging columns so
that the empty cells in row t + 1 = 2 are (2, 1), . . ., (2, 4) = (2, 6 − r2).

3 1 5 4 6 2

3 4

5

Then we have R2 = {3, 4}, and the remaining sets are:

C1 = {}, T1 = {3}, S1 = {1, 2, 5, 6};
C2 = {}, T2 = {1}, S2 = {2, 5, 6};
C3 = {}, T3 = {5}, S3 = {1, 2, 6};
C4 = {5}, T4 = {4}, S4 = {1, 2, 6}.

As before, we will aim to find a SDR 〈s1, . . . , sn−rt+1
〉 for sets S1, . . . , Sn−rt+1

. If such
a SDR can be found, we can place value si in cell (t + 1, i), for all i ∈ {1, . . . , n − rt+1}.
Let the resulting PLS be Qt+1.

23

Again, because si ∈ Si, the column latin condition of Qt+1 is still satisfied. Further-
more, none of s1, . . . , sn−rt+1

will be equal to any of the values previously existing in row
(t + 1). Also, since the representatives s1, . . . , sn−rt+1

are distinct, none of these values
will be equal to each other. Thus the row latin condition of Qt+1 will also be satisfied.
Hence Qt+1 will be an extension of Q in which the first (t + 1) rows are filled, and the
remaining cells have been left untouched.

In the above example, a SDR for sets S1, . . . , S4 is 〈1, 5, 6, 2〉. We can thus complete
the second row as shown below.

3 1 5 4 6 2

1 5 6 2 3 4

5

We will now show that, in general, a SDR must exist for sets S1, . . . , Sn−rt+1
. Again,

Hall’s Theorem will be called upon.
Choose any k ∈ {0, . . . , n − rt+1} and any k sets from the above collection. Let these

be Si1 , . . . , Sik . If k = 0, the union of 0 sets contains at least 0 elements, as required.
Now say k = 1 and set Si1 is chosen. If rt+1 ≥ (n/2), this would imply r1 ≥ rt+1 ≥

(n/2). Hence our original PLS P would have contained at least r1 + rt+1 ≥ n entries,
which is a contradiction. So rt+1 < (n/2).

Furthermore, the total number of entries already existing in column i can be at most
m − 1, since cell (t + 1, i) is empty. Thus |Ci ∪ Ti| ≤ m − 1 ≤ (n/2) − 1. We can then
deduce that

|Si| = |S\(Ci ∪ Ti ∪ Rt+1)|

≥ |S| − |Ci ∪ Ti| − |Rt+1|

= n − |Ci ∪ Ti| − rt+1

> n − [(n/2) − 1] − (n/2)

= 1.

Thus |Si| ≥ 1 = k, as required..
So now say 2 ≤ k ≤ n − rt+1. Note that |Rt+1| = rt+1 and that |Ti| = t, for all i. We

will consider two cases.

1. Say 2 ≤ k ≤ n − t − rt+1. Two sub-cases will now be examined.

(a) Say one of Ci1 , . . . , Cik is empty. Let this set be Cij . Then Sij = S\(Tij ∪Rt+1),
and so

|Sij | ≥ |S| − |Tij | − |Rt+1| = n − t − rt+1 ≥ k,

by our case definition. Hence |Si1 ∪ . . . ∪ Sik | ≥ k.

(b) Otherwise, none of Ci1 , . . . , Cik are empty. Consider the entries in Qt appearing
below row t. There are at least |C1|+ . . .+ |Cn−rt+1

|+ |Rt+1| such entries, which
can be seen from the definitions of sets Ci and Rr+1. However, we also know
that there are exactly rt+1 + . . . + rm such entries. Thus

|C1| + . . . + |Cn−rt+1
| + |Rt+1| ≤ rt+1 + . . . + rm

= (n − 1) − (r1 + . . . + rt)

≤ (n − 1) − 2t,

24

using (i) and the fact that r1 + . . . + rt + rt+1 + . . . + rm represents the total
number of entries in our original PLS Q, which was equal to n − 1.

Thus, in particular,

|Ci1 | + . . . + |Cik | ≤ (n − 1) − 2t − |Rt+1| = (n − 1) − 2t − rt+1.

So, since sets Ci2 , . . . , Cik are non-empty, it follows that |Ci1 | ≤ (n − 1) − 2t −
rt+1 − (k − 1) = n − 2t − rt+1 − k.

Finally, we can deduce:

|Si1 | ≥ |S| − |Ci1 | − |Ti−1| − |Rt+1|

= n − |Ci1 | − t − rt+1

≥ n − (n − 2t − rt+1 − k) − t − rt+1

= t + k

≥ k.

So |Si1 ∪ . . . ∪ Sik | ≥ k.

2. Now we must assume that k > n − t − rt+1. In particular, let k = n − t − rt+1 + p,
where p > 0. As in case (1b) above, it can be shown that

|C1| + . . . + |Cn−rt+1
| + |Rt+1| ≤ (n − 1) − 2t.

So, since |Rt+1| = rt+1, we have

|C1| + . . . + |Cn−rt+1
| ≤ (n − 1) − 2t − rt+1.

Thus at least
(n − rt+1) − [(n − 1) − 2t − rt+1] = 2t + 1

of the sets C1, . . . , Cn−rt+1
must be empty. In particular, this implies that at least

(2t + 1) − [(n − rt+1) − k] = (2t + 1) − [(n − rt+1) − (n − t − rt+1 + p)]

= (2t + 1) − (t − p)

= t + p + 1

≥ t + 1

of the sets Ci1 , . . . , Cik must be empty. So, without loss of generality, let the first
(t + 1) of these empty sets be Ci1 , . . . , Cit+1

.

Now, for each i = 1, . . . , n − rt+1, let

S′
i = S\Si = Ci ∪ Ti ∪ Rt+1.

Note in particular that, since Ci1 , . . . , Cit+1
are empty, we have S′

i = Ti ∪ Rt+1 for
i = i1, . . . , it+1.

We shall prove that
S′

i1
∩ . . . ∩ S′

it+1
⊆ Rt+1. (iii)

Choose any x ∈ S′
i1
∩ . . . ∩ S′

it+1
. This means that x ∈ Ti ∪ Rt+1, for each i =

i1, . . . , it+1. If x /∈ Rt+1, then it follows x ∈ Ti, for i = i1, . . . , it+1. Hence value x
occurs at least (t + 1) times in the first t rows of Qt.

25

However, this is impossible, since x occurs exactly once in each of the first t rows of
Qt and thus occurs exactly t times overall amongst these first t rows. So x /∈ Rt+1

is impossible. Thus, for all x ∈ S′
i1
∩ . . . ∩ S′

it+1
, we must have x ∈ Rt+1. Equation

(iii) then follows.

Furthermore, since columns i1, . . . , it+1 belong to the collection i1, . . . , ik, it follows
that

S′
i1
∩ . . . ∩ S′

ik
⊆ S′

i1
∩ . . . ∩ S′

it+1
⊆ Rt+1,

using (iii) above. However, since Si = Ci ∪ Ti ∪ Rt+1 for all i, we have

Rt+1 ⊆ S′
i1
∩ . . . ∩ S′

ik
.

Thus

S′
i1
∩ . . . ∩ S′

ik
= Rt+1.

So, finally, we obtain

Si1 ∪ . . . ∪ Sik = (S\S′
i1

) ∪ . . . ∪ (S\S′
ik

)

= S\(S′
i1
∩ . . . ∩ S′

ik
)

= S\Rt+1,

and hence
|Si1 ∪ . . . ∪ Sik | = n − rt+1 ≥ k.

So, in all cases, we have |Si1 ∪ . . . ∪ Sik | ≥ k. Thus, by Hall’s Theorem, a SDR exists
for sets S1, . . . , Sn−rt+1

.
Thus the (t + 1)th row of Qt can be filled as described earlier, producing an extension

Qt+1 of Q.

Concluding Argument:

From the above reasoning, it can be seen that we can fill rows 1, . . . , m of Q, one at a
time, to obtain an extension Qm of Q. Since each original entry of Q appears in the first
m rows, it follows that the remaining rows m + 1, . . . , n are empty.

Thus Qm is an m × n latin rectangle. So Theorem 2.1.3 implies that there exists a
completion L′ of Qm. Since Qm is an extension of Q, we thus have a completion L′ of Q.

Finally, permuting the rows using permutation α−1 will produce a latin square L that
is a completion of P . Hence P is valid, as required.

If P contains less than (n − 1) entries:

Recall that, at the beginning of our proof, we required P to contain exactly (n − 1)
entries. So now say P has less than (n − 1) entries. In particular, say P contains exactly
(n − 1) − q entries, where q > 0.

Then there are at least q values that do not appear in P (in fact, there are at least
q + 1). Let these be x1, . . . , xq. Furthermore, at least q columns of P are unused. Let
these be c1, . . . , cq.

Let r be some row already containing a value (if there is no such r, then P is an empty
PLS, and so trivially contains a completion). Then cells (r, c1), . . ., (r, cq) are empty.
Place value xi in cell (r, ci), for i = 1, . . . , q. Let the resulting PLS be P ′. Note that, since
xi does not already appear in P , neither the row latin nor the column latin condition is

26

violated. Furthermore, since row r originally contained entries in P , the entries in P ′ are
still contained within at most (n/2) rows. Finally, note that P contains exactly (n − 1)
entries. Thus, using our earlier argument, there is some completion L of P ′.

However, since P ′ is an extension of P , it follows that L is a completion of P , as
required.

Hence P is again valid, as required.

Applying the principle of symmetry then gives us two immediate corollaries of Theo-
rem 3.2.1.

Corollary 3.2.2. Let P be a PLS of order n, containing at most n − 1 entries. If these
entries lie in at most n/2 of the columns of P , then P is valid.

Corollary 3.2.3. Let P be a PLS of order n, containing at most n−1 entries. If at most
n/2 different values appear in P , then P is valid.

3.3 Back Diagonal Constructions

After providing the necessary definitions, we will present a series of constructions that,
when combined, form the basis for Smetaniuk’s proof of Evans’ Conjecture.

Definition 3.3.1. Let P be a PLS of order n. Then the back diagonal of P is formed by
cells (1, n), (2, n − 1), . . ., (n, 1).

Example 3.3.2. In the following example, the back diagonal of an empty PLS is marked
with asterisks.

∗

∗

∗

∗

∗

Definitions 3.3.3. Let P be a PLS of order n. Note that cell (x, y) lies on the back
diagonal of P if and only if x+ y = n+1. If x+ y < n+1, we say cell (x, y) lies above the
back diagonal of P . If x + y > n + 1, we say cell (x, y) lies below the back diagonal of P .

Example 3.3.4. In the following example, the cells above the back diagonal of an empty
PLS are marked with a plus (+), and the cells below the back diagonal are marked with
a minus (−).

+ + + +

+ + + −

+ + − −

+ − − −

− − − −

Our first construction is then as follows.

Construction 3.3.5. Let L be a latin square of order n. Then P (L) is the PLS of order
n + 1 formed as follows:

Choose any cell (x, y) in P (L). Then the contents of cell (x, y) are determined by the
following rules:

27

• If cell (x, y) lies on the back diagonal of P (L), it contains the value (n + 1).

• If cell (x, y) lies above the back diagonal of P (L), it contains the corresponding value
in cell (x, y) of L.

• If cell (x, y) lies below the back diagonal of P (L), it remains empty.

Example 3.3.6. In the following example, a latin square L of order 8 and its correspond-
ing PLS P (L) are shown. This example, taken from [2], will be used throughout this
section.

L =

1 8 7 2 3 4 5 6

6 4 1 8 5 3 7 2

5 3 6 1 7 8 2 4

3 5 8 4 2 6 1 5

4 2 3 6 1 5 8 7

2 6 5 3 8 7 4 1

8 5 2 7 4 1 6 3

7 1 4 5 6 2 3 8

, P (L) =

1 8 7 2 3 4 5 6 9

6 4 1 8 5 3 7 9

5 3 6 1 7 8 9

3 5 8 4 2 9

4 2 3 6 9

2 6 5 9

8 5 9

7 9

9

.

Lemma 3.3.7. P (L) does in fact form a PLS, i.e. both the row latin and column latin
conditions are satisfied.

Proof. Any two entries in the same row must be of one of the following forms:

• Both are entries from L, in which case they cannot take the same value, since L is
a latin square;

• One is an entry from L and the other lies on the back diagonal, in which case they
cannot take the same value, since the back diagonal contains only values (n+1) and
L contains only values from {1, . . . , n}.

Thus the row latin condition is satisfied. By a similar argument, the column latin condition
is also satisfied.

Theorem 3.3.8. Let L be any latin square. Then the PLS P (L) is valid.

In order to prove this, we will present a direct construction of Smetaniuk’s that pro-
duces a completion of P (L). The construction itself is based upon that presented in [2].
However, all the proofs of its properties and its correctness are my own.

Construction 3.3.9. The construction will be performed by completing one column of
P (L) at a time.

In particular, let M be an extension of P (L) obtained by completing columns 1, . . . , k
of P (L). For i = 1, . . . , n, let Mi denote the set of values occurring in cells (i, 1), . . ., (i, k)
of M . Similarly, let Li denote the set of values occurring in cells (i, 1), . . ., (i, k) of L.

Then we define M to be a cunning extension of P (L) if the following condition is
satisfied:

• For each i = n − k + 2, n − k + 3, . . . , n, we have Mi\{n + 1} ⊆ Li.

28

For instance, consider Example 3.3.6. Let M be the following extension obtained by
completing columns 1, . . . , 6 (so in this case, k = 6).

M =

1 8 7 2 3 4 5 6 9

6 4 1 8 5 3 7 9

5 3 6 1 7 8 9

3 5 8 4 2 9

4 2 3 6 9 1

2 6 5 9 8 7

8 5 9 7 4 2

7 9 4 5 1 6

9 1 2 3 6 5

.

Then, in order for M to be a cunning extension, the condition Mi\{n+1} = Mi\{9} ⊆ Li

must be satisfied for i = n− k + 2, n− k + 3, . . . , n. Using n = 8 and k = 6, this range for
i becomes i = 4, 5, . . . , 8. The corresponding sets Mi and Li are then:

M4 = {3, 5, 8, 4, 2, 9}, L4 = {3, 5, 8, 4, 2, 6},

M5 = {4, 2, 3, 6, 9, 1}, L5 = {4, 2, 3, 6, 1, 5},

M6 = {2, 6, 5, 9, 8, 7}, L6 = {2, 6, 5, 3, 8, 7},

M7 = {8, 5, 9, 7, 4, 2}, L7 = {8, 5, 2, 7, 4, 1},

M8 = {7, 9, 4, 5, 1, 6}, L8 = {7, 1, 4, 5, 6, 2}.

In all five cases above, we see that the condition Mi\{9} ⊆ Li is in fact satisfied. So M ,
as shown above, is indeed a cunning extension of P (L).

Inductive argument:

The procedure for completing P (L) will then be as follows:

1. Begin with P (L). This is itself a cunning extension of P (L) with k = 1 column(s)
completed. This can be seen as follows.

Since k = 1, we find that n − k + 2 = n + 1. So the range i = n − k + 2, . . . , n, for
which we require Mi\{n + 1} ⊆ Li, is empty. Thus the “cunningness” condition is
trivially satisfied.

2. Now assume we have a cunning extension M of P (L) that has k columns completed.
We then use the procedure described below to fill the (k + 1)th column, so as to
produce a cunning extension M ′ of P (L) that has (k + 1) columns completed.

3. Step 2 can be repeated inductively until we have produced a cunning extension M∗

of P (L) in which n columns are complete. Thus only the final column, column
(n + 1), may contain empty cells.

4. Remove any entries in column (n + 1), thus creating a PLS N in which the first
n columns are completely filled and the remaining column is empty. We may then
appeal to Corollary 2.1.5 to form a completion N∗ of N .

We then propose that N∗ is in fact a completion of M∗. Let (i, n + 1) be a cell
removed from M∗ in order to produce N , and say this cell contained the value x.
Then, since the first n columns of M∗ are complete, it follows that every possible

29

value except for x occurs in the first n cells of row i. So, when N is completed to
form N∗, the only possible value that may be placed in cell (i, n + 1) is x.

Thus any entry removed from M∗ when forming N is replaced when N∗ is formed.
So N∗ is indeed a completion of M∗.

5. Now, since M∗ is an extension of P (L), and N∗ is a completion of M∗, it thus follows
that N∗ is a completion of P (L), as required.

Completing a column:

We now give the procedure referred to in step 2 above. Let M be a cunning extension
of P (L) in which columns 1, . . . , k are complete, where 1 ≤ k ≤ n − 1. It is then our task
to fill column (k + 1), in such a fashion that the resulting PLS is also a cunning extension
of P (L).

Row sequences:

For each value x ∈ {1, . . . , n}, we construct the row sequence σ(x) = 〈r1, r2, . . .〉 as
follows.

1. If x does not appear in row (n + 1) of M , we simply define σ(x) = 〈〉, and our row
sequence is complete.

Otherwise, let c1 be the column for which x appears in cell (n + 1, c1) of M . Then
r1 is the row for which x appears in cell (r1, c1) of L, and we move on to step 2.

Note that, in the latter case, 1 ≤ c1 ≤ n, since column (n+1) of P (L) only contains
the value (n + 1). Thus x appears somewhere within column c1 of L, since L is a
latin square, and so r1 does exist.

2. Say we have defined r1, . . . , ri. If x does not appear in row ri of M , we define
σ(x) = 〈r1, . . . , ri〉, and our row sequence is complete.

Otherwise, let ci+1 be the column for which x appears in cell (ri, ci+1) of M . Then
ri+1 is the row for which x appears in cell (ri+1, ci+1) of L, and we repeat step 2
using a new value of i.

As before, note that 1 ≤ ci+1 ≤ n, and so x appears within column ci+1 of L. Hence
ri+1 exists.

Let us continue our example. We will evaluate σ(1). To begin, note that value 1
appears in row (n + 1) = 9 of M , and this is in cell (9, 2). Thus c1 = 2. Furthermore, 1
appears in cell (8, 2) of L, and so r1 = 8.

Value 1 appears in row 8 of M , and this is in cell (8, 5). So c2 = 5. Furthermore, 1
appears in cell (5, 5) of L, so r2 = 5. Next, we see that 1 appears in row 5 of M , in cell
(5, 6). So c3 = 6. Then 1 lies in cell (7, 6) of L, and thus r3 = 7.

Finally, value 1 does not appear in row 7 of M . Hence our sequence is complete, and
we have σ(1) = 〈8, 5, 7〉.

A full list of row sequences for our example is given below.

σ(1) = 〈8, 5, 7〉,

σ(2) = 〈7, 8〉,

σ(3) = 〈6〉,

30

σ(4) = 〈〉,

σ(5) = 〈5〉,

σ(6) = 〈8, 4〉,

σ(7) = 〈〉,

σ(8) = 〈〉.

Properties of row sequences:

We will now prove properties of the row sequences that will be of use later.

1. If σ(x) = 〈r1, r2, . . .〉, then 1 ≤ ri ≤ n, for all i:

This follows from the definition of σ(x), since each ri is a row of L.

2. Members of σ(x) are distinct, for all x:

Let x ∈ {1, . . . , n}, and say σ(x) = 〈r1, r2, . . .〉. Let c1, c2, . . . be as in the definition
of σ(x).

Furthermore, say the members of σ(x) are not all distinct. Then there must be some
i, j, i < j, for which ri = rj . Choose the smallest such i.

Say i > 1. Then, since x occurs in cells (ri, ci) and (rj , cj) of L and since ri = rj ,
it follows from the row latin condition of L that ci = cj . This in turn means that
cells (ri−1, ci) and (rj−1, cj) of M both contain x. Since ci = cj , the column latin
condition of M then tells us that ri−1 = rj−1. However, this contradicts our choice
of minimum i.

So we must have i = 1. Again, x occurs in cells (ri, ci) and (rj , cj) of L, and so ci = cj .
However, since i = 1, we now have x belonging to cells (n + 1, ci) and (rj−1, cj) of
M . Since ci = cj , the column latin condition of M implies that rj−1 = n + 1. This
is impossible, since rj−1 ∈ {1, . . . , n}, by definition of the row sequence. So, in all
cases, a contradiction has arisen.

Thus the members of σ(x) must be distinct, as required.

3. σ(x) is a finite sequence, for all x:

Say there is some x for which σ(x) is infinite. Let σ(x) = 〈r1, r2, . . .〉. Then, since
ri belongs to the finite set {1, . . . , n} for all i, we must have two members of σ(x)
equal. But this contradicts property 2 above.

Thus σ(x) cannot be infinite.

4. If σ(x) = 〈r1, r2, . . .〉 and c1, c2, . . . are as in the definition of σ(x), then cell (ri, ci)
lies below the back diagonal of L, for each i.

We shall prove this by induction on i. Notice first that every cell (r, c) not below
the back diagonal of L contains the same value as the cell (r, c) of M . This is by
definition of P (L), and from the fact that M is an extension of P (L).

Say σ(x) = 〈r1, . . . , rt〉. If t = 0, there is nothing to prove. So we shall assume t ≥ 1.

First, consider i = 1. By definition of r1, we know that cell (r1, c1) of L contains
value x. Assume that (r1, c1) is not below the back diagonal of L. Then cell (r1, c1)
of M also contains value x. But, again by definition of r1, we know cell (n + 1, c1)
of M contains value x. So the column latin property of M implies that r1 = n + 1,

31

which is impossible, since it was proven earlier that 1 ≤ ri ≤ n, for all i. Thus cell
(r1, c1) lies below the back diagonal of L.

So now assume that 1 < i ≤ t, and that cell (ri, ti) does not lie below the back
diagonal of L. By definition of ri, we know that cell (ri, ci) of L contains value x.
Thus cell (ri, ci) of M also contains value x. However, again by definition of ri, we
know cell (ri−1, ci) of M contains value x. So the column latin property of M implies
that ri = ri−1, which contradicts property 2 above. Hence cell (ri, ci) lies below the
back diagonal of L.

Thus, by induction, cell (ri, ci) lies below the back diagonal of L, for all i.

5. If σ(x) = 〈r1, r2, . . .〉 and c1, c2, . . . are as in the definition of σ(x), then 1 ≤ ci ≤ k,
for each i:

Say ci > k, for some i. If i = 1, then cell (n + 1, c1) of M contains value x. Thus,
since only cells (n + 1, 1), . . ., (n + 1, k) in row (n + 1) of M have been filled, it
follows that c1 ≤ k, a contradiction.

So say i > 1. Then cell (ri−1, c1) of M contains value x. Note that the only cells
of M in columns k + 1, k + 2, . . . , n that are filled lie on or above the back diagonal
of M . So, since c1 > k, it follows that cell (ri−1, c1) of M lies on or above the back
diagonal.

All cells lying on the back diagonal of M contain value (n+1). So, since cell (ri−1, ci)
contains value x ≤ n, this cell must lie strictly above the back diagonal. Hence, by
construction of P (L), cell (ri−1, ci) must also contain value x in L.

So, since cell (ri, ci) of L also contains value x, the column latin property of L implies
that ri−1 = ri. But this contradicts property 2 above.

Thus the required property of rows sequences is true.

Starting rows:

Now, for each value x ∈ {1, . . . , n}, we define the starting row r(x) as follows:

• If σ(x) = 〈〉, we have r(x) = n + 1.

• Otherwise, r(x) is the last member of σ(x). That is, if σ(x) = 〈r1, . . . , rt〉, we have
r(x) = rt.

A full list of starting rows for our example is provided below.

r(1) = 7,

r(2) = 8,

r(3) = 6,

r(4) = 9,

r(5) = 5,

r(6) = 4,

r(7) = 9,

r(8) = 9.

Properties of starting rows:

We again prove properties that will be required further into the construction.

32

1. r(x) ∈ {1, . . . , n} if and only if σ(x) 6= 〈〉:

This is immediate from the definition of r(x). If σ(x) = 〈〉, then r(x) = n + 1.

Alternatively, let σ(x) = 〈r1, . . . , rt〉. Then, from the properties of row sequences,
1 ≤ rt ≤ n. So, since r(x) = rt, we have 1 ≤ r(x) ≤ n, as required.

2. For all x, value x does not belong to row r(x) of M :

This again follows immediately from the definitions of r(x) and σ(x). If r(x) = n+1,
then property 1 above tells us σ(x) = 〈〉. So, by definition of σ(x), x does not appear
in row n + 1 = r(x) of M , and the required property holds.

Otherwise, let σ(x) = 〈r1, . . . , rt〉. Then, again by definition of σ(x), x does not
appear in row rt = r(x) of M . So again the required property is true.

3. r(x) ≥ n − k + 2, for all x:

If σ(x) = 〈〉, then

r(x) = n + 1 = n − 1 + 2 ≥ n − k + 2,

as required. Otherwise, let σ(x) = 〈r1, . . . , rt〉, where t ≥ 1, and let c1, . . . , ct be as
in the definition of σ(x). From property 1, we have r(x) ≤ n.

From property 2, we see that value x does not belong to row r(x) of M . However,
x must belong to row r(x) of L, since r(x) ≤ n. In particular, x belongs to cell
(r(x) = rt, ct) of L. So this cell must be below the back diagonal of L (since
otherwise, its value would also appear in M).

From property 5 of row sequences, we know that 1 ≤ ct ≤ k. So, since the cell
(r(x), ct) lies below the back diagonal of L, it follows that r(x) ≥ n − k + 2, as
required.

4. If r(x) = r(y), then either x = y or r(x) = r(y) = n + 1:

To the contrary, say r(x) = r(y) = r0 ∈ {1, . . . , n} and that x 6= y.

From property 1 above, we can assume that σ(x) = 〈r1, . . . , rp〉 and that σ(y) =
〈s1, . . . , sq〉. Let the corresponding columns be c1, . . . , cp and d1, . . . , dq, as in the
definitions of σ(x) and σ(y).

From property 2 above, we see that neither x nor y belong to row r0 of M . However,
both x and y must belong to row r0 of L. In particular, x belongs to cell (r0 = rp, cp)
of L and y belongs to cell (r0 = sq, dq) of L.

From property 3 above, we see that r0 ≥ n − k + 2. Now recall the definition of
a cunning extension. We know that neither x nor y appear in row r0 of M . Thus
x, y /∈ Mr0

. However, both x and y appear in the first k cells of row r0 of L (since
cp, dq ≤ k, from property 5 of row sequences). Hence x, y ∈ Lr0

. Furthermore,
since r0 ≥ n − k + 2, the fact that M is a cunning extension of P (L) tells us that
Mr0

\{n + 1} ⊆ Lr0
.

Now comes our contradiction. We know |Lr0
| = k. Furthermore, since r0 ≥ n−k+2,

row r0 of M contains exactly k entries, including one that takes value (n + 1). Thus
|Mr0

\{n + 1}| = k − 1. So it follows that at most one member of Lr0
may be absent

from Mr0
.

Since both x, y belong to Lr0
and both are absent from Mr0

, it then follows that
x = y.

33

Value sequence:

We will now construct the value sequence ν = 〈x1, x2, . . .〉 as follows.

1. Let x1 be the value in cell (n − k + 1, k + 1) of L.

2. Say we have defined x1, . . . , xi. If r(xi) = n + 1, then our construction is complete.
Let ν = 〈x1, . . . , xi〉.

Otherwise, let xi+1 be the value in cell (r(xi), k +1) of L. Then repeat step 2, using
a new value of i.

Again, we will consider our example. In this case, the value in cell (n− k + 1, k + 1) =
(8 − 6 + 1, 6 + 1) = (3, 7) of L is 2. So x1 = 2.

Continuing, the value in cell (r(2), k + 1) = (8, 7) of L is 3. So x2 = 3. Then the value
in cell (r(3), 7) = (6, 7) of L is 4, so x3 = 4.

Finally, r(4) = 9, and so our our construction terminates. We then have the completed
value sequence

ν = 〈2, 3, 4〉.

Properties of the value sequence:

Again, we will discuss properties of our new construct.

1. Any two members of ν are distinct:

Say ν = 〈x1, x2, . . .〉. Furthermore, say xi = xj for some i, j with i < j. Choose the
smallest such i.

Since we terminate construction of ν at the first appearance of value (n + 1), it
follows that ν can contain value (n + 1) at most once. Thus xi, xj 6= (n + 1).

Now say i > 1. Then xi is the value in cell (r(xi−1), k+1) of L, and xj is the value in
cell (r(xj−1), k + 1) of L. Since xi = xj , the column latin property of L thus implies
r(xi−1) = r(xj−1). Thus property 4 of starting rows implies one of the following:

• r(xi−1) = r(xj−1) = n + 1:

If this were true, then construction of ν would have terminated at xi−1, i.e.
ν = 〈x1, . . . , xi−1〉. Thus xi and xj cannot be members of ν.

• xi−1 = xj−1:

This contradicts the minimality of i.

Both cases lead to a contradiction. Hence i = 1.

So x1 is in cell (n − k + 1, k + 1) of L. Furthermore, since j > i = 1, we know xj

is the value in cell (r(xj−1), k + 1) of L. Thus, from the column latin condition of
L, it follows that r(xj−1) = n − k + 1. But this is a contradiction of property 3 of
starting rows.

Hence any two members of ν must be distinct.

2. If ν = 〈x1, . . . , xm〉, then the rows r(x1), . . . , r(xm) are distinct:

Say r(xi) = r(xj), for some i, j with i < j. If r(xi) = r(xj) ≤ n, then property 4 of
starting rows implies xi = xj , a contradiction.

34

So r(xi) = r(xj) = n + 1. But then, since i < j, construction of the value sequence
would have terminated at xi (by definition of ν), and hence xj would not be a
member of ν.

Thus the required property of the value sequence is true.

Filling cells:

Finally, we are at a state at which we can fill column (k + 1) of M , producing our new
extension M ′. Let ν = (x1, . . . , xm). The procedure is then as follows:

1. For i = 1, . . . , m, fill cell (r(xi), k + 1) of M with value xi.

2. In the remaining rows r for which cell (r, k + 1) has not yet been filled, fill cell
(r, k + 1) of M with the corresponding value in cell (r, k + 1) of L.

Again continuing our example, recall that ν = 〈2, 3, 4〉, and that

r(2) = 8,

r(3) = 6,

r(4) = 9.

So filling cells (8, 7), (6, 7) and (9, 7) with values 2, 3, 4 respectively gives the PLS shown
below.

1 8 7 2 3 4 5 6 9

6 4 1 8 5 3 7 9

5 3 6 1 7 8 9

3 5 8 4 2 9

4 2 3 6 9 1

2 6 5 9 8 7 3

8 5 9 7 4 2

7 9 4 5 1 6 2

9 1 2 3 6 5 4

We then fill the remaing cells of column k + 1 = 7 with the corresponding entries in L,
producing the new extension

M ′ =

1 8 7 2 3 4 5 6 9

6 4 1 8 5 3 7 9

5 3 6 1 7 8 9

3 5 8 4 2 9 1

4 2 3 6 9 1 8

2 6 5 9 8 7 3

8 5 9 7 4 2 6

7 9 4 5 1 6 2

9 1 2 3 6 5 4

.

Proof that construction is possible:

Here, we shall prove that no cell is “overwritten” by the above construction.

35

• First, note that the empty cells in column (k + 1) of M were precisely those of the
form (r, k + 1) where r ≥ n − k + 2. In, step 1 of the above construction, only cells
of the form (r(x), k + 1) were filled. From property 3 of starting rows, we know
r(x) ≥ n− k + 2, for all x. So step 1 of our construction does not overwrite existing
entries in M .

• Furthermore, property 2 of the value sequence implies that cells (r(x1), k + 1), . . .,
(r(xm), k + 1) are distinct. Thus no cell has been filled twice by step 1.

• Since step 2 fills only empty cells, it causes no cells to be overwritten.

Proof that column (k + 1) is filled:

Since step 2 fills every empty cell in column (k + 1) except for (n + 1, k + 1), our only
duty is prove that cell (n+1, k+1) of M is filled by step 1. However, let ν = 〈x1, . . . , xm〉.
Then, by definition of ν, r(xm) = n+1. Hence step 1 places value xm in cell (n+1, k+1).

Proof that M ′ is a PLS:

We will split this into proof of the row latin and column latin conditions separately.

• Proof of row latin condition: First, consider step 1. This fills cells of the form
(r(x), k + 1) with value x. From property 2 of starting rows, value x does not
already appear in row r(x) of M . Thus the row latin condition is not violated by
step 1.

We must also consider step 2. Let (r, k + 1) be a cell of M filled by this step, and
let it be filled with value x. Then x appears in cell (r, k + 1) of L. So x /∈ Lr, since
x cannot belong to the first k entries of row r of L.

Now recall that M was a cunning extension of P (L). Thus Mr\{n + 1} ⊆ Lr. So,
since x 6= n + 1 and x /∈ Lr, we see that x /∈ Mr. Hence x does not already appear
in row r of M , and so the row latin condition is not violated by step 2.

• Proof of column latin condition:

From property 1 of the value sequence, we know the values placed in column (k +1)
by step 1 are distinct. Furthermore, from the column latin condition of L, we know
the values placed in column (k + 1) by step 2 are also distinct.

Let ν = 〈x1, . . . , xm〉. Then the following facts remain to be proven:

– The same value is not placed in column (k + 1) by both steps 1 and 2:

Say value xi is placed in column (k + 1) by step 1. If i = 1, then cell (n −
k + 1, k + 1) of L contains value xi (by definition of ν). But, in M , this cell
belongs to the back diagonal and thus contains value n + 1. Since this is the
only occurrence of xi in column (k + 1) of L, xi is not placed in column (k + 1)
by step 2.

Say, on the other hand, that i > 1. Then cell (r(xi−1), k+1) of L contains value
xi (by definition of ν). However, step 1 places value xi−1 in cell (r(xi−1), k +1)
of M . Since cell (r(xi−1), k + 1) is the only occurrence of value xi in column
(k +1) of L, we again see that xi cannot be placed in column (k +1) by step 2.

36

– Step 1 does not place a value in column (k+1) of M that existed in that column
before construction:

To the contrary, say some value xi is placed in column (k + 1) by step 1, where
xi existed in that column before construction. In particular, say xi existed in
cell (r, k + 1). Then this cell must lie above the back diagonal of M , and hence
cell (r, k + 1) of L also contains value xi (it cannot lie on the back diagonal of
M , since the back diagonal only holds value (n + 1)). Since this cell lies above
the back diagonal of M , we have r < n − k + 1.

If i = 1, we again see that cell (n−k+1, k+1) of L contains value xi. This raises
a contradiction, since cell (r, k+1) also contains xi, and we know r < n−k+1.

So i > 1. Thus, as previously, we find that cell (r(xi−1), k+1) of L contains value
xi. However, we also have cell (r, k+1) of L containing xi, where r < n−k+1.
Since property 3 of starting rows implies r(xi−1) ≥ n − k + 2, a contradiction
again arises.

– Step 2 does not place a value in column (k+1) of M that existed in that column
before construction:

Step 2 only adds entries to M that already exist in L. As mentioned previously,
the only entries existing in column (k + 1) of M before construction are:

∗ The entries above the back diagonal, which already exist in L;

∗ The entry on the back diagonal, whose value is (n + 1).

Since two different entries from column (k+1) of L cannot have the same value,
no previously existing values above the back diagonal of M can have the same
value as any entered during step 2. Furthermore, since no entries of L have
value (n + 1), the previously existing value on the back diagonal of M cannot
have the same value as any entered during step 2.

This then proves the column latin condition for M ′.

Hence M ′ is a PLS, as required..

Proof that M ′ is cunning:

Finally, we must prove the “cunningness” of M ′, in order to allow the induction to
continue.

For i = 1, . . . , n, let M ′
i denote the set of values occurring in cells (i, 1), . . ., (i, k + 1)

of M ′. Similarly, let L′
i denote the set of values occurring in cells (i, 1), . . ., (i, k + 1) of L.

We must prove, for i = n − (k + 1) + 2, n − (k + 1) + 3, . . . , n, that M ′
i\{n + 1} ⊆ L′

i.

We will take two cases.

• If i = n − (k + 1) + 2:

Then i = n − k + 1, and the only entries of M ′ in row i are those on or above the
back diagonal. Since the entry on the back diagonal contains value (n+1) and those
above the back diagonal contain the same values as cells (i, 1), . . . , (i, k) of L, we see
in this case that M ′

i\{n + 1} ⊆ L′
i, as required.

• If n − (k + 1) + 2 < i ≤ n:

Then i ≥ n − k + 2, and so we can use the cunning property of M to deduce that
Mi\{n + 1} ⊆ Li. Let the value in cell (i, k + 1) of M ′ be x. Then M ′

i = Mi ∪ {x}.

37

If this cell was filled by step 2 of our construction, then cell (i, k + 1) of L also
contains x. Thus L′

i = Li ∪ {x}, and it follows that M ′
i\{n + 1} ⊆ L′

i, as required.

Otherwise, this cell was filled by step 1. Thus i = r(x). Since i ≤ n, property 1
of starting rows shows that σ(x) = 〈r1, . . . , rt〉, where t ≥ 1. Let the corresponding
columns from the definition of σ(x) be c1, . . . , ct.

Then x appears in cell (rt = r(x), ct) of L. Furthermore, property 5 of row sequences
shows that ct ≤ k. Thus x ∈ Li. In particular, this implies x ∈ L′

i. From this, we
can deduce M ′

i\{n + 1} ⊆ L′
i, as required.

Hence M ′ is a cunning extension of P (L) with (k + 1) columns complete.

We can now finally present a proof of Theorem 3.3.8!

Proof. Construction 3.3.9 produces a completion of P (L). Thus P (L) is valid.

3.4 Permuting Rows and Columns

The next component of Smetaniuk’s proof of Evans’ Conjecture involves rearranging the
rows and columns of particular classes of PLSs, in such a manner that certain desirable
properties hold. In this section, the appropriate construction will be presented.

The following construction and the accompanying proof of correctness are expanded
upon those presented in [5].

Lemma 3.4.1. Let P be a PLS of order n, containing at most n−1 entries. Furthermore,
say there is some value x appearing exactly once in P .

Then the rows and columns of P can be rearranged so that:

• The single entry with value x lies upon the back diagonal of P ;

• The remaining entries appear above the back diagonal of P .

Example 3.4.2. The PLS shown below satisfies the conditions for Lemma 3.4.1. We will
choose x = 4 to represent the value appearing exactly once.

P =

1

3 5

4

1

.

We will not present an appropriate rearrangement at this stage. Instead, this example will
be referred to throughout Construction 3.4.3.

The proof of Lemma 3.4.1 requires Construction 3.4.3, which is presented below.

Construction 3.4.3. Move the row containing value x to the top of the PLS. Move any
empty rows to the bottom. Now say P contains exactly m non-empty rows. Then label
these non-empty rows with symbols r1, . . . , rm, in order from top to bottom, so that value
x appears in row r1. Note that, when these rows are moved, their corresponding symbols
will move with them.

38

So, in our example, we must move the row containg value 4 to the top of the PLS. P
then becomes:

r1 4

r2 1

r3 3 5

r4 1

We shall let nri
denote the number of entries in row ri, where i ∈ {1, . . . , m}. For our

example, the corresponding values are:

nr1
= 1;

nr2
= 1;

nr3
= 2;

nr4
= 1.

For k ∈ {1, . . . , m}, let N(k) denote the total number of entries in rows r1, . . . , rk.
That is,

N(k) =
k∑

i=1

nri
.

Since rows r1, . . . , rm are non-empty, it follows that the totals N(1), . . . , N(m) are distinct
and increasing. In our example, the corresponding sums are:

N(1) = 1;

N(2) = 2;

N(3) = 4;

N(4) = 5.

Since row rm is the last non-empty row, the total N(m) =
∑m

i=1
nri

represents the total
number of entries in P . Thus N(m) ≤ n− 1. Furthermore, since row r1 is non-empty, we
have N(1) = nr1

≥ 1. So, combined with the fact that N(1), . . . , N(m) are increasing, we
have

1 ≤ N(1) < . . . < N(m) ≤ n − 1. (iv)

Now rearrange the rows so that, for i = 1, . . . , m, row ri becomes the (n − N(i))th
row. Note that, since N(1), . . . , N(m) are distinct, no clashes will arise. Furthermore,
(iv) above implies that 1 ≤ n − N(i) ≤ n − 1 for i = 1, . . . , m, and so the specified row
positions do indeed exist.

Continuing with our example:

n − N(1) = 5;

n − N(2) = 4;

n − N(3) = 2;

n − N(4) = 1.

So, for instance, row r1 becomes the fifth row and row r3 becomes the second row. The

39

PLS thus produced is shown below.

r4 1

r3 3 5

r2 1

r1 4

Rearranging columns:

The procedure for rearranging columns will now be described. We will define integers
c1, . . . , cm, satisfying c1 ≤ . . . ≤ cm, in such a manner that the entries in row ri appear
in columns 1, . . . , ci (although not necessarily in all of these columns), for i = 1, . . . , m.
Furthermore, we will prove inductively that ci ≤ N(i), again for i = 1, . . . , m.

1. First, permute the columns so that the nr1
entries in row r1 appear in columns

1, . . . , nr1
. Then let c1 = nr1

. Note then that, trivially, c1 ≤ nr1
= N(1).

We will now declare columns 1, . . . , cr1
to be fixed, and these columns will not be

moved again until further notice. Row r1 is now declared to be satisfied.

In our example, row r1 contains the single value 4. So c1 = 1. Our task is to move
this single entry in row r1 to the first column. To do this, we shall swap columns
1 and 2. Once this is done, column 1 will be fixed. Fixed columns will be marked
with an asterisk (∗).

∗

r4 1

r3 3 5

r2 1

r1 4

2. Now assume we have satisfied rows r1, . . . , ri, for some i ∈ {1, . . . , m − 1}, and that
columns 1, . . . , ci are fixed. Assume also that c1 ≤ . . . ≤ ci, and that ci ≤ N(i).

Consider row ri+1, which contains nri+1
entries. Say t of these entries do not belong

to fixed columns. Then move these t columns to the left until they are in positions
ci +1, . . . , ci + t (i.e. adjacent to the fixed columns). Note that this is possible, since
ci + t ≤ N(i) + nri+1

= N(i + 1) ≤ n − 1.

Declare columns ci + 1, . . . , ci + t to be fixed. We will now define ci+1 = ci + t.

Note the following points.

• The fixed columns are now 1, . . . , ci+1.

• Since t ≥ 0, we have ci ≤ ci+1. So c1 ≤ . . . ≤ ci ≤ ci+1.

• Since t ≤ nri+1
, we have

ci+1 = ci + t ≤ N(i) + nri+1
= N(i + 1).

• The entries in row ri all appear in columns 1, . . . , ci+1 (although not necessarily
in all of these columns).

40

We now declare row ri+1 to be satisfied.

3. Step 2 is performed repeatedly until all rows r1, . . . , rm are satisfied.

Consider again our example. Since row r1 has already been satisfied, we must now
consider row r2. This contains the single value 1, which does not appear in a fixed column.
Thus t = 1, and so c2 = c1 + t = 1 + 1 = 2. Since the column containing this value 1 is
already adjacent to the fixed columns, no columns need to be moved. Fix this column.
Row r2 is now satisfied, and the resulting PLS is shown below.

∗ ∗

r4 1

r3 3 5

r2 1

r1 4

Now consider row r3. This contains two values, namely 3 and 5. The entry with
value 3 belongs to a fixed column, but the entry with value 5 does not. So t = 1, and
c3 = c2 + t = 2 + 1 = 3. We must move the column containing this value 5 to a position
adjacent to the fixed columns. This column is then fixed itself. Row r3 has thus been
satisfied, and the resulting PLS is shown below.

∗ ∗ ∗

r4 1

r3 3 5

r2 1

r1 4

Finally, every entry in row r4 belongs to a fixed column. Thus t = 0, c4 = c3 + t =
3 + 0 = 3, and no columns need to be either moved or fixed. Row r4 is then satisfied, and
the final PLS is identical to the previous PLS above.

In general, the following properties follow by induction:

• The fixed columns are 1, . . . , cm.

• c1 ≤ . . . ≤ cm.

• ci ≤ N(i) for i = 1, . . . , m.

• The entries in row ri all appear in columns 1, . . . , ci (although not necessarily in all
of these columns), for i = 1, . . . , m.

The last two of these properties imply that, for each non-empty row ri, the entries in
row ri appear within columns 1, . . . , N(i), although again not necessarily in all of these
columns. However, recall that row ri is the (n−N(i))th row. So each entry in row i is in
cell (r, c), where r = n − N(i) and c ≤ N(i). Thus r + c ≤ n − N(i) + N(i) = n, and so
cell (r, c) lies above the back diagonal of the PLS (since back diagonal cells (r′, c′) satisfy
r′ + c′ = n + 1).

Hence every entry of the resulting PLS lies above the back diagonal.

41

Moving x onto the back diagonal:

Now we shall describe the procedure for placing the value x on the back diagonal.
Recall that value x occurs in row r1, which is the (n − N(1))th row of the PLS. Let

this be in cell (n − N(1), c). Recall also that each entry in row r1 appears in one of the
columns 1, . . . , N(1). So c ≤ N(1).

Furthermore, recall that 1 ≤ N(1) ≤ n − 1. So column N(1) + 1 exists.
Then the final step of our construction is to swap columns c and N(1) + 1. Note that

this may require columns to be “unfixed”; we will now allow this.
In our example, the single value 4 appears in cell (5, 1). So c = 1. Furthermore, we

have N(1) = 1. Thus columns c = 1 and N(1) + 1 = 2 are to be swapped. This results in
the following PLS:

Q =

1

3 5

1

4

.

Note the following points.

• Consider any entry in column N(1) + 1, before the swap takes place. Let this be in
cell (r, N(1) + 1). Since we know this entry lies above the back diagonal, we have
r + N(1) + 1 ≤ n.

The new location for this entry is (r, c). Then r + c ≤ r + N(1) < r + N(1) + 1 ≤ n.
Thus, in its new location, the entry still lies above the back diagonal.

• Now consider any entry in column c, before the swap takes place, excluding the entry
with value x that appears in row r1. This entry must then belong to row ri, for some
i ∈ {2, . . . , m} (it cannot lie in row r1, since value x already occupies that cell). So
it is located in cell (n − N(i), c). Its new location is then cell (n − N(i), N(1) + 1).
Furthermore, we have

[n − N(i)] + [N(1) + 1] < n − N(1) + N(1) + 1 = n + 1,

using the fact that N(1) < N(i), as seen in equation (iv). So [n−N(i)]+[N(1)+1] ≤
n. Thus, in its new location, the entry still lies above the back diagonal.

Finally, consider the single entry with value x. Before the swap, this occupies cell
(n−N(1), c). So, after the swap, its location is cell (n−N(1), N(1)+1). In particular,
this gives [n − N(1)] + [N(1) + 1] = n + 1. So, in its new location, this entry lies
exactly upon the back diagonal.

Hence, after the column swap is performed, the following conditions hold:

• The single entry with value x lies upon the back diagonal of P ;

• The remaining entries appear above the back diagonal of P .

For instance, these properties can be seen in Q, which was shown earlier in our example.

We can now prove Lemma 3.4.1.

Proof. A rearrangement of rows and columns satisfying the required conditions is given
in Construction 3.4.3.

42

3.5 Smetaniuk’s Proof Completed

At this stage, we can finally piece together the various results obtained in this chapter.
The results will form Smetaniuk’s proof of Evans’ Conjecture, which will now be restated
as a theorem.

Theorem 3.5.1 (Evans’ Conjecture). Let P be a PLS of order n. If P contains at most
n − 1 entries, then P is valid.

The following proof is based upon that given in [2].

Proof. Our proof will proceed by induction on n.

To begin with, note that Evans’ Conjecture is trivially true for n = 1, since any PLS
of order 1 containing at most 0 entries can be completed, as shown below.

1

Furthermore, Evans’ Conjecture holds for n = 2. Say we have a PLS P of order 2
containing at most 1 entry. Then, without loss of generality, we can assume P is one of
the following PLSs:

,
1

.

However, both of the above PLSs have the completion shown below.

1 2

2 1

Thus P is valid, as required.

So now assume Evans’ Conjecture holds for n = k − 1, where k > 2. We must prove it
true for n = k.

Let P be a PLS of order k, containing at most k − 1 entries. If at most k/2 distinct
values appear in P , then Corollary 3.2.3 implies that P is valid, as required.

Otherwise, P contains more than k/2 distinct values. Thus, since P contains at most
k − 1 < 2 · (k/2) entries, there must be some value that appears exactly once. Let this
value be x.

We shall now relabel the values of P so that x is relabelled to k. Such a relabelling
can be represented as a permutation δ of {1, . . . , k}. Let the resulting PLS be P ′. So the
value k appears exactly once in P ′.

Then, from Lemma 3.4.1, we can rearrange the rows and columns of P ′, using permu-
tations α and β respectively, to obtain a PLS Q for which:

• The single entry with value k lies upon the back diagonal of Q;

• The remaining entries appear above the back diagonal of Q.

Now let Q′ be the PLS obtained from Q by removing the single entry with value k.
Thus all entries in Q′ lie above the back diagonal of Q′. In particular, this implies that
row k and column k of Q′ are empty. So let R be the PLS of order k − 1 obtained by
removing row k and column k from Q′.

Then the entries in R are exactly the same as the entries in Q, except that the single
entry of value k is absent from R. Furthermore, all entries in R occur on or above the
back diagonal of R.

43

So, since Q is a PLS of order k containing at most k − 1 entries, it follows that R is a
PLS of order k− 1 containing at most k− 2 entries. Thus, using our inductive hypothesis,
R is valid.

Then let L0 be a completion of R, where L0 is a latin square of order n− 1. Consider
P (L0), as defined in Construction 3.3.5. Since all entries in R occur on or above the back
diagonal of R and since L0 is a completion of R, it follows that all entries of R also occur
in P (L0).

Furthermore, note that P (L0) is a PLS of order k, whose back diagonal is completely
filled with entries of value k. Thus the entry with value k, removed from Q to form Q′

and lying on the back diagonal of Q, also lies in P (L0).

Hence, since all other entries of Q are contained in R and hence in P (L0), it follows
that all entries in Q are contained in P (L0). Furthermore, since Q and P (L0) are of the
same order, it follows that P (L0) is an extension of Q.

Now, from Theorem 3.3.8, we see that P (L0) is valid. So let L′ be a completion of
P (L0). Then, since P (L0) is in turn an extension of Q, it follows that L′ is a completion
of Q.

Finally, note that Q is obtained from P by rearranging rows, columns and value labels
using permutations α, β and δ respectively. So let L be the latin square obtained by
rearranging the rows, columns and value labels of L′ using permutations α−1, β−1 and
δ−1 respectively.

Then L is a completion of P , and so P is valid.

Theorem 3.5.1 hence follows by induction.

Example 3.5.2. We will continue the example introduced in Construction 3.4.3. We
begin with the PLS P , as show below. The number of distinct values appearing in P is
4 > (6/2), and so we cannot use Corollary 3.2.3 to complete P . Instead, we must proceed
via Lemma 3.4.1 and the ensuing constructions.

We will choose x = 4 to represent a value that appears exactly once in P .

P =

1

3 5

4

1

.

We now wish to relabel values so that 4 becomes 6. This is done simply by interchanging
value labels 4 and 6. The resulting PLS is shown below.

P ′ =

1

3 5

6

1

.

Our relabelling permutation is then δ = (4 6). Following this, the rearrangement of rows
and columns, as illustrated in Construction 3.4.3 (but interchanging labels 4 and 6) gives

44

Q, as shown below.

Q =

1

3 5

1

6

.

Rearrangement permutations are thus α = (1 4 5) for rows and β = (3 4) for columns.
We then remove the entry with value 6 to produce Q′, as follows:

Q′ =

1

3 5

1
.

Following this, R is obtained by removing row 6 and column 6.

R =

1

3 5

1

.

We then find a completion L0 of R.

L0 =

3 4 1 2 5

4 3 5 1 2

5 1 2 4 3

1 2 3 5 4

2 5 4 3 1

.

The next step is to produce P (L0).

P (L0) =

3 4 1 2 5 6

4 3 5 1 6

5 1 2 6

1 2 6

2 6

6

.

A completion L′ of P (L0) is then obtained.

L′ =

3 4 1 2 5 6

4 3 5 1 6 2

5 1 2 6 3 4

1 2 6 3 4 5

2 6 4 5 1 3

6 5 3 4 2 1

.

45

Note that L′ is a completion of Q. Finally, we apply the inverses of permutations α,
β and δ to the rows, columns and value labels of L′ respectively, to obtain L. Note that
α−1 = (1 5 4), β−1 = (3 4) and δ−1 = (4 6).

L =

1 2 3 4 6 5

6 3 1 5 4 2

5 1 4 2 3 6

2 4 5 6 1 3

3 6 2 1 5 4

4 5 6 3 2 1

.

Finally, note that L, as shown above, is indeed a completion of our original PLS P .

46

Chapter 4

Completing a k-Stagger

In this chapter, we examine an open problem upon which I have worked. We examine the
class of k-staggers, which are PLSs in which each row, column and value is used in exactly
k entries. In particular, we ask the following question:

For which values of k and n are all k-staggers of order n valid?

To begin with, a number of specific results are obtained, some of which are based upon
computational searches. Following this, we will present a series of general conjectures, and
discuss steps that have been taken towards resolving these.

All work within this chapter is my own, unless otherwise specified.

4.1 Preliminary Definitions

Before examining particular problems, a series of definitions will be required.

4.1.1 k-Staggers

Definition 4.1.1. Let k ∈ N. Then a k-stagger is a PLS P satisfying the following
conditions:

• Each row of P contains exactly k entries;

• Each column of P contains exactly k entries;

• Each value v ∈ {1, . . . , n} appears exactly k times in P .

Example 4.1.2. In the illustration below, P is a 2-stagger of order 6 and Q is a 3-stagger
of order 5 (recall that the order of a PLS is the size of its base set).

P =

1 3

4 6

4 6

2 5

5 3

2 1

, Q =

3 4 1

5 2 3

4 2 1

2 1 5

4 3 5

.

Remark. Recall Definition 1.1.2, in which a PLS P was defined to be a subset of S3,
where S is the base set of P .

Abiding by this terminology, the conditions presented in Definition 4.1 can be rephrased
as follows:

47

• For each r ∈ {1, . . . , n}, exactly k triples in P are of the form (r, x, y);

• For each c ∈ {1, . . . , n}, exactly k triples in P are of the form (y, c, x);

• For each v ∈ {1, . . . , n}, exactly k triples in P are of the form (x, y, v).

Notice that these conditions are symmetrical about rows, columns and values. Thus the
principle of symmetry, as described in Section 1.1.1, is applicable not only to PLSs, but
also to k-staggers.

Thus, for instance, any theorem regarding the rows of a k-stagger immediately implies
a corresonding theorem regarding the columns and another regarding the values found
within a k-stagger.

4.1.2 Transversals

Transversals are well defined in the literature.

Definition 4.1.3. Let T be a PLS of order n. Then T is a transversal if:

• Each row of T contains exactly one entry;

• Each column of T contains exactly one entry;

• Each value v ∈ {1, . . . , n} appears exactly once in T .

Remark. Note then that a transversal is simply a 1-stagger.

Example 4.1.4. A transversal of order 5 is shown below.

3

1

4

2

5

4.1.3 Orthogonal Latin Squares

Orthogonal latin squares have been well studied. The material in this section is based
primarily on [3].

Definition 4.1.5. Let L and M be latin squares of the same order n. Then L and M are
said to be orthogonal if the following condition is satisfied:

• For all pairs of values x, y ∈ {1, . . . , n}, there is exactly one choice of r, c ∈ {1, . . . , n}
for which cell (r, c) of L contains value x and cell (r, c) of M contains y.

Example 4.1.6. In the illustration below, L and M are orthogonal latin squares of order
4.

L =

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

, M =

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

.

For instance, choose x = 3 and y = 4. Then there is exactly one pair (r, c) for which cell
(r, c) of L contains value 3 and cell (r, c) of M contains value 4. This pair is (r, c) = (1, 3).

48

Remark. Note that the symmetry of Definition 4.1.5 implies that, if L and M are or-
thogonal, then M and L are also orthogonal.

The following lemma provides a defining property of orthogonal latin squares.

Lemma 4.1.7. Let L and M be latin squares of the same order n. Then L and M are
orthogonal if and only if the following condition is satisfied:

• If cells (r1, c1) and (r2, c2) of L contain the same value, then cells (r1, c1) and (r2, c2)
of M contain different values.

Note that we do not require the cells of M to contain different values from those in
the cells of L; we simply require the two cells of M to contain different values from each
other.

Example 4.1.8. In Example 4.1.6 above, let (r1, c1) = (3, 1) and (r2, c2) = (2, 4). Both
cells (3, 1) and (2, 4) of L contain the same value, namely 3. So, as expected from
Lemma 4.1.7, cells (3, 1) and (2, 4) of M contain different values, namely 2 and 3 re-
spectively.

A proof of Lemma 4.1.7 was not given in [3], and so the following proof is my own.

Proof. Let L and M be latin squares of the same order n.
Say L and M are orthogonal. Furthermore, say cells (r1, c1) and (r2, c2) of L contain

the same value. Let this value be x. Then, if cells (r1, c1) and (r2, c2) of M contained the
same value, say y, we would have two pairs (r, c) for which cell (r, c) of L contains value x
and cell (r, c) of M contains value y. However, this contradicts Definition 4.1.5. Thus cells
(r1, c1) and (r2, c2) of M contain different values. Hence L and M satisfy the condition of
Lemma 4.1.7.

On the other hand, assume L and M satisfy the condition of Lemma 4.1.7. Further-
more, say there is some choice of values x, y for which there are two pairs (r, c) such that
cell (r, c) of L contains value x and cell (r, c) of M contains value y. Let these two pairs
be (r1, c1) and (r2, c2). Then, since both cells (r1, c1) and (r2, c2) of L contain the same
value, the condition of Lemma 4.1.7 implies that cells (r1, c1) and (r2, c2) of M must con-
tain different values. This is a contradiction, since both contain the same value, namely
y.

So, for any choice of values x, y, there is at most one pair (r, c) for which cell (r, c) of
L contains value x and cell (r, c) of M contains value y. Since there are exactly n2 choices
of values x, y, there can thus be at most n2 pairs (r, c) for which cells (r, c) of L and (r, c)
of M both contain entries, with equality if and only if the required pair (r, c) exists for all
choices of values x, y.

However, since both L and M are latin squares, the number of pairs (r, c) for which
cells (r, c) of L and (r, c) of M both contain entries is indeed equal to n2. Thus, since
equality holds, the required pair (r, c) exists for all choices of values x, y.

Hence L and M satisfy the condition of Definition 4.1.5, and so L and M are orthog-
onal.

The following theorem then describes for which orders n a pair of orthogonal latin
squares can be found.

Theorem 4.1.9. For every n ∈ N\{2, 6}, a pair of orthogonal latin squares of order n
can be found.

If n = 2 or n = 6, no pair of orthogonal latin squares of order n exists.

The proof of this theorem is non-trivial, and will not be presented in this thesis. It
can be found in [3].

49

4.2 Existence of k-Staggers

We will now answer the question that asks for which k and n a k-stagger of order n exists.
We will show that such a k-stagger exists whenever k ≤ n.

Theorem 4.2.1. Let k, n ∈ N. Then a k-stagger of order n exists if and only if k ≤ n.

Proof. First, say k > n. Then it is impossible to form a PLS of order n in which each row
contains k entries. Thus there is no k-stagger of order n.

Now say k ≤ n. We will prove the existence of a k-stagger of order n.

Case n ∈ N\{2, 6}:

Say n ∈ N\{2, 6}. Then Theorem 4.1.9 implies the existence of a pair of orthogonal
latin squares of order n. Let these be L and M .

For each x ∈ {1, . . . , n}, note that value x must occur in L exactly n times. So let the
cells of L containing value x be (rx,1, cx,1), . . ., (rxn , cxn). Then Lemma 4.1.7 implies that
cells (rx1

, cx1
), . . ., (rxn , cxn) of M must contain different values. Since there are n such

cells, these values must be all of 1, . . . , n, in some order.

So let P be the PLS created as follows:

• For each i = 1, . . . , k, insert into P the entries in cells (ri,1, ci,1), . . ., (rin , cin) of M .

Then we claim that P is a k-stagger of order n. This can be seen as follows:

• Since M is a latin square and P contains only entries belonging to M , it follows that
P is indeed a PLS (i.e. the row latin and column latin conditions are satisfied).

• It was noted above that, for each i, cells (ri,1, ci,1), . . ., (rin , cin) of M contain each
value in {1, . . . , n} exactly once.

So, since the entries belonging to k such cell collections have been used to create P ,
it follows that each value in {1, . . . , n} appears exactly k times in P .

• For each i, cells (ri,1, ci,1), . . ., (rin , cin) of L are precisely those containing value i.
Hence each row contains exactly one of these cells.

So, since the entries belonging to k such cell collections have been used to create P ,
it follows that each row of P contains exactly k entries.

• A similar argument shows that each column of P contains exactly k entries.

Hence P is a k-stagger, as required. Since P has order n, it follows that a k-stagger of
order n exists.

An example of such a construction is now shown. Let k = 2 and n = 4. Let L and M
be as shown below. Note that L and M are orthogonal.

L =

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

, M =

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

.

50

Then, since k = 2, we list the locations of entries in L containing values 1 and 2. These
locations are shown below.

(r1,1, c1,1) = (1, 1), (r2,1, c2,1) = (1, 2),

(r1,2, c1,2) = (2, 2), (r2,2, c2,2) = (2, 1),

(r1,3, c1,3) = (3, 3), (r2,3, c2,3) = (3, 4),

(r1,4, c1,4) = (4, 4), (r2,4, c2,4) = (4, 3).

The corresponding entries of M are used to form P , as follows:

P =

1 3

4 2

3 1

2 4

.

Note then that P is indeed a 2-stagger of order 4.

Case n = 2:

PLSs P1, P2, as illustrated below, form a 1-stagger of order 2 and a 2-stagger of order
2 respectively.

P1 =
1

2
, P2 =

1 2

2 1
.

Thus, for k ≤ 2, a k-stagger of order n = 2 exists.

Case n = 6:

Again, for each k ∈ {1, . . . , 6}, the PLS Pk shown below is a k-stagger of order 6.
These were discovered with the aid of a computer search.

P1 =

1

2

3

4

5

6

, P2 =

6 1

2 3

4 5

6 1

2 3

5 4

,

P3 =

6 1 5

1 2 3

4 5 3

4 6 1

6 2 3

5 2 4

, P4 =

6 1 4 5

1 2 3 6

2 4 5 3

4 5 6 1

6 1 2 3

5 3 2 4

,

P5 =

6 1 3 4 5

1 2 3 5 6

2 6 4 5 3

4 5 6 1 2

4 6 1 2 3

5 3 1 2 4

, P6 =

6 1 2 3 4 5

1 2 3 4 5 6

2 6 4 5 3 1

3 4 5 6 1 2

4 5 6 1 2 3

5 3 1 2 6 4

.

Thus, for k ≤ 6, a k-stagger of order n = 6 exists.

51

4.3 Completions

The problem with which the remainder of this chapter will be occupied can now be stated
as follows.

Problem 4.3.1. For which values n, k ∈ N, k ≤ n, are all k-staggers of order n valid?

4.3.1 1-Staggers

The specific case of Problem 4.3.1 corresponding to k = 1 will now be discussed.

Definition 4.3.2. Let n ∈ N. Then the primary transversal of order n is defined to be
the PLS T constructed as follows:

• For each i ∈ {1, . . . , n}, place value i in cell (i, i) of T .

Note that, since each entry contains a different value, the row latin and column latin
conditions are satisfied. Thus T is a PLS. Furthermore, each row, column and value is
used exactly once. Thus T is indeed a transversal, as its name suggests.

Example 4.3.3. The primary transversal of order 4 is shown below.

1

2

3

4

Lemma 4.3.4. Let P be a 1-stagger of order n. Then P is valid if and only if the primary
transversal of order n is valid.

Proof. Note that, by definition of a 1-stagger, each row, column and value is used in
exactly one entry of P . In particular, this means that values 1, . . . , n appear in different
rows of P .

So permute the rows of P using some permutation α, such that value i appears in row
i, for all i. Similarly, the columns of P can then be permuted using some permutation β,
such that value i appears in column i, for all i.

Let the resulting PLS be T . Then each row, column and value is used in exactly one
entry of T , since this is also true of P . Hence T contains exactly n entries. Furthermore,
for each i, value i appears in cell (i, i) of T . Thus the n entries in T are the same n entries
that appear in the primary transversal of order n. So T is in fact the primary transversal
of order n.

Now say P has some completion L. Then applying permutations α and β to the rows
and columns respectively of L produces a completion of T .

On the other hand, let T have some completion L′. Then applying permutations α−1

and β−1 to the rows and columns respectively of L′ produces a completion of P .

Hence P is valid if and only if T (the primary transversal of order n) is valid.

The following corollary then follows from Lemma 4.3.4.

Corollary 4.3.5. Let P be a 1-stagger of order n. Then all 1-staggers of order n are
valid if and only if P is valid.

52

Proof. Say all 1-staggers of order n are valid. Then, since P is a 1-stagger of order n, it
follows that P is valid.

On the other hand, say P is valid. Let T be the primary transversal of order n.
Furthermore, let Q be any 1-stagger of order n. From Lemma 4.3.4, since P is valid, we
know that T is valid. Using Lemma 4.3.4 again, since T is valid, we then know that Q is
valid. So all 1-staggers of order n are valid, as required.

We can now prove the following validity result for 1-staggers.

Theorem 4.3.6. If n ∈ N\{2}, then every 1-stagger of order n is valid.
However, all 1-staggers of order 2 are invalid.

Proof. We will split into cases, based upon the possible values of n.

Case n ∈ N\{2, 6}:

From Theorem 4.1.9, there are orthogonal latin squares L and M of order n. Note
that the value 1 appears in L exactly n times. Let the cells of L in which value 1 appears
be (r1, c1), . . ., (rn, cn).

Then, by Lemma 4.1.7, the values in cells (r1, c1), . . ., (rn, cn) of M are all distinct.
Thus these values are 1, . . . , n, in some order.

Furthermore, the row latin and column latin conditions of L imply that rows r1, . . . , rn

are distinct and that columns c1, . . . , cn are distinct. Thus these collections of rows and
columns are also 1, . . . , n, in some order.

So define the PLS T of order n as follows:

• For each i ∈ {1, . . . , n}, fill cell (ri, ci) of T with the value appearing in cell (ri, ci)
of M .

Then each row, column and value appears exactly once in the entries of T . So T is a
1-stagger of order n.

Furthermore, since each entry of T lies also in M , we see that the latin square M is a
completion of T . Hence T is valid.

So, from Corollary 4.3.5, all 1-staggers of order n are valid.
An illustration of this procedure will now be given, for the case n = 4. Orthogonal

latin squares L and M of order 4 are shown below.

L =

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

, M =

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

.

The cells in which value 1 appears in L are:

(r1, c1) = (1, 1)

(r2, c2) = (2, 2)

(r3, c3) = (3, 3)

(r4, c4) = (4, 4).

Thus T is defined by the entries of M appearing in these cells, as shown below.

T =

1

2

3

4

.

53

It can then be seen that T is a 1-stagger of order 4, and that M is a completion of T .

Case n = 6:

The following example was obtained using a computer search. In the illustration
below, T is a 1-stagger of order 6, and M is a completion of T . So T is valid. Thus, from
Corollary 4.3.5, all 1-staggers of order 6 are valid.

T =

2

4

1

3

5

6

, M =

6 1 2 3 4 5

1 2 3 4 5 6

2 6 4 5 3 1

3 4 5 6 1 2

4 5 6 1 2 3

5 3 1 2 6 4

.

Case n = 2:

Consider T , shown below, which is a 1-stagger of order 2.

T =
1

2
.

T has no completion, since cell (1, 2) cannot contain either value 1 or 2, by the row latin
and column latin conditions respectively.

Thus T is invalid, and so Corollary 4.3.5 implies that all 1-staggers of order 2 are
invalid.

4.3.2 2-Staggers

We will now examine the specific case of Problem 4.3.1 corresponding to k = 2. Unlike
the case k = 1, a complete solution has not been obtained. However, a number of partial
results will be presented.

Lemma 4.3.7. All 2-staggers of order 2 are valid.

Proof. This is trivial, since any 2-stagger of order 2 must be a complete latin square (since
each row contains 2 entries), and thus forms its own completion.

In fact, the same argument produces the following (just as trivial!) result:

Lemma 4.3.8. Let n ∈ N. Then all n-staggers of order n are valid.

A computer program was written, designed to find all invalid k-staggers of order n,
for given values of k and n. The source code is split across several files, all of which are
provided in Appendix A.

In particular, searches were performed to find all invalid 2-staggers of order n, using a
number of different orders n. The results of these searches are now presented.

Lemma 4.3.9. An invalid 2-stagger of order n exists, for all n ∈ {3, . . . , 7}.

54

Proof. For each n ∈ {3, . . . , 7}, the 2-stagger Pn is shown below. In each case, Pn has
order n.

P3 =

1 2

1 3

3 2

, P4 =

4 1

1 4

2 3

3 2

,

P5 =

5 1

1 5

2 3

2 4

4 3

, P6 =

6 1

1 6

2 3

2 3

4 5

5 4

,

P7 =

7 1

1 7

2 3

3 2

4 5

5 6

6 4

.

Furthermore, in each of the above cases, a thorough computer search failed to find any
completion of Pn. Thus each 2-stagger shown above is invalid.

Hence an invalid 2-stagger exists for each of the required orders.

Theorem 4.3.10. All 2-staggers of order 8 are valid.

Proof. A thorough computer search failed to find any 2-stagger of order 8 for which a
completion did not exist.

Theorem 4.3.10 leads to the following conjecture:

Conjecture 4.3.11 (First Conjecture). If n ≥ 8, then every 2-stagger of order n is valid.

A computer search was begun on the case n = 9, but the complexity of the problem
(in terms of required execution time) has thus far made the search infeasible.

4.3.3 Potential Proof of First Conjecture

All attempts to prove Conjecture 4.3.11 have to date proven unfruitful. However, the
method that has appeared most promising will now be outlined. Before presenting this
method, however, a preliminary result will be required.

Lemma 4.3.12. Let P be a k-stagger of order n, where k < n. Let T be a transversal of
order n, such that no entry of T shares the same cell as any entry of P .

Let P ′ = P ∪ T . If P ′ satisfies the row latin and column latin conditions, then P ′ is a
(k + 1)-stagger of order n.

55

Example 4.3.13. In the illustration below, P is a 2-stagger of order 5 and T is a transver-
sal of order 5. Furthermore, no entry of T shares the same cell as any entry of P .

P =

1 2

3 4

5 1

2 3

5 4

, T =

4

5

1

2

3

.

The union P ′ is shown below. It can be seen that P ′ satisfies the row latin and column
latin conditions. Furthermore, it can also be seen that P ′ is a 3-stagger of order 5, as
expected from Lemma 4.3.12.

P ′ =

1 2 4

3 4 5

1 5 1

2 2 3

5 3 4

.

A proof of Lemma 4.3.12 is now given.

Proof. Since no entry of T shares the same cell as any entry of P , we do not have two
values attempting to occupy the same cell of P ′. Furthermore, since P ′ satisfies both the
row latin and column latin condition, it follows that P ′ is indeed a PLS of order n.

Now, since each row, column and value is used in precisely k entries of P and precisely
1 entry of T , it follows that each row, column and value is used in exactly (k + 1) entries
of P ′. Thus P ′ is a (k + 1)-stagger of order n.

The proposed method of proof for Conjecture 4.3.11 is then as follows.

Proposed method of proof:

Let P be a 2-stagger of order n, where n ≥ 8. Then a series of PLSs P2, . . . , Pn is
constructed as follows:

• Let P2 = P .

• For each k ∈ {3, . . . , n}, let Pk be constructed from Pk−1 by adding a transversal,
as described in Lemma 4.3.12.

Then, for each k ∈ {2, . . . , n}, the following properties hold:

• Pk is an extension of P ;

• Pk is an k-stagger of order n.

In particular, Pn is an n-stagger of order n, and so is a latin square (since each row
contains n elements). So Pn is a completion of P , and thus P is valid.

The primary difficulty in the above method of proof is in utilising Lemma 4.3.12, which
requires the row latin and column latin conditions to hold for each newly created PLS.
In general, it is difficult to find suitable transversals T , for use with Lemma 4.3.12, that
ensure that these row latin and column latin conditions hold.

Thus in general, some extra property would be required of the intermediate PLSs
P3, . . . , Pk−1, in order to provide the extra conditions necessary to use Lemma 4.3.12

56

(such a property would be used in a fashion similar to the property of “cunningness, as
described in Construction 3.3.9).

However, a result will now be presented that describes a class of situations in which
Lemma 4.3.12 can be used.

Lemma 4.3.14. Let P be a k-stagger of order n. Let (r1, c1), . . ., (rn, cn) be any collection
of empty cells of P , such that each row and column 1, . . . , n is used precisely once in this
collection.

If n ≥ 4k, then cells (r1, c1), . . ., (rn, cn) of P can be filled to produce an extension P ′

of P , in such a manner that P ′ is a (k + 1)-stagger.

Proof. For each i ∈ {1, . . . , n}, define the following sets.

• Let Ri be the set of values appearing in row ri of P ;

• Let Ci be the set of values appearing in column ci of P ;

• Let Si = S\(Ri ∪ Ci), where S = {1, . . . , n}.

Thus, for each i, Ri and Ci represent the sets of values that may not be placed in
cell (ri, ci) without violating the row latin or column latin condition respectively. So Si

represents the set of values that may be placed in cell (ri, ci) without violating the row
latin or column latin condition.

For illustration, consider the 2-stagger P of order 8 given below. Note that 8 ≥ 4 · 2.

P =

1 5 ∗

6 3 ∗

2 ∗ 1

∗ 6 4

3 ∗ 4

∗ 7 2

8 7 ∗

∗ 8 5

.

Locations (r1, c1), . . ., (rn, cn) are marked with asterisks (∗), and are as follows.

(r1, c1) = (1, 6), (r5, c5) = (5, 4),

(r2, c2) = (2, 8), (r6, c6) = (6, 1),

(r3, c3) = (3, 5), (r7, c7) = (7, 7),

(r4, c4) = (4, 3), (r8, c8) = (8, 2).

The corresponding sets are then:

R1 = {1, 5}, C1 = {1, 4}, S1 = {2, 3, 6, 7, 8},
R1 = {3, 6}, C1 = {4, 5}, S1 = {1, 2, 7, 8},
R1 = {1, 2}, C1 = {6, 8}, S1 = {3, 4, 5, 7},
R1 = {4, 6}, C1 = {5, 8}, S1 = {1, 2, 3, 7},
R1 = {3, 4}, C1 = {6, 7}, S1 = {1, 2, 5, 8},
R1 = {2, 7}, C1 = {1, 3}, S1 = {4, 5, 6, 8},
R1 = {7, 8}, C1 = {2, 3}, S1 = {1, 4, 5, 6},
R1 = {5, 8}, C1 = {2, 7}, S1 = {1, 3, 4, 6}.

57

Say a SDR 〈s1, . . . , sn〉 exists for sets S1, . . . , Sn. Then we form P ′ by placing value si

in cell (ri, ci), for each i ∈ {1, . . . , n}.

Since each row and column is used precisely once in the collection (r1, c1), . . ., (rn, cn),
it follows that each row and column has precisely one new entry placed within it. Fur-
thermore, since representatives s1, . . . , sn are distinct, it follows that each value 1, . . . , n
appears in precisely one of the n new entries.

Thus the new entries form a transversal T of order n, and we have P ′ = P ∪ T .
Furthermore, since si ∈ Si for each i and since the values s1, . . . , sn are distinct, we see
that the row latin and column latin conditions are satisfied for P ′.

Since k ∈ N, we have n ≥ 4k > k. Finally, since cells (r1, c1), . . ., (rn, cn) of P are
empty, we see that no entry of T shares the same cell as any entry of P .

Thus the conditions for Lemma 4.3.12 are satisfied, and so P ′ is a (k + 1)-stagger of
order n. Hence cells (r1, c1), . . ., (rn, cn) of P have been filled to produce the extension
P ′ of P , in which P ′ is a (k + 1)-stagger, as required.

Continuing with our example above, a SDR for sets S1, . . . , S8 is 〈3, 7, 4, 1, 2, 8, 5, 6〉.
These values can then be placed into cells (r1, c1), . . ., (r8, c8) respectively, producing P ′

as shown below. The transversal T is also given.

P ′ =

1 5 3

6 3 7

2 4 1

1 6 4

3 2 4

8 7 2

8 7 5

6 8 5

, T =

3

7

4

1

2

8

5

6

.

Note that the PLS P ′ above is indeed a 3-stagger, as expected.

Existence of a SDR:

All that remains then is to prove the existence of a SDR for sets S1, . . . , Sn. For this,
we will (surprise!) use Hall’s Theorem.

Choose any m ∈ {0, . . . , n} and any m sets from the above collection. Let these be
Si1 , . . . , Sim . If m = 0, the union of 0 sets contains at least 0 elements, as required.

Otherwise, we will take two cases.

• If m ≤ n − 2k:

Notice that, for each i, |Ri| = |Ci| = k, since each row and column of a k-stagger
contains precisely k elements. Thus

|Si| = |S\(Ri ∪ Ci)|

≥ |S| − |Ri| − |Ci|

= n − 2k

≥ m.

So, since |Si| ≥ m for each i, we have |Si1 ∪ . . . ∪ Sim | ≥ m.

• If m > n − 2k:

58

Since each value x appears in precisely k rows and k columns of P , we see that x
belongs to precisely k of the sets Rj and k of the sets Cj . Hence x belongs to at most
2k of the sets (Rj∪Cj), and so belongs to at least n−2k of the sets Sj = S\(Rj∪Cj).

In particular, this implies that each value x belongs to at least

(n − 2k) − (n − m) = m − 2k > (n − 2k) − 2k = n − 4k (i)

of the sets Si1 , . . . , Sim . However, since n ≥ 4k, this in turn implies that each value
x belongs to at least one of the sets Si1 , . . . , Sim (notice the strict inequality in
equation i).

So each value x belongs to the union Si1 ∪ . . . ∪ Sim . Thus

|Si1 ∪ . . . ∪ Sim | = n ≥ m.

In either case, we have |Si1 ∪ . . . ∪ Sim | ≥ m. So, by Hall’s Theorem, a SDR exists for
S1, . . . , Sn.

4.3.4 A General Conjecture

Recall the proposed construction presented in Section 4.3.3. We noted that some extra
property may be required of our intermediate PLSs P3, . . . , Pn−1.

Since Lemma 4.3.14 requires no such extra properties, aside from the condition n ≥ 4k,
it follows that this lemma may be useful in providing the first step of our construction.
That is, the construction proceeds as follows:

• Begin with P = P2;

• Use Lemma 4.3.14 to extend P2 to P3, where P3 has some extra property;

• For each k ∈ {4, . . . , n}, use Lemma 4.3.12, along with the extra property of Pk−1,
to extend Pk−1 to Pk, which also has this extra property.

However, such a method of construction is possible only if Lemma 4.3.14 is applicable
for k = 2. This requires n ≥ 4k = 8.

But recall that n ≥ 8 was the bound proposed in Conjecture 4.3.11! This way in which
our proposed bound n ≥ 8 “falls out” of the above discussion provides support for our
proposed method of proof described in Section 4.3.3.

In fact, we may now use this bound n ≥ 4k to formulate a more general conjecture:

Conjecture 4.3.15. If n ≥ 4k, then every k-stagger of order n is valid.

The method of proving Conjecture 4.3.15 would then follow the similar lines to the
method described in Section 4.3.3 and discussed above. Lemma 4.3.14 would be used to
extend any given k-stagger to a (k+1)-stagger that satisfies some extra property, and this
in turn would be extended inductively via Lemma 4.3.12 until a latin square was produced.

To conclude this chapter, we shall examine the particular cases of Conjecture 4.3.15
corresponding to k = 2 and k = 1.

If k = 2, Conjecture 4.3.15 reduces to Conjecture 4.3.11, as discussed above.
If k = 1, Conjecture 4.3.15 requires all 1-staggers of orders n ≥ 4 to be valid. In

fact, Theorem 4.3.6 shows that all 1-staggers of orders n ≥ 3 are valid. Thus, whilst
Conjecture 4.3.15 is correct in the case k = 1, it does not reflect the lowest possible bound
for n.

59

60

Chapter 5

Conclusion

In Chapter 1, a series of preliminary definitions and results were presented. In addition,
Philip Hall’s Theorem, which describes the conditions under which a SDR exists for a
given collection of sets, was stated and proved.

Chapter 2 saw the introduction of our first completion theorem. This was Theo-
rem 2.1.3, due to Marshall Hall, which states that any r × n latin rectangle is valid. Two
proofs were presented. The first, based upon the literature, utilises Hall’s Theorem (re-
garding SDRs). However, since Hall’s Theorem is an existence theorem, this proof does not
supply a direct construction for completing an arbitrary latin rectangle. It is conceivable
that such a direct construction may be required for computational purposes. So a second
proof was provided. This was my own proof, and contains within it a direct construction
for completing an arbitrary latin rectangle.

Following this, Chapter 3 is devoted to the proof of Evans’ Conjecture, which states
that any PLS of order n containing at most n − 1 entries is valid. In places, the proof
follows those presented in [2] and [5]. However, other sections of the proof (most notably
the proof that Construction 3.3.9 is correct) are my own.

Finally, Chapter 4 deals with the problem of completing k-staggers, and asks the
following question:

For which values of k and n are all k-staggers of order n valid?

Theorem 4.2.1 shows, through the use of orthogonal latin squares, that k-staggers of order
n exist for all k, n satisfying k ≤ n.

The completion problem is then discussed for the case k = 1, resulting in Theo-
rem 4.3.6, which shows that a 1-stagger of order n is valid if and only if n 6= 2. Following
this, the case k = 2 is examined. No complete solution is obtained for this case. How-
ever, it is shown through the use of computer searches that invalid 2-staggers exist for
all orders n ∈ {3, . . . , 7}, and that all 2-staggers of order 8 are valid. We thus propose
Conjecture 4.3.11, which states that all 2-staggers of order n ≥ 8 are valid.

Section 4.3.3 describes what has appeared to be the most promising method of attack
in attempting to prove this conjecture. Any given 2-stagger of order n ≥ 8 is extended to
a 3-stagger through the use of Lemma 4.3.12. This in turn is extended to a 4-stagger, and
this process continues in an inductive fashion until an n-stagger is produced, which is a
latin square.

Lemma 4.3.14 is then proven, which provides the means for performing the first step
of this process, namely that of extending the initial 2-stagger to a 3-stagger. From the
condition n ≥ 4k presented in this lemma, a more general conjecture is proposed. This is
Conjecture 4.3.15, which states that all k-staggers of order n ≥ 4k are valid.

61

This conjecture is then verified for k = 1, although in this case, n ≥ 4k = 4 does not
represent the lowest possible bound for n. For k = 2, Conjecture 4.3.15 agrees with the
computational results, and in fact reduces to Conjecture 4.3.11. Furthermore, if Conjec-
ture 4.3.11 is in fact correct, Lemma 4.3.9 shows that n ≥ 8 is indeed the lowest bound
possible.

It is not clear whether Conjecture 4.3.15 is true for k ≥ 3, and if so, whether n ≥ 4k
represents the best possible bound. It may be that the case k = 1, for which n ≥ 4k is not
the lowest bound possible, simply represents an exceptional case. Small cases for which
exceptional properties hold are not uncommon in combinatorial problems.

For k ≥ 3, the complexity of searches, in terms of execution time, makes a computer
search infeasible. The currently existing search program, to some extent, takes into account
“isomorphisms” of PLSs produced by permuting rows, columns and value labels. That is,
in some cases for which P and Q are PLSs obtained from one another in such a fashion,
the computer will only examine one of P and Q.

In order to improve the efficiency of searching, future work in this field may including
modifying the search algorithm in order to take into account a larger range of such “iso-
morphisms”. Other directions for future work may include further investigation into the
method of proof outlined in Section 4.3.3, and into properties of transversals, which are
used by Lemma 4.3.12 in extending k-staggers to (k + 1)-staggers.

62

Bibliography

[1] Lindner, C.C., A survey of finite embedding theorems for partial latin squares and
quasigroups, In Graphs and Combinatorics, Lecture Notes in Mathematics, 406 (1974),
109–152, Springer-Verlag, Berlin.

[2] Lindner, C.C., Embedding theorems for partial latin squares, In Latin Squares: New
Developments in the Theory and Applications, editors Denes, J. & Keedwell, A.D.
(1991), 217–265, North-Holland, Amsterdam.

[3] Lindner, C.C., MP475 Lecture Notes, The University of Queensland, 1995.

[4] Lindner, C.C., On completing latin rectangles, Canadian Mathematical Bulletin, 13

(1970), 65–68.

[5] Smetaniuk, B., A new construction on latin squares - I: A proof of the Evans Conjec-
ture, Ars Combinatoria, 11 (1981), 155–172.

[6] Williams, S., MP384 Lecture Notes, The University of Queensland, 1996.

63

64

Appendix A

Computer Search Source Code

Recall from Section 4.3.2 that a computer program was written to find all invalid k-staggers
of order n, for given values of k and n. The source code for this program is provided in
this appendix.

The program was written using the language C++, and is spread across several source
files. Each source file begins with a comment that describes its purpose. When run, the
program executes the main() function, which is contained in the source file stagger.cc.

A.1 Source for boolean.h

// ---------

// Boolean.h

// ---------

//

// Defines a boolean data type.

#ifndef __BOOLEAN_H

#define __BOOLEAN_H

typedef int boolean;

#define True 1

#define False 0

#endif

A.2 Source for tset.h

// ------

// TSet.h

// ------

//

// Provides functions for dealing with partial latin squares.

#ifndef __TSET_H

#define __TSET_H

#include "boolean.h"

// Triple class: A (value, row, column) triple.

65

class Triple

{

public:

int v[3];

Triple() {}

Triple(int a, int b, int c) { v[0] = a; v[1] = b; v[2] = c; }

int operator [] (int pos) { return v[pos]; }

};

// If t is a triple, then t[0], t[1] and t[2] represent the value, row and

// column of t respectively.

#define SQR(a,b,c) sqr[a][(b)+(n*(c))]

// TSet class: A partial latin square.

class TSet

{

protected:

int n; // Order

int t; // Number of triples stored

int *sqr[3]; // Representation of square

boolean validfrom(int i,int j);

int solnsfrom(int i,int j);

void copytset(TSet &t2);

public:

// --- Constructors and Destructor

TSet(int order);

// Creates empty TSet.

TSet(TSet &t2);

// Create TSet equal to t2.

virtual ~TSet();

// --- Operations

boolean add(Triple&);

// Add an entry.

boolean remove(Triple&);

// Remove an entry.

void empty();

// Remove all entries.

void copy(TSet &t2);

// Make a copy of t2.

// --- Tests

boolean valid();

// Is this PLS valid?

boolean full()

{ return (t == n*n); }

// Is this an entire latin square?

// --- Calculations

int solns();

// Find number of completions.

// --- Info Requests

int order()

66

{ return n; }

// Find order of PLS.

int triples()

{ return t; }

// Find number of entries.

int lookup(int i,int j,int sq=0)

{ return SQR(sq,i,j); }

// lookup(i,j) will find the value

// in row i,col j.

// Triples are stored as (t[0],t[1],t[2]).

// sq represents which place (0,1,2) of the triple

// is to be looked up.

// i represents place (1+sq), j represents place

// (2+sq), where place numbers are taken mod 3.

};

#endif

A.3 Source for tset.cc

// Implementation of functions described in TSet.h.

#include "tset.h"

TSet::TSet(int order)

{

n = order;

int i;

for (i=0;i<3;i++)

sqr[i] = new int[n*n];

empty();

}

TSet::TSet(TSet &t2)

{

copytset(t2);

}

void TSet::copy(TSet &t2)

{

int i;

for (i=0;i<3;i++)

delete[] sqr[i];

copytset(t2);

}

void TSet::copytset(TSet &t2)

{

n = t2.n;

t = t2.t;

int i;

for (i=0;i<3;i++)

67

sqr[i] = new int[n*n];

int j,l;

l = n*n;

for (i=0;i<3;i++)

for (j=0;j<l;j++)

sqr[i][j] = t2.sqr[i][j];

}

TSet::~TSet()

{

int i;

for (i=0;i<3;i++)

delete[] sqr[i];

}

boolean TSet::add(Triple &tr)

{

if (!(SQR(0,tr[1],tr[2])==-1 && SQR(1,tr[2],tr[0])==-1 &&

SQR(2,tr[0],tr[1])==-1))

return False;

// Triple satisfies row latin and column latin conditions.

SQR(0,tr[1],tr[2]) = tr[0];

SQR(1,tr[2],tr[0]) = tr[1];

SQR(2,tr[0],tr[1]) = tr[2];

t++;

return True;

}

boolean TSet::remove(Triple &tr)

{

if (SQR(0,tr[1],tr[2]) != tr[0])

return False;

// Triple is actually present.

SQR(0,tr[1],tr[2]) = -1;

SQR(1,tr[2],tr[0]) = -1;

SQR(2,tr[0],tr[1]) = -1;

t--;

return True;

}

void TSet::empty()

{

t=0;

int i,j,l;

l = n*n;

for (i=0;i<3;i++)

for (j=0;j<l;j++)

sqr[i][j] = -1;

}

boolean TSet::valid()

{

if (t < n) return True;

68

return validfrom(0,0);

}

boolean TSet::validfrom(int i,int j)

{

// Assumes all items before (i,j) have been placed.

int k;

while (i < n)

{

while (j < n)

{

if (SQR(0,i,j) == -1)

{

for (k=0;k<n;k++)

{

Triple tr(k,i,j);

if (add(tr))

{

if (validfrom(i,j+1))

{

remove(tr);

return True;

}

remove(tr);

}

}

return False;

}

j++;

}

j=0;

i++;

}

return True;

}

int TSet::solns()

{

return solnsfrom(0,0);

}

int TSet::solnsfrom(int i,int j)

{

// Assumes all items before (i,j) have been placed.

int k;

while (i < n)

{

while (j < n)

{

if (SQR(0,i,j) == -1)

{

int ans=0;

for (k=0;k<n;k++)

{

Triple tr(k,i,j);

if (add(tr))

69

{

ans += solnsfrom(i,j+1);

remove(tr);

}

}

return ans;

}

j++;

}

j=0;

i++;

}

return 1;

}

A.4 Source for output.h

// --------

// OutSet.h

// --------

//

// Outputs a partial latin square to the screen or output file.

#ifndef __TSET_OUTPUT_H

#define __TSET_OUTPUT_H

#include "tset.h"

#include <iostream.h>

void outset(TSet &t, ostream &o);

// Outputs the PLS t to the output stream o.

#endif

A.5 Source for output.cc

// Implements functions described in Output.h.

#include "output.h"

void outset(TSet &t, ostream &o)

{

int i,j,k;

int n = t.order();

for (i=0;i<n;i++)

{

for (j=0;j<n;j++)

{

k = t.lookup(i,j);

if (k==-1)

o << ’.’;

else

o << k;

}

70

o << ’\n’;

}

}

A.6 Source for stagfunc.h

// ----------

// StagFunc.h

// ----------

//

// Defines a type of function that may be performed upon staggers.

#ifndef __STAGFUNC_H

#define __STAGFUNC_H

typedef void (*StaggerFunc)(TSet&, void *args);

#endif

A.7 Source for allstag.h

// ---------

// AllStag.h

// ---------

//

// Searches through all staggers of a given size

// and performs a given function upon these.

//

// If two staggers are equivalent by row, column or value

// permutations, then this algorithm may only find of them.

//

// However, at least one stagger from each such equivalence

// class is guaranteed to be found.

#ifndef __ALLSTAG_H

#define __ALLSTAG_H

#include "tset.h"

#include "stagfunc.h"

void SearchStaggers(int order, int k, StaggerFunc f, void *args,

boolean Opt);

// Performs function f with arguments args upon every stagger of

// the given order.

//

// If Opt is true, not all staggers are searched.

// Instead, equivalences are taken into account.

// Specifically, new values/rows/cols are only

// taken in sequence.

//

// That is, val/row/col y will not be used before (y-1).

//

// Further equivalences involving sorting of entries within

// rows are also taken into account.

71

#endif

A.8 Source for allstag.cc

// Implementation of functions described in AllStag.h.

#include "allstag.h"

#include "sinfo.h"

// For k-stagger of order n, requires n^2 iterations.

void search(SearchInfo &inf);

// Function called for each individual step of the search.

void SearchStaggers(int order, int k, StaggerFunc f, void *args,

boolean Opt)

{

TSet t(order);

if (Opt)

search(OptSearchInfo(&t, k, order, f, args));

else

search(SearchInfo(&t, k, order, f, args));

}

void search(SearchInfo &inf)

{

if (inf.r == inf.n)

{

(*(inf.f))(*inf.t, inf.args);

return;

}

// Can we leave this entry blank?

if (inf.CanLeaveBlank())

{

inf.Blanking();

inf++;

search(inf);

inf--;

inf.Blanked();

}

if (! inf.CanUse())

return;

int max = inf.MaxVal();

int i;

for (i=0; i <= max; i++)

{

if (inf.tot[0][i] == inf.k)

continue;

// Can use more of value i.

72

Triple tr(i, inf.r, inf.c);

if (inf.t->add(tr))

{

inf.Using(i);

inf += tr;

inf++;

search(inf);

inf--;

inf -= tr;

inf.t->remove(tr);

inf.Used();

}

}

}

A.9 Source for sinfo.h

// -------

// SInfo.h

// -------

//

// Defines the SearchInfo object, which represents the current state

// of the search for staggers. Such objects are used in backtracking.

#ifndef __SINFO_H

#define __SINFO_H

#include "intstack.h"

#include "tset.h"

#include "stagfunc.h"

// SearchInfo class: Defines a state of an ordinary search.

class SearchInfo

{

public:

int r, c;

int k, n;

int *tot[3];

// Total numbers of entries for

// particular values, rows and columns.

public:

TSet *t;

StaggerFunc f;

void *args;

SearchInfo(TSet *newt, int newk, int newn, StaggerFunc newf,

void *newargs);

virtual ~SearchInfo();

73

void operator ++(int);

void operator --(int);

void operator +=(Triple &tr);

void operator -=(Triple &tr);

virtual boolean CanLeaveBlank();

virtual boolean CanUse();

virtual void Using(int) {}

virtual void Used() {}

virtual void Blanking() {}

virtual void Blanked() {}

virtual int MaxVal()

{ return n-1; }

};

// Class OptSearchInfo: Used in optimised searches.

class OptSearchInfo : public SearchInfo

{

public:

int nextc, nextv;

int firstc;

protected:

IntStack CStack, VStack, FCStack;

public:

OptSearchInfo(TSet *newt, int newk, int newn, StaggerFunc newf,

void *newargs);

virtual boolean CanLeaveBlank();

virtual boolean CanUse();

virtual void Using(int val);

virtual void Used();

virtual void Blanking();

virtual void Blanked();

virtual int MaxVal();

};

#endif

A.10 Source for sinfo.cc

// Implements functions described in SInfo.h.

#include "sinfo.h"

SearchInfo::SearchInfo(TSet *newt, int newk, int newn, StaggerFunc newf,

void *newargs)

{

74

r = c = 0;

k = newk;

n = newn;

t = newt;

f = newf;

args = newargs;

int i, j;

for (i=0;i<3;i++)

{

tot[i] = new int[n];

for (j=0; j<n; j++)

tot[i][j] = 0;

}

}

SearchInfo::~SearchInfo()

{

int i;

for (i=0;i<3;i++)

delete[] tot[i];

}

void SearchInfo::operator ++(int)

{

c++;

if (c == n)

{

c = 0;

r++;

}

}

void SearchInfo::operator --(int)

{

if (c == 0)

{

c = n;

r--;

}

c--;

}

void SearchInfo::operator +=(Triple &tr)

{

int i;

for (i=0; i<3; i++)

tot[i][tr[i]]++;

}

void SearchInfo::operator -=(Triple &tr)

{

int i;

for (i=0; i<3; i++)

75

tot[i][tr[i]]--;

}

boolean SearchInfo::CanLeaveBlank()

{

// Implements derivable conditions

// that must be satisfied if a given cell is to

// be left blank.

return ((k - tot[1][r] < n - c) &&

(k - tot[2][c] < n - r));

}

boolean SearchInfo::CanUse()

{

return ! ((tot[1][r] == k) || (tot[2][c] == k));

}

// -------------- OptSearchInfo ----------------

OptSearchInfo::OptSearchInfo(TSet *newt, int newk, int newn,

StaggerFunc newf, void *newargs) :

SearchInfo(newt, newk, newn, newf, newargs)

{

nextc = nextv = 0;

firstc = 0;

}

boolean OptSearchInfo::CanLeaveBlank()

{

if ((c == nextc) && (tot[1][r] < k))

return False;

return SearchInfo::CanLeaveBlank();

}

boolean OptSearchInfo::CanUse()

{

if (c < firstc)

return False;

return SearchInfo::CanUse();

}

void OptSearchInfo::Using(int val)

{

VStack.Push(nextv);

CStack.Push(nextc);

if (val == nextv)

nextv++;

if (c == nextc)

nextc++;

}

void OptSearchInfo::Used()

{

nextv = VStack.Pop();

76

nextc = CStack.Pop();

}

void OptSearchInfo::Blanking()

{

FCStack.Push(firstc);

if (c == firstc)

firstc++;

}

void OptSearchInfo::Blanked()

{

firstc = FCStack.Pop();

}

int OptSearchInfo::MaxVal()

{

if (nextv == n)

return n-1;

else

return nextv;

}

A.11 Source for intstack.h

// ----------

// IntStack.h

// ----------

//

// Defines a stack of integers.

#ifndef __INTSTACK_H

#define __INTSTACK_H

// IntNode class: A member of an integer stack.

class IntNode

{

public:

int val;

IntNode *next;

public:

IntNode(int newval)

{ val = newval; }

};

// IntStack class: A stack of integers.

class IntStack

{

protected:

IntNode *first;

public:

77

IntStack()

{ first = 0; }

virtual ~IntStack();

void Push(int val);

// Push an integer onto the stack.

int Pop();

// Pop an integer from the stack.

};

#endif

A.12 Source for intstack.cc

// Implements functions described in IntStack.h.

#include "intstack.h"

IntStack::~IntStack()

{

while (first != 0)

Pop();

}

void IntStack::Push(int val)

{

IntNode *p = new IntNode(val);

p->next = first;

first = p;

}

int IntStack::Pop()

{

if (first == 0)

return 0;

IntNode *p = first;

first = first->next;

int ans = p->val;

delete p;

return ans;

}

A.13 Source for stagger.cc

// This is the main program.

// Values for k and n are read from standard input, and

// all invalid k-staggers of order n are then written

// to standard output.

#include "output.h"

#include "allstag.h"

void OutStagTSet(TSet &t, void *);

78

main()

{

int n, k;

cin >> k >> n;

while (n != 0)

{

cout << "\nInvalid " << k << "-Staggers of order " << n << " :\n\n";

SearchStaggers(n, k, OutStagTSet, 0, True);

cin >> k >> n;

}

return 0;

}

void OutStagTSet(TSet &t, void *)

{

if (! t.valid())

{

outset(t, cout);

cout << ’\n’;

cout.flush();

}

}

79

