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ABSTRACT
We present a new, practical algorithm to test whether a
knot complement contains a closed essential surface. This
property has important theoretical and algorithmic conse-
quences. However systematically testing it has until now
been infeasibly slow, and current techniques only apply to
specific families of knots. As a testament to its practicality,
we run the algorithm over a comprehensive body of 2979
knots, including the two 20-crossing dodecahedral knots,
yielding results that were not previously known.

The algorithm derives from the original Jaco-Oertel frame-
work, involves both enumeration and optimisation proce-
dures, and combines several techniques from normal surface
theory. This represents substantial progress in the practi-
cal implementation of normal surface theory. Problems of
this kind have a doubly-exponential time complexity; nev-
ertheless, with our new algorithm we are able to solve it
for a large and comprehensive class of inputs. Our methods
are relevant for other difficult computational problems in 3-
manifold theory, ranging from testing for Haken-ness to the
recognition problem for knots, links and 3-manifolds.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometri-
cal problems and computations; G.4 [Mathematical Soft-
ware]: Algorithm design and analysis
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1. INTRODUCTION
In the study of 3–manifolds, essential surfaces have been

of central importance since Haken’s seminal work in the
1960s. An essential surface may be regarded as ‘topologi-
cally minimal’, and there has since been extensive research
into 3-manifolds, called Haken 3-manifolds, that contain an
essential surface. The existence of such a surface has pro-
found consequences for both the topology and geometry of
a 3–manifold [13, 15, 20, 21, 22, 24, 27, 28, 31].

Given any closed 3-manifold, specified by a triangulation,
it is a theorem of Jaco and Oertel [17] from 1984 that one
may algorithmically test for the existence of a closed essen-
tial surface. However, their algorithm has significant intri-
cacies and is of doubly-exponential complexity in terms of
the input size, putting it well beyond the scope of a practical
implementation.

In this paper we present for the first time a practical al-
gorithm that, though still doubly-exponential in theory, is
able to systematically test a significant class of 3-manifolds
for the existence of a closed essential surface, and is both
efficient in practice and always conclusive. To illustrate its
power, we run this algorithm over a comprehensive body of
input data, yielding computer proofs of new mathematical
results.

The 3-manifolds we examine in this paper are the motivat-
ing spaces for 3-manifold theory: knot complements. These
are the spaces that arise by removing a knotted curve from
3-dimensional space, although our methods can be extended
to apply to a far wider class of 3-manifolds. See the full ver-
sion of this paper for generalisations. In this paper we work
with two collections of input data. First, for each of the 2977
non-trivial prime knots that can be drawn with a diagram
of at most 12 crossings, we determine whether its comple-
ment contains a closed essential surface. If there is no such
surface, the knot is called small, otherwise we call it large.
Second, we apply our algorithm to resolve, in the affirma-
tive, a question of Michel Boileau [4] who enquired whether
two special 20-crossing knots called dodecahedral knots con-
tain a closed essential surface in their complements. This
question was recently also independently resolved by Jessica
Banks [3] using non-computational techniques.

The algorithm presented here is theoretically significant
because it is the first algorithm in the literature for testing
largeness of arbitrary knots. However, more important is its
practical significance: this is the first conclusive algorithm
of this type that is implemented and fast enough for real-
world use. The prior state-of-the-art algorithm for detecting
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essential surfaces was used to prove that the Weber-Seifert
dodecahedral space is non-Haken [11]; however, although it
resolved a long-standing open problem, this prior algorithm
relies on heuristic methods that only work for certain tri-
angulations, and are only conclusive if no essential surface
exists. In contrast, the algorithm described here can work
with arbitrary triangulations of knot complements, and is
found to be effective regardless of the final result.

Our methods can be applied to related invariants of knots
and 3-manifolds. For instance, the smallest genus g of a
closed essential surface is an important knot invariant about
which little is known for the case g ≥ 2, and our algorithm
opens the door to formulating and testing new hypotheses.
These methods may also be extended to test a wide va-
riety of 3-manifolds for Haken-ness and related properties.
More broadly, iterated exponential complexity algorithms
arise frequently in 3-manifold theory, and our methods give
an outline for how such problems, like the recognition prob-
lem for knots and 3-manifolds, may one day be within the
realm of a practical implementation.

We base our work on the framework of the Jaco-Oertel al-
gorithm for testing for closed incompressible surfaces. This
uses normal surfaces, which allow us to translate topologi-
cal questions about surfaces into the setting of integer and
linear programming. The framework consists of two stages:
the first constructs a finite list of candidate essential sur-
faces, and the second tests each surface in the list to see if
it is essential. A key difficulty with this framework, which
our algorithm also inherits, is that both stages have running
times that are worst-case exponential in their respective in-
put sizes. Moreover, the output of the first stage is expo-
nential in its input, and this then becomes the input to the
second stage. This means that combining the two stages in
any obvious way leads to a doubly-exponential time com-
plexity solution.

Despite this significant hurdle, we introduce several in-
novations that cut down the running time enormously for
both stages. Our optimisation for the first stage involves
a combination of established techniques that, though well
understood individually, require new ideas and theory in or-
der to work harmoniously together. For the second stage
we combine branch-and-bound techniques from integer pro-
gramming with the Jaco-Rubinstein procedure for crushing
surfaces within triangulations, extending recent work of the
first author and Ozlen [9]. In more detail:

• For the first stage (enumerating candidate essential
surfaces), we combine several techniques. First, we
wish to create a triangulation for each knot comple-
ment that contains as few tetrahedra as possible. If
one uses classical triangulations one needs as many
as 50 tetrahedra for some knots in the 12-crossing
tables, a size for which enumerating candidate sur-
faces is thoroughly infeasible even for modern high-
performance machines. We therefore use ideal trian-
gulations for knot complements, which are decomposi-
tions of these spaces into tetrahedra with their vertices
removed. These introduce some significant theoretical
difficulties, but they are much smaller with roughly
half as many tetrahedra.

Second, we use a variant of normal surface theory based
on quadrilateral coordinates. The appeal is that this
brings the dimension of the underlying integer and lin-

ear programming problems down from 7t in the classi-
cal setting to 3t, where t is the number tetrahedra in
the input 3-manifold. These coordinates were known
to Thurston and Jaco in the 1980s, and first appeared
in print in work of Tollefson [30].

A theoretical difficulty arises when combining ideal tri-
angulations with quadrilateral coordinates: this intro-
duces objects called spun-normal surfaces, which are
properly embedded non-compact surfaces (essentially
built from infinitely many pieces). We counter this
by introducing extra linear constraints called bound-
ary equations which, with the development of appro-
priate theory, restrict the solution space in question
to closed surfaces only. In particular, using an exten-
sion of the work of Jaco and Oertel [17] from compact
manifolds to non-compact manifolds by Kang [23], we
show in Theorem 2 that for each manifold under con-
sideration, there is a finite, constructible set of normal
surfaces with the property that if the manifold in ques-
tion contains a closed essential surface, then one must
exist in this set.

• For the second stage (testing whether a candidate sur-
face is essential), the Jaco-Oertel approach cuts along
each candidate surface and inspects the boundary of
the resulting 3-manifold to see if it admits a compres-
sion disc (such a disc certifies that a surface is non-
essential). The key difficulty is that one requires a
new triangulation for the cut-open 3-manifold: since
the candidate surface may be very complicated, any
natural scheme for cutting and re-triangulating yields
a new triangulation with exponentially many tetrahe-
dra in the worst case, taking us far beyond the realm
in which normal surface theory has traditionally been
feasible in practice. Since these new triangulations are
the input for stage two, which is itself exponential time,
we now see where the double exponential arises, and
why the Jaco-Oertel framework has long been consid-
ered far from practical.

We resolve this significant problem using a blend of
techniques. First, we use strong simplification heuris-
tics to reduce the number of tetrahedra. Next, we
replace the traditional (and very expensive) enumera-
tion-based search for compression discs with an opti-
misation process that maximises Euler characteristic.
This uses the branch-and-bound techniques of [9], and
allows us to quickly focus on a single candidate com-
pression disc. We employ the crushing techniques of
Jaco and Rubinstein [18] to quickly test whether this
is indeed a compression disc, and (crucially) to reduce
the size of the triangulation if it is not.

More generally, this issue of iterated-exponential complex-
ity, coming from cutting and re-triangulating, arises with
ubiquity when considering objects called normal hierarchies.
These hierarchies are key when solving more difficult prob-
lems such as the recognition problem for knots and 3-mani-
folds. Our approach here is both fast in practice and always
correct and conclusive, making it a substantial breakthrough
that indicates that, despite their iterated-exponential time
complexities, practical implementations of these more diffi-
cult algorithms might indeed be possible.
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Figure 1: A 3-manifold may be specified by a trian-
gulation.

2. PRELIMINARIES

2.1 Knots, surfaces and triangulations
A 3-manifold is a mathematical object that locally looks

like 3-dimensional Euclidean space (or, for points on the
boundary, 3-dimensional Euclidean half-space). Because ev-
ery topological 3-manifold admits precisely one piecewise-
linear structure (up to PL-homeomorphism) [25], in practice
this means that 3-manifolds may be studied via triangula-
tions. A triangulation of a compact 3-manifold M is a de-
scription of M as the disjoint union of a finite collection of
3-simplices with their faces identified in pairs, as shown in
Figure 1.

A triangulation T for a 3-manifoldM gives rise to vertices,
edges, faces and tetrahedra in M . Edges whose interior lies
in the interior of M are called interior edges, and edges that
lie entirely on the boundary of M are called boundary edges.
In practice, a tetrahedron in M might not be embedded;
for instance, we even allow two faces of a tetrahedron to be
identified in M. For a precise description of our set-up and
a detailed example, please see the full version of this paper.

Such a triangulation can only specify a compact 3-mani-
fold. However, we can triangulate a non-compact 3-manifold
by deleting the vertices from each tetrahedron (i.e., instead
of identifying the faces of tetrahedra, we identify the faces of
a finite collection of tetrahedra minus their vertices). This
constitutes an ideal triangulation for the resulting non-com-
pact quotient space.

The link of a vertex V in a triangulation is the frontier
of a small regular neighbourhood of V . In a triangulation
of a compact 3-manifold, every vertex link is a sphere or a
disc; in an ideal triangulation, vertex links can be surfaces
of arbitrary genus.

The 3–manifolds we study in this paper are knot comple-
ments. These are 3-manifolds obtained by removing a knot,
which is knotted closed curve in R3, from 3–dimensional Eu-
clidean space. In practice it is convenient to compactify R3

with a point at infinity, yielding a compact 3-manifold called
the 3-sphere, denoted S3. One then removes the knot from
S3 instead. For a knot K we call the resulting non-compact
3-manifold S3\K the complement of K. Knot complements
always have ideal triangulations [29, Proposition 1.2].

If instead we remove from S3 a small open neighbourhood
of a knot K we obtain a compact 3-manifold called the ex-
terior of K. Since they are compact, knot exteriors may be
specified by triangulations. There are well established tech-
niques for translating between an ideal triangulation for a
knot complement and a triangulation for the corresponding
knot exterior.

A knot K is called non-trivial if it is not the boundary of
an embedded disc in S3.

In this paper we are interested in closed essential surfaces
in knot complements. We define these now. Let K be a
knot, and let M be the complement of K. A connected two-

Figure 2: The seven types of normal disc in a tetra-
hedron.

sided closed surface with positive genus S, embedded in M ,
is a closed essential surface in M if the following properties
hold: (i) the surface S is incompressible (as defined below);
and (ii) the surface S is not boundary parallel, that is, not
ambient isotopic to a small tube running around K.

The definition of incompressible is as follows. A compres-
sion disc for an embedded surface S in a 3-manifold M is
an embedded disc D ⊂ M for which (i) D ∩ S equals the
boundary of D (denoted ∂D); and (ii) ∂D is a non-trivial
curve in S (meaning ∂D does not bound a disc in S). If
the surface S admits a compression disc, then we say S is
compressible, otherwise S is incompressible. An equivalent,
algebraic criterion can be found in the full version of this
paper.

2.2 Quadrilateral coordinates and Q–match-
ing equations

We use normal surface theory to search for essential sur-
faces. A normal surface in a (possibly ideal) triangulation T
is a properly embedded surface which intersects each tetra-
hedron of T in a disjoint collection of triangles and quadri-
laterals, as shown in Figure 2. These triangles and quadri-
laterals are called normal discs. In an ideal triangulation of
a non-compact 3–manifold, a normal surface may contain in-
finitely many triangles; such a surface is called spun-normal
[29]. A normal surface may be disconnected or empty.

We now describe an algebraic approach to normal sur-
faces. The key observation is that each normal surface con-
tains finitely many quadrilateral discs, and is uniquely deter-
mined (up to normal isotopy) by these quadrilateral discs.
Here a normal isotopy of M is an isotopy that keeps all sim-
plices of all dimensions fixed. Let � denote the set of all
normal isotopy classes of normal quadrilateral discs in T ,
so that |�| = 3t where t is the number of tetrahedra in T .
These normal isotopy classes are called quadrilateral types.

We identify R� with R3t. Given a normal surface S, let
x(S) ∈ R� = R3t denote the integer vector for which each
coordinate x(S)(q) counts the number of quadrilateral discs
in S of type q ∈ �. This normal Q–coordinate x(S) satisfies
the following two algebraic conditions.

First, x(S) is admissible. A vector x ∈ R� is admissible if
x ≥ 0, and for each tetrahedron x is non-zero on at most one
of its three quadrilateral types. This reflects the fact that
an embedded surface cannot contain two different types of
quadrilateral in the same tetrahedron.

Second, x(S) satisfies a linear equation for each interior
edge in M, termed a Q–matching equation. Intuitively, these
equations arise from the fact that as one circumnavigates the
earth, one crosses the equator from north to south as often
as one crosses it from south to north. We now give the
precise form of these equations. To simplify the discussion,
we assume that M is oriented and all tetrahedra are given
the induced orientation; see [29, Section 2.9] for details.

Consider the collection C of all (ideal) tetrahedra meeting
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e

(a) The abstract
neighbourhood B(e)

(b) Positive slope +1 (c) Negative slope −1

Figure 3: Slopes of quadrilaterals

at an edge e in M (including k copies of tetrahedron σ if e
occurs k times as an edge in σ). We form the abstract neigh-
bourhood B(e) of e by pairwise identifying faces of tetrahedra
in C such that there is a well defined quotient map from B(e)
to the neighbourhood of e in M ; see Figure 3(a) for an il-
lustration. Then B(e) is a ball (possibly with finitely many
points missing on its boundary). We think of the (ideal)
endpoints of e as the poles of its boundary sphere, and the
remaining points as positioned on the equator.

Let σ be a tetrahedron in C. The boundary square of a
normal quadrilateral of type q in σ meets the equator of
∂B(e) if and only it has a vertex on e. In this case, it has a
slope ±1 of a well–defined sign on ∂B(e) which is indepen-
dent of the orientation of e. Refer to Figures 3(b) and 3(c),
which show quadrilaterals with positive and negative slopes
respectively.

Given a quadrilateral type q and an edge e, there is a total
weight wte(q) of q at e, which records the sum of all slopes
of q at e (we sum because q might meet e more than once,
if e appears as multiple edges of the same tetrahedron). If
q has no corner on e, then we set wte(q) = 0. Given edge
e in M, the Q–matching equation of e is then defined by
0 =

∑
q∈� wte(q) x(q).

Theorem 1. For each x ∈ R� with the properties that
x has integral coordinates, x is admissible and x satisfies
the Q–matching equations, there is a (possibly non-compact)
normal surface S such that x = x(S). Moreover, S is unique
up to normal isotopy and adding or removing vertex linking
surfaces, i.e., normal surfaces consisting entirely of normal
triangles.

This is related to Hauptsatz 2 of [14]. For a proof of
Theorem 1, see [23, Theorem 2.1] or [29, Theorem 2.4].

The set of all x ∈ R� with the property that (i) x ≥ 0 and
(ii) x satisfies the Q–matching equations is denoted Q(T ).
This naturally is a polyhedral cone. Note however that the

(a) Pieces after cutting open along S

(b) Pieces after crushing S to a point

(c) Flattening footballs and pillows

Figure 4: Steps in the Jaco-Rubinstein crushing pro-
cess

set of all admissible x ∈ R� typically meets Q(T ) in a non-
convex set.

2.3 Crushing triangulations
The crushing process of Jaco and Rubinstein [18] plays an

important role in our algorithms, and we informally outline
this process here. We refer the reader to [18] for the formal
details, or to [7] for a simplified approach.

Let S be a two-sided normal surface in a triangulation
T of a compact orientable 3-manifold M (with or without
boundary). To crush S in T , we (i) cut T open along S,
which splits each tetrahedron into a number of (typically
non-tetrahedral) pieces, several of which are illustrated in
Figure 4(a); (ii) crush each resulting copy of S on the bound-
ary to a point, which converts these pieces into tetrahe-
dra, footballs and/or pillows as shown in Figure 4(b); and
(iii) flatten each football or pillow to an edge or triangle
respectively, as shown in Figure 4(c).

The result is a new collection of tetrahedra with a new set
of face identifications. We emphasise that we only keep track
of face identifications between tetrahedra: any “pinched”
edges or vertices fall apart, and any lower-dimensional pieces
(triangles, edges or vertices) that do not belong to any tetra-
hedra simply disappear. The resulting structure might not
represent a 3-manifold triangulation, and even if it does the
flattening operations might have changed the underlying 3-
manifold in ways that we did not intend.

Although crushing can cause a myriad of problems in gen-
eral, Jaco and Rubinstein show that in some cases the op-
eration behaves extremely well [18]. In particular, if S is a
normal sphere or disc, then after crushing we always obtain a
triangulation of some 3-manifold M ′ (possibly disconnected,
and possibly empty) that is obtained from the original M
by zero or more of the following operations:
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(a) 0 = νx(γ) =
∑k

i=1(−1)ix(qi) is the
Q–matching equation

S
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S

BK

(b) spun ⇐⇒ νx 6= 0

S

S

S

BK

(c) not spun ⇐⇒ νx = 0

Figure 6: Boundary map determines Q–matching equations and spinning

• cutting manifolds open along spheres and filling the
resulting boundary spheres with 3-balls;

• cutting manifolds open along properly embedded discs;

• capping boundary spheres of manifolds with 3-balls;

• deleting entire connected components that are any of
the 3-ball, the 3-sphere, projective space RP 3, the lens
space L(3, 1) or the product space S2 × S1.

An important observation is that the number of tetrahe-
dra that remain after crushing is precisely the number of
tetrahedra that do not contain quadrilaterals of S.

3. CLOSED NORMAL SURFACES IN
Q–SPACE

In this section we introduce the linear boundary equations,
with which we restrict the normal surface solution space to
closed surfaces only.

Let our knot complement be M = S3 \K. The ideal tri-
angulation T of M has one ideal vertex, and its link is a
torus. We view this torus T as made up of normal trian-
gles, one near each corner of each ideal tetrahedron. Let
γ ∈ H1(T ;R). We now describe an associated linear func-

tional ν(γ) : R� → R, which measures the behaviour along
γ of a normal surface near the ideal vertex. The idea is simi-
lar to the intuitive description of the Q–matching equations.
As one goes along γ and looks down into the manifold, nor-
mal quadrilaterals will (as Jeff Weeks puts it) come up from
below or drop down out of sight. If the total number com-
ing up minus the total number dropping down is non-zero,
then the surface spirals towards the knot in the cross section
γ× [0,∞) ⊂ T × [0,∞) and the sign indicates the direction,

see Figure 6(b). If this number is zero, then after a suitable
isotopy the surface meets the cross section in a (possibly
empty or infinite) union of circles, see Figure 6(c).

The torus T has an induced triangulation consisting of
normal triangles. Represent γ by an oriented path on T,
which is disjoint from the 0–skeleton and meets the 1–skele-
ton transversely. Each edge of a triangle in T is a normal arc.
Give the edges of each triangle in T transverse orientations
pointing into the triangle and labelled by the quadrilateral
types sharing the normal arc with the triangle; see Figure 5.
We then define ν(γ) as follows. Choosing any starting point
on γ, we read off a formal linear combination of quadrilat-
eral types q by taking +q each time the corresponding edge
is crossed with the transverse orientation, and −q each time
it is crossed against the transverse orientation (where each
edge in T is counted twice—using the two adjacent trian-
gles).

Evaluating ν(γ) at some x ∈ R� gives a real number νx(γ).
For example, taking a small loop around a vertex in T and
setting this equal to zero gives the Q–matching equation
of the corresponding edge in M ; see Figure 6(a). For each
x ∈ Q(T ), the resulting map νx : H1(T ;R) → R is a well-
defined homomorphism, which has the property that the
surface in Theorem 1 is closed if and only if νx = 0 (see [29],
Proposition 3.3). Since νx : H1(T ;R) → R is a homomor-
phism, it is trivial if and only if we have νx(α) = 0 = νx(β)
for any basis {α, β} of H1(T ;R).

We define Q0(T ) = Q(T ) ∩ {x | νx = 0}, and call a two-
sided, connected normal surface F with x(F ) on an extremal
ray of Q0(T ) a Q0–vertex surface. The following result is
based on the seminal work of Jaco and Oertel [17]:

Theorem 2. Suppose M is the complement of a non-
trivial knot in S3. If M contains a closed essential surface

5



S, then there is a normal, closed essential surface F with
the property that x(F ) lies on an extremal ray of Q0(T ).
Moreover, if χ(S) < 0, then there is such F with χ(F ) < 0.

Proof (Sketch). A complete proof of a more general
statement is given in the full version of this paper. The key
ideas are as follows. Given a closed essential surface in M,
a standard argument shows that there is a normal closed
essential surface in M. Amongst all normal surfaces iso-
topic (but not necessarily normally isotopic) to this, choose
one that has minimal number of intersections with the 1–
skeleton of the triangulation T (this is the PL analogue of
a minimal surface). Denote this surface S.

If S is not a vertex surface, one can write it using a so-
called Haken sum of vertex surfaces, which is a geometric
realisation of the sum of Q–coordinate vectors. However, a
complication arises, since only a multiple of S is known to be
a Haken sum of vertex surfaces, and only up to vertex linking
tori; that is, we only know that nS + Σ =

∑
niVi = V +W

for some n ∈ N, where V is a vertex surface, Σ is vertex link-
ing, and all other terms of the Haken sum are combined into
the surface W. Building on Jaco and Oertel [17], Kang [23,
Theorem 5.4] shows that V is incompressible for any such
decomposition. Since Euler characteristic is additive under
Haken sum, the result follows if χ(S) < 0. If χ(S) = 0, addi-
tional work is required to show that an essential torus cannot
be written as a Haken sum of boundary parallel tori.

4. ALGORITHMS
Here we describe the new algorithm to test whether a

knot is large or small (i.e., whether its complement con-
tains a closed essential surface). In this extended abstract
we restrict our attention to the common setting of knots
in the 3-sphere S3. See the full version of this paper for
an extension to the more general setting of links in arbi-
trary closed orientable 3-manifolds, as well as searching for
essential surfaces in arbitrary closed orientable 3-manifolds
(without knots or links).

We present the algorithm in two stages below. Algo-
rithm 3 describes a subroutine to test whether a given closed
surface is incompressible. Algorithm 5 is the main algo-
rithm: it uses the results of Section 3 to identify candidate
essential surfaces, and runs Algorithm 3 over each.

These algorithms contain a number of high-level and often
intricate procedures, many of which are described in sepa-
rate papers. For each algorithm, we discuss these procedures
in further detail after presenting the overall algorithm struc-
ture.

Algorithm 3 (Testing for incompressibility).
Let T be an ideal triangulation of a non-compact 3-manifold
M that is the complement of a non-trivial knot in S3. Let S
be a closed two-sided normal surface of genus g ≥ 1 within
T . To test whether S is incompressible in M :

1. Truncate the ideal vertex of T to obtain a compact
manifold with boundary, cut T open along the surface
S, and retriangulate.1 The result is a pair of triangu-
lations T1, T2 representing two compact manifolds with
boundary M1,M2 (one on each side of S in M).

1To truncate a vertex means to remove a small open neigh-
bourhood of that vertex. Because the original ideal vertex
has torus link, the truncated triangulation will acquire an
additional torus boundary component.

Let B1, B2 be the genus g boundary components of T1
and T2 respectively that correspond to the surface S.
Without loss of generality, suppose that the truncated
ideal vertex was on the side of M2; therefore T2 has an
additional boundary torus, which we denote Bv.

2. For each i = 1, 2:

(a) Simplify Ti into a triangulation with no inter-
nal vertices and only one vertex on each bound-
ary component, without increasing the number of
tetrahedra. Let the resulting number of tetrahedra
in Ti be n.

(b) Search for a connected normal surface E in Ti
that is not a vertex link, has positive Euler char-
acteristic, and (for the case i = 2) does not meet
the torus boundary Bv.

(c) If no such E exists, then there is no compressing
disc for S in Mi. If i = 1 then try i = 2 instead,
and if i = 2 then terminate with the result that S
is incompressible.

(d) Otherwise, crush the surface E as explained in
Section 2.3 to obtain a new triangulation T ′

i (pos-
sibly disconnected, or possibly empty) with strictly
fewer than n tetrahedra. If some component of T ′

i

has the same genus boundary (or boundaries) as
Ti then it represents the same manifold Mi, and
we return to step 2a using this component of T ′

i

instead. Otherwise we terminate with the result
that S is not incompressible.

Regarding the individual steps of this algorithm:

• Step 1 requires us to truncate an ideal vertex and cut a
triangulation open along a normal surface. These are
standard (though intricate) procedures. To truncate a
vertex we subdivide tetrahedra and then remove the
immediate neighbourhood of the vertex. To cut along
a normal surface is more complex; a manageable im-
plementation is described in [11].

• Step 2a requires us to simplify a triangulation to use
the fewest possible vertices, without an increase in the
number of tetrahedra. For this we begin with the rich
polynomial-time simplification heuristics described in
[6]. In practice, for all 2979 knots that we consider in
Section 5, this is sufficient to reduce the triangulation
to the desired number of vertices.

If there are still extraneous vertices, we can remove
these using the crushing techniques of Jaco and Ru-
binstein [18, Section 5.2]. This might fail, but only
if ∂Mi has a compressing disc, or two boundary com-
ponents of Mi are separated by a sphere; both cases
immediately certify that the surface S is compressible,
and we can terminate immediately.

• Step 2b requires us to locate a connected normal sur-
face E in Ti that is not a vertex link, has positive Euler
characteristic, and does not meet the torus boundary
Bv. For this we use the recent method of [9, Algo-
rithm 11], which draws on combinatorial optimisation
techniques: in essence we run a sequence of linear pro-
grams over a combinatorial search tree, and prune this
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tree using tailored branch-and-bound methods. See [9]
for details.

We note that this search is the bottleneck of Algo-
rithm 3: the search is worst-case exponential time,
though in practice it often runs much faster [9]. The
exposition in [9] works in the setting where the un-
derlying triangulation is a knot complement, but the
methods work equally well in our setting here. To
avoid the boundary component Bv, we simply remove
all normal discs that touch Bv from our coordinate
system.

Theorem 4. Algorithm 3 terminates, and its output is
correct.

Proof. The algorithm terminates because each time we
loop back to step 2a we have fewer tetrahedra than before.
Correctness is more interesting: there are many claims in
the algorithm statement that require proof. Full proofs are
given in the full version of this paper; the key ideas are as
follows.

• In step 1 we claim that cutting along S yields two
(disconnected) compact manifolds. This follows from
the fact that every closed surface embedded in the 3-
sphere is separating.

• In step 2c we claim that, if the surface E cannot be
found in T1 and it cannot be found in T2, then the
original surface S must be incompressible. This is be-
cause otherwise, by results of Jaco and Oertel [17],
there must be a normal compressing disc on one side
of S.

• In step 2d we make several claims. First, the new tri-
angulation T ′

i has strictly fewer tetrahedra because E
is not a vertex link. Second, we claim that if T ′

i has a
component with the same genus boundary (or bound-
aries) as Ti then it represents the same manifold Mi,
and otherwise S is compressible; this is because the
“destructive”side-effects of the crushing process reduce
the boundary genus by cutting along compressing discs
for S.

There are additional complications involving irreducibility;
again see the full version of this paper for details.

Algorithm 5 (Testing whether a knot is large).
Let K be a non-trivial knot in S3. To test whether K is large
or small:

1. Build an ideal triangulation T of the complement of K
in S3.

2. Enumerate all extremal rays of Q0(T ); denote these
e1, . . . , ek. For each extreme ray ei, let Si be the unique
connected two-sided normal surface for which x(Si) lies
on ei. Ignore all surfaces Si that are spheres.

3. For each remaining surface Si, use algorithm 3 to test
whether Si is incompressible in T . If any Si is incom-
pressible and is not a torus, then terminate with the
result that K is large. If no Si is incompressible, then
terminate with the result that K is small.

4. Otherwise the only incompressible surfaces in our list
are tori. For each incompressible torus Si, test whether
Si is boundary parallel by (i) cutting T open along
Si, and then (ii) using the Jaco-Tollefson algorithm
[19, Algorithm 9.7] to test whether one of the resulting
components is the product space (Torus)× [0, 1]. If all
incompressible tori are found to be boundary parallel
then K is small, and otherwise K is large.

Regarding the individual steps:

• Step 1 requires us to triangulate the complement of
K. Hass et al. [16] show how to build a compact tri-
angulation (with boundary triangles). To make this
an ideal triangulation we cone over the boundary, and
retriangulate to remove internal (non-ideal) vertices.

• Step 2 requires us to enumerate all extremal rays of
Q0(T ). This is an expensive procedure (which is un-
avoidable, since there is a worst-case exponential num-
ber of extremal rays). For this we use the recent state-
of-the-art tree traversal method [10], which is tailored
to the constraints and pathologies of normal surface
theory and is found to be highly effective for larger
problems. The tree traversal method works in the
larger cone Q(T ), but it is a simple matter to insert
the two additional linear equations corresponding to
νx = 0.

We also note that it is simple to identify the unique
closed two-sided normal surface for which x(S) lies on
the extremal ray e. Specifically, x(S) is either the
smallest integer vector on e or, if that vector yields
a one-sided surface, then its double.

• If we do not reach a conclusive result in step 3, then
step 4 requires us to run the Jaco-Tollefson algorithm
to test whether any incompressible torus is boundary-
parallel. This algorithm is expensive: it requires us
to work in a larger normal coordinate system, solve
difficult enumeration problems, and perform intricate
geometric operations.

However, it is rare that we should reach this situation,
and indeed for all 2979 knots that we consider in Sec-
tion 5, this scenario never occurs. For some knots (e.g.,
satellite knots) it cannot be avoided, but there are ad-
ditional fast methods for avoiding the Jaco-Tollefson
algorithm even in these settings, which we describe in
the full version of this paper.

Theorem 6. Algorithm 5 terminates, and its output is
correct.

Proof. The algorithm terminates because it does not
contain any loops. For correctness, which follows from The-
orems 2 and 4, we refer the reader to the full version of this
paper.

5. COMPUTATIONAL RESULTS
Here we describe the results of running the algorithms of

Section 4 over significant collections of input knots. These
computational results emphasise that the new largeness test-
ing algorithm is both feasible to implement, and fast enough
to be practical for non-trivial inputs—both features that
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distinguish it from many of its peers in algorithmic low-
dimensional topology.

The algorithms were implemented in C++ using the soft-
ware package Regina [5, 8]. The code is available from
http://www.maths.uq.edu.au/~bab/code/, and works with
the forthcoming Regina version 4.94. Supporting data for
the computations described here, including triangulations
of the knot complements and the corresponding lists of ad-
missible extreme rays of Q0(T ), can be downloaded from
this same location.

All running times reported here are measured on a single
2.93 GHz Intel Core i7 CPU.

5.1 The census of knots up to 12 crossings
Our first data set is the census of all 2977 non-trivial prime

knots that can be represented with ≤ 12 crossings. Ideal
triangulations of the knot complements were extracted from
the SnapPy census tables [12], and then further simplified
where possible using Regina’s greedy heuristics [6] to yield a
final set of input triangulations ranging from 2–26 tetrahedra
in size.

The algorithms ran successfully over all 2977 triangula-
tions, yielding the following results:

Theorem 7. Of the 2977 distinct non-trivial prime knots
with up to 12 crossings, 1019 are large and 1958 are small.

A full list of all 1019 large knots can be found in the full
version of this paper. Regarding performance:

• The enumeration of extremal rays of Q0(T ) was ex-
tremely fast, with a maximum time of 47 seconds, and
a median time of just 0.08 seconds. This is a clear il-
lustration of the benefits we obtain from Theorem 2,
which allows us to work in the restricted cone Q0(T )
instead of the (typically much larger) cone Q(T ).

The number of extremal rays of Q0(T ) ranged from
0 (for the figure eight knot complement) up to 509
(for one of the 26-tetrahedron triangulations), with a
median of 33.

• Testing whether each candidate surface was essential
was also extremely fast in most (but not all) cases. For
each knot complement, we can sum the times required
to process all candidate surfaces: the median sum over
all 2977 knots was ∼ 3.6 seconds, and all but three of
the knots had a processing time of under 12 minutes.

The remaining three knots, however, were significantly
slower to process. One required ∼ 3.9 hours, one
required ∼ 12.2 hours, and one (the knot 12a0779)
was still running after 6 days. However, in a strik-
ing illustration of how the algorithms depend strongly
upon the underlying triangulations, when the code was
run with a different random seed (which affected the
simplification heuristics, and hence the triangulations
obtained after slicing along surfaces), this worst-case
knot 12a0779 was fully processed in under 4 minutes.

5.2 The dodecahedral knots
We now turn our attention to the dodecahedral knots Df

and Ds as described by Aitchison and Rubinstein [1]. These
two knots exhibit remarkable properties [2, 26], and each can
be represented with 20 crossings [2]. Running our algorithms
over them yields the following results:

Theorem 8. The two dodecahedral knots Df and Ds are
both large. In particular, their complements contain closed
essential surfaces of genus 3.

We work with ideal triangulations of the knots Df and Ds

with 46 and 47 tetrahedra respectively, which were kindly
provided by Craig Hodgson. These are significantly larger
than the knots from the 12-crossing census; indeed, triangu-
lations of this size are typically considered well outside the
range of feasibility for normal normal surface theory. Hap-
pily our algorithms now prove otherwise:

• This time the enumeration of extremal rays of Q0(T )
was the bottleneck: for Df and Ds this enumeration
took roughly 2.8 and 2.4 days respectively. The num-
ber of admissible extremal rays was 72272 and 73609
respectively.

• To test whether candidate surfaces were essential, the
knot Ds was completely processed in under 3 min-
utes; in contrast, Df required roughly 4.4 hours. Once
again, we see that this part of the algorithm depends
heavily upon the underlying triangulation: when run-
ning with a different random seed, Df was likewise
processed in just a few minutes.
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