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Abstract

The enumeration of normal surfaces is a key bottleneck in computational three-di-
mensional topology. The underlying procedure is the enumeration of admissible vertices
of a high-dimensional polytope, where admissibility is a powerful but non-linear and
non-convex constraint. The main results of this paper are significant improvements
upon the best known asymptotic bounds on the number of admissible vertices, using
polytopes in both the standard normal surface coordinate system and the streamlined
quadrilateral coordinate system.

To achieve these results we examine the layout of admissible points within these
polytopes. We show that these points correspond to well-behaved substructures of the
face lattice, and we study properties of the corresponding “admissible faces”. Key
lemmata include upper bounds on the number of maximal admissible faces of each
dimension, and a bijection between the maximal admissible faces in the two coordinate
systems mentioned above.

AMS Classification Primary 52B05; Secondary 57N10, 57Q35

Keywords 3-manifolds, normal surfaces, polytopes, face lattice, complexity

1 Introduction

Computational topology in three dimensions is a diverse and expanding field, with algorithms
drawing on a range of ideas from geometry, combinatorics, algebra, analysis, and operations
research. A key tool in this field is normal surface theory, which allows us to convert
difficult topological decision and decomposition problems into more tractable enumeration
and optimisation problems over convex polytopes and polyhedra.

In this paper we develop new asymptotic bounds on the complexity of problems in
normal surface theory, which in turn impacts upon a wide range of topological algorithms.
The techniques that we use are based on ideas from polytope theory, and the bulk of this
paper focuses on the combinatorics of the various polytopes and polyhedra that arise in the
study of normal surfaces.

Normal surface theory was introduced by Kneser [21], and further developed by Haken
[12, 13] and Jaco and Oertel [16] for use in algorithms. The core machinery of normal surface
theory is now central to many important algorithms in three-dimensional topology, including
unknot recognition [12], 3-sphere recognition [7, 17, 25, 27], connected sum decomposition
[17, 18], and testing for embedded incompressible surfaces [8, 16].

The core ideas behind normal surface theory are as follows. Suppose we are searching
for an “interesting” surface embedded within a 3-manifold (such as a disc bounded by the
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unknot, or a sphere that splits apart a connected sum). We construct a high-dimensional
convex polytope called the projective solution space, and we define the admissible points
within this polytope to be those that satisfy an additional set of non-linear and non-convex
constraints. The importance of this polytope is that every admissible and rational point
within it corresponds to an embedded surface within our 3-manifold, and moreover all em-
bedded “normal” surfaces within our 3-manifold are represented in this way.

We then prove that, if any interesting surfaces exist, at least one must be represented
by a vertex of the projective solution space. Our algorithm is now straightforward: we
construct this polytope, enumerate its admissible vertices, reconstruct the corresponding
surfaces, and test whether any of these surfaces is “interesting”.

The development of this machinery was a breakthrough in computational topology. How-
ever, the algorithms that it produces are often extremely slow. The main bottleneck lies
in enumerating the admissible vertices of the projective solution space—polytope vertex
enumeration is NP-hard in general [10, 20], and there is no evidence to suggest that our
particular polytope is simple enough or special enough to circumvent this.1

Nevertheless, there is strong evidence to suggest that these procedures can be made
significantly faster than current theoretical bounds imply. For instance, detailed experimen-
tation with the quadrilateral-to-standard conversion procedure—a key step in the current
state-of-the-art enumeration algorithm—suggests that this conversion runs in small polyno-
mial time, even though the best theoretical bound remains exponential [3]. Comprehensive
experimentation with the projective solution space [4] suggests that the number of admis-
sible vertices, though exponential, grows at a rate below O(1.62n) in the average case and
around O(2.03n) in the worst case, compared to the best theoretical bound of approximately
O(29.03n) (which we improve upon in this paper). Here the “input size” n is the number of
tetrahedra in the underlying 3-manifold triangulation.

The key to this improved performance is our admissibility constraint. Admissibility is a
powerful constraint that eliminates almost all of the complexity of the projective solution
space (we see this vividly illustrated in Section 3). However, as a non-linear and non-convex
constraint it is difficult to weave admissibility into complexity arguments, particularly if we
wish to draw on the significant body of work from the theory of convex polytopes.

The ultimate aim of this paper is to bound the number of admissible vertices of the
projective solution space. This is a critical quantity for the running times of normal surface
algorithms. First, however well we exploit admissibility in our vertex enumeration algo-
rithms, running times must be at least as large as the output size—that is, the number of
admissible vertices. Moreover, for some topological algorithms, the procedure that we per-
form on each admissible vertex is significantly slower than the enumeration of these vertices
(see Hakenness testing for an example [8]). In these cases, the number of admissible vertices
becomes a central factor in the overall running time.

Enumeration algorithms typically work in one of two coordinate systems: standard co-
ordinates of dimension 7n, and quadrilateral coordinates of dimension 3n. The strongest
bounds known to date are as follows:

• In standard coordinates, the first bound on the number of admissible vertices of the
projective solution space was 128n, due to Hass et al. [14]. The author has recently
refined this bound to O(φ7n) ' O(29.03n), where φ is the golden ratio [4].2

• In quadrilateral coordinates, the best general bound is 4n (this bound does not appear
in the literature but is well known, and we outline the simple proof in Section 2.1).

1In fact, Agol et al. have proven that the knot genus problem is NP-complete [1]. The knot genus
algorithm uses normal surface theory, but in a more complex way than we describe here.

2The paper [4] also places a lower bound on the worst case complexity of Ω(17n/4) ' Ω(2.03n).
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• In the case where the input is a one-vertex triangulation, the author sketches a bound
of approximately O(15n/

√
n) admissible vertices in standard coordinates [6]. This case

is important for practical computation, as we discuss further in Section 2.

The main results of this paper are as follows. In standard coordinates, we tighten the
general bound from approximately O(29.03n) to O(14.556n) (Theorem 6.3). In quadrilat-
eral coordinates, we tighten the general bound from 4n to approximately O(3.303n) (The-
orem 5.4). For the one-vertex case in standard coordinates, we strengthen O(15n/

√
n) to

approximately O(4.852n) (Theorem 6.4).
We achieve these results by studying not just the admissible vertices, but the broader

region formed by all admissible points within the projective solution space. Although this
region is not convex, we show that it corresponds to a well-behaved structure within the
face lattice of the surrounding polytope. By working through maximal elements of this
structure—that is, maximal admissible faces of the polytope—we are able to draw on strong
results from polytope theory such as McMullen’s upper bound theorem [24], yet still enjoy
the significant reduction in complexity that admissibility provides.

To contrast this paper from earlier work: The bound of O(29.03n) in [4] is a straight-
forward consequence of McMullen’s theorem, applied once to the entire projective solution
space without using admissibility at all. In this paper, the key innovations are the decompo-
sition of the admissible region into maximal admissible faces, and the combinatorial analysis
of these maximal admissible faces. These new techniques allow us to apply McMullen’s the-
orem repeatedly in a careful and targeted fashion, ultimately yielding the stronger bounds
outlined above.

Throughout this paper, we restrict our attention to closed and connected 3-manifolds.
In addition to the main results listed above, we also prove several key lemmata that may
be useful in future work. These include an upper bound of 3n−1−d maximal admissible
faces of dimension d in quadrilateral coordinates (Lemma 5.2), a bijection between maximal
admissible faces in quadrilateral coordinates and standard coordinates (Lemma 6.1), and a
tight upper bound of n+1 vertices for any triangulation with n > 2 tetrahedra (Lemma 6.2).

The layout of this paper is as follows. Section 2 begins with an overview of relevant results
from normal surface theory and polytope theory. In Section 3 we study the structure of
admissible points in detail, focusing in particular on admissible faces and maximal admissible
faces of the projective solution space.

We turn our attention to asymptotic bounds in Section 4, focusing on properties of
the bounds obtained by McMullen’s theorem. In Section 5 we prove our main results in
quadrilateral coordinates, and in Section 6 we transport these results to standard coordinates
with the help of the aforementioned bijection. Section 7 finishes with a discussion of our
techniques, including experimental comparisons and possibilities for further improvement.

2 Preliminaries

In this section we recount key definitions and results from the two core areas of normal
surface theory and polytope theory. Section 2.1 covers 3-manifold triangulations and normal
surfaces, and Section 2.2 discusses convex polytopes and polyhedra.

In this brief summary we only give the details necessary for this paper. For a more
thorough overview of these topics, the reader is referred to Hass et al. [14] for the theory
of normal surfaces and its role in computational topology, and to Grünbaum [11] or Ziegler
[30] for the theory of convex polytopes.
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Assumptions. The following assumptions and conventions run throughout this paper:

• We always assume that we are working with a closed 3-manifold triangulation T con-
structed from precisely n tetrahedra (see Section 2.1 for details), and we always assume
that this triangulation is connected;

• The words “polytope” and “polyhedron” refer exclusively to convex polytopes and
polyhedra;

• For convenience, we allow arbitrary integers a, b in the binomial coefficients
(
a
b

)
but

we define
(
a
b

)
= 0 unless 0 ≤ b ≤ a.

2.1 Triangulations and normal surfaces

A closed 3-manifold is a compact topological space that locally “looks” like R3 at every
point.3 A closed 3-manifold triangulation is a collection of n tetrahedra whose 2-dimensional
faces are affinely identified (or “glued together”) in pairs so that the resulting topological
space is a closed 3-manifold.

We do not require these tetrahedra to be rigidly embedded in some larger space—in other
words, tetrahedra can be “bent” or “stretched”. In particular, we allow identifications be-
tween two faces of the same tetrahedron; likewise, we may find that multiple edges or vertices
of the same tetrahedron become identified together as a result of our face gluings. Some au-
thors refer to such triangulations as semi-simplicial triangulations or pseudo-triangulations.
This more flexible definition allows us to represent complex topological spaces using rela-
tively few tetrahedra, which is extremely useful for computation.

Figure 1: An example of a closed 3-manifold triangulation

Tetrahedron vertices that become identified together are collectively referred to as a
single vertex of the triangulation; similarly for edges and 2-dimensional faces. Figure 1
illustrates a triangulation formed from n = 2 tetrahedra: the two front faces of the left
tetrahedron are identified directly with the two front faces of the right tetrahedron, and in
each tetrahedron the two back faces are identified together with a twist.4 This triangulation
has only one vertex (since all eight tetrahedron vertices become identified together), and it
has precisely three edges (indicated by the three different types of arrowhead).

One-vertex triangulations are of particular interest to computational topologists, since
they often simplify to very few tetrahedra, and since some algorithms become significantly
simpler and/or faster in a one-vertex setting. Several authors have shown that one-vertex
triangulations exist for a wide range of 3-manifolds with a variety of procedures to construct
them; see [17, 22, 23] for details. We devote particular attention to one-vertex triangulations
in Theorem 6.4 of this paper.

As indicated earlier, for the remainder of this paper we assume that we are working
with a closed (and connected) 3-manifold triangulation T constructed from n tetrahedra. A

3More precisely, a closed 3-manifold is a compact and separable metric space in which every point has
an open neighbourhood homeomorphic to R3 [15].

4The underlying 3-manifold described by this triangulation is the product space S2 × S1.
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normal surface within T is a closed 2-dimensional surface embedded within T that intersects
each tetrahedron of T in a collection of zero or more normal discs. A normal disc is either
an embedded triangle (meeting three distinct edges of the tetrahedron) or an embedded
quadrilateral (meeting four distinct edges), as illustrated in Figure 2.

Figure 2: Normal triangles and quadrilaterals within a tetrahedron

Like the tetrahedra themselves, triangles and quadrilaterals need not be rigidly embed-
ded (i.e., they can be “bent”). However, they must intersect the edges of the tetrahedron
transversely, and they cannot meet the vertices of the tetrahedron at all. Figure 3 illustrates
a normal surface within the example triangulation given earlier.5 Normal surfaces may be
disconnected or empty.

Figure 3: A normal surface within a closed 3-manifold triangulation

Within each tetrahedron there are four types of triangle and three types of quadrilateral,
defined by which edges of the tetrahedron they intersect (Figure 2 includes discs of all four
triangle types but only one of the three quadrilateral types). We can represent a normal
surface by the integer vector

( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3 ; t2,1, t2,2, t2,3, t2,4, q2,1, q2,2, q2,3 ; . . . , qn,3 ) ∈ Z7n,

where each ti,j or qi,j is the number of triangles or quadrilaterals respectively of the jth
type within the ith tetrahedron.

A key theorem of Haken [12] states that an arbitrary integer vector in R7n represents a
normal surface if and only if:

(i) all coordinates of the vector are non-negative;

(ii) the vector satisfies the standard matching equations, which are 6n linear homogeneous
equations in R7n that depend on T ;

(iii) the vector satisfies the quadrilateral constraints, which state that for each i, at most
one of the three quadrilateral coordinates qi,1, qi,2, qi,3 is non-zero.

Any vector in R7n that satisfies all three of these constraints is called admissible (note that
we extend this definition to apply to non-integer vectors). The quadrilateral constraints are
the most problematic of these three conditions, since they are non-linear constraints with a
non-convex solution set.

5This surface is an embedded essential 2-dimensional sphere.
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We refer to the region of R7n that satisfies the non-negativity constraints and the stan-
dard matching equations as the standard solution cone, which we denote S ∨; this is a
pointed polyhedral cone in R7n with apex at the origin. We also consider the cross-section
of this cone with the projective hyperplane

∑
ti,j +

∑
qi,j = 1, which we call the standard

projective solution space and denote S ; this is a bounded polytope in R7n. The admissible
vertices of the standard projective solution space—that is, the vertices that also satisfy the
quadrilateral constraints—are called the standard solution set.

Tollefson [29] defines a smaller vector representation in R3n, obtained by considering only
the quadrilateral coordinates qi,j and ignoring the triangular coordinates ti,j . This smaller
coordinate system is more efficient for computation, but its use is restricted to a smaller
range of topological algorithms. Tollefson proves a theorem similar to Haken’s, in that an
arbitrary integer vector in R3n represents a normal surface if and only if:

(i) all coordinates of the vector are non-negative;

(ii) the vector satisfies the quadrilateral matching equations, which is a smaller family of
linear homogeneous equations in R3n that again depend on T ;

(iii) the vector satisfies the quadrilateral constraints as defined above.

Again, any vector in R3n that satisfies all three of these constraints is called admissible.
The region of R3n that satisfies the non-negativity constraints and the quadrilateral matching
equations is the quadrilateral solution cone, denoted Q∨, which is a pointed polyhedral cone
in R3n with apex at the origin. The cross-section with the projective hyperplane

∑
qi,j = 1

is likewise called the quadrilateral projective solution space and denoted Q; this is a bounded
polytope in R3n. The admissible vertices of the quadrilateral projective solution space are
called the quadrilateral solution set.

In general, when we work in R7n we say we are working in standard coordinates, and when
we work in R3n we say we are working in quadrilateral coordinates. See [3] for a detailed
discussion of the relationship between these coordinate systems as well as fast algorithms
for converting between them.

Enumerating the standard and quadrilateral solution sets is a common feature of high-
level algorithms in 3-manifold topology. Moreover, this enumeration is often the computa-
tional bottleneck, and so it is important to have fast enumeration algorithms as well as good
complexity bounds on the size of each solution set. The latter problem is the main focus of
this paper.

As noted in the introduction, the only upper bound to date on the size of the quadrilateral
solution set is the well-known but unpublished6 bound of 4n. The proof is simple. For any
vector x ∈ Q, the zero set of x is defined as {k |xk = 0}; in other words, the set of indices
at which x has zero coordinates. It is shown in [6] that any vertex of Q can be completely
reconstructed from its zero set. The quadrilateral constraints allow for at most four different
zero / non-zero patterns amongst the three quadrilateral coordinates for each tetrahedron,
restricting us to at most 4n distinct zero sets in total, and therefore at most 4n admissible
vertices of Q.

Two admissible vectors u,v ∈ R7n or u,v ∈ R3n are said to be compatible if the quadri-
lateral constraints are satisfied by both of them together. That is, for each i, at most one
of the three quadrilateral coordinates qi,1, qi,2, qi,3 can be non-zero in either u or v.

Some particular vectors in standard and quadrilateral coordinates are worthy of note:

• For each vertex V of the triangulation T , the vertex link of V is the vector in R7n de-
scribing a small embedded normal sphere surrounding V . This normal surface consists

6Although the bound of ≤ 4n does not appear in the literature, an asymptotic bound of O(4n/
√
n) is

sketched in [6] for the special case of a one-vertex triangulation.
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of triangles only, and so the corresponding vector is zero on all quadrilateral coordi-
nates. If T contains v distinct vertices then there are v corresponding vertex links, all
of which are admissible and linearly independent.

• For each i = 1, . . . , n, the tetrahedral solution τ (i) ∈ R3n is the vector with qi,1 = qi,2 =
qi,3 = 1 and all other quadrilateral coordinates equal to zero. The tetrahedral solutions
were introduced by Kang and Rubinstein [19] as part of a “canonical basis” for normal
surface theory. They satisfy the quadrilateral matching equations (so τ (i) ∈ Q∨), but
they do not satisfy the quadrilateral constraints (so τ (i) is not admissible).

There is a natural relationship between standard and quadrilateral coordinates. We
define the quadrilateral projection map π : R7n → R3n as the map that deletes all 4n trian-
gular coordinates ti,j and retains all 3n quadrilateral coordinates qi,j . This map is linear,
and it maps the admissible points of S ∨ onto the admissible points of Q∨. This map is
not one-to-one, but the kernel is precisely the subspace of R7n generated by the (linearly
independent) vertex links. The relevant results are proven by Tollefson for integer vectors
in [29]; see [3] for extensions into R7n and R3n.

For points within the solution cones, the quadrilateral projection map preserves ad-
missibility and inadmissibility, and it preserves compatibility and incompatibility. That
is, v ∈ S ∨ is admissible if and only if π(v) ∈ Q∨ is admissible, and admissible vectors
u,v ∈ S ∨ are compatible if and only if π(u), π(v) ∈ Q∨ are compatible.

We finish this overview of normal surface theory with an important dimensional result.
This theorem is due Tillmann [28], and extends earlier work of Kang and Rubinstein for
non-closed manifolds [19].

Theorem 2.1 (Tillmann, 2008). The solution space to the quadrilateral matching equations
in R3n has dimension precisely 2n.

2.2 Polytopes and polyhedra

We follow Ziegler [30] for our terminology: polytopes are always bounded (like the projective
solution spaces S and Q), and polyhedra may be bounded or unbounded (like the solution
cones S ∨ and Q∨). The reader is referred to [30] for background material on standard
concepts such as faces, facets and supporting hyperplanes.

In this paper we work with the face lattice of a polytope or polyhedron P , which encodes
all of the combinatorial information about the facial structure of P . Specifically, the face
lattice is the poset consisting of all faces of P ordered by the subface relation, and is denoted
by L(P ). See Figure 4 for an illustration in the case where P is the 3-dimensional cube.

∅

A AB B

C

C

D

D

E

E

F

F

G

G

H

H

AB BC CD DA EF FG GH HEAE BF CG DH

ABCD EFGHABFE BCGF CDHG DAEH

ABCDEFGH Entire cube (rank = 4)

Facets (rank = 3)

Edges (rank = 2)

Vertices (rank = 1)

Empty face (rank = 0)

Cube P Face lattice L(P )

Figure 4: The face lattice of a cube

We recount some key properties of the face lattice. Any two faces F,G ∈ L(P ) have
a unique greatest lower bound in L(P ), called the meet F ∧ G (this corresponds to the

7



intersection F ∩ G), and also a unique least upper bound in L(P ), called the join F ∨ G.
There is a unique minimal element of L(P ) (corresponding to the empty face) and a unique
maximal element of L(P ) (corresponding to P itself). Moreover, L(P ) is a graded lattice:
it is equipped with a rank function r : L(P ) → N defined by r(F ) = dimF + 1, so that
whenever G covers F in the poset (that is, F < G and there is no X for which F < X < G),
we have r(G) = r(F ) + 1. Once again we refer to Ziegler [30] for details.

For any polytope F , we define the cone over F to be F∨ = {λx |x ∈ F, λ ≥ 0}. As a
special case, for the empty face ∅ we define ∅∨ = {0}. It is clear that the solution cones S ∨

and Q∨ are indeed the cones over the projective solution spaces S and Q, as the notation
suggests. The facial structures of polytopes and their cones are tightly related, as described
by the following well-known result:

Lemma 2.2. Let P be a d-dimensional polytope whose affine hull does not contain the
origin. Then P∨ is a (d + 1)-dimensional polyhedron, and the cone map F 7→ F∨ is a
bijection from the faces of P to the non-empty faces of P∨. This bijection maps i-faces of
P to (i + 1)-faces of S ∨ for all i. Both the bijection and its inverse preserve subfaces; in
other words, F∨ ⊆ G∨ if and only if F ⊆ G.

A celebrated milestone in polytope complexity theory was McMullen’s upper bound the-
orem, proven in 1970 [24]. In essence, this result places an upper bound on the number of
i-faces of a d-dimensional k-vertex polytope, for any i ≤ d < k. This upper bound is tight,
and equality is achieved in the case of cyclic polytopes (and more generally, neighbourly sim-
plicial polytopes). Taken in dual form, McMullen’s theorem bounds the number of i-faces
of a d-dimensional polytope with k facets. In this paper we use the dual form for the case
i = 0, which reduces to the following result:

Theorem 2.3 (McMullen, 1970). For any integers 2 ≤ d < k, a d-dimensional polytope
with precisely k facets can have at most(

k − bd+1
2 c

k − d

)
+

(
k − bd+2

2 c
k − d

)
(2.1)

vertices.7

3 Admissibility and the face lattice

In this section we explore the facial structures of the bounded polytopes S and Q (the
standard and quadrilateral projective solution spaces) and the tightly-related polyhedral
cones S ∨ and Q∨ (the standard and quadrilateral solution cones). In particular we focus
on admissible faces, which are faces along which the quadrilateral constraints are always
satisfied.

We begin by showing that the admissible faces together contain all admissible points (that
is, all of the “interesting” points from the viewpoint of normal surface theory). Following
this, we study the layout of admissible faces within the larger face lattice of each solution
space, and we examine the relationships between admissible faces and pairs of compatible
points. We finish the section by categorising maximal admissible faces in a variety of ways.

Definition 3.1 (Admissible face). Let F be a face of the standard projective solution
space S . Then F is an admissible face of S if every point in F satisfies the quadrilateral
constraints. We say that F is a maximal admissible face if F is not a subface of some other
admissible face of S . The same definitions apply if we replace S with Q, S ∨ or Q∨.

7The expression (2.1) is the number of facets of the cyclic d-dimensional polytope with k vertices; see a
standard reference such as Grünbaum [11] for details.
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There are always admissible points in S (for instance, scaled multiples of the vertex links
in the underlying triangulation). Likewise, there are always admissible points in the cones
S ∨ and Q∨ (the origin, for example). However, it might be the case that the quadrilateral
solution space Q has no admissible points at all, in which case the empty face becomes the
unique maximal admissible face of Q.

In general, faces of a polytope are simpler to deal with than arbitrary sets of points—
they have convenient representations (such as intersections with supporting hyperplanes) and
useful combinatorial properties (which we discuss shortly). Our first result is to show that,
in each solution space, the admissible faces together hold all of the admissible points. Jaco
and Oertel make a similar remark in [16], at the point where they introduce the projective
solution space.

Lemma 3.2. Every admissible point within the standard projective solution space S belongs
to some admissible face of S . The same is true if we replace S with Q, S ∨ or Q∨.

Proof. We work with S only; the arguments for Q, S ∨ and Q∨ are identical. Let p ∈ S
be any admissible point, and let F be the minimal-dimensional face of S containing p (we
can construct F by taking the intersection of all faces containing p).

We claim that F is an admissible face. If not, let q ∈ F be some inadmissible point in
F . Because p is admissible but q is not, there must be some coordinate position i for which
pi = 0 and qi > 0.

Consider now the hyperplane H = {x ∈ R7n |xi = 0}. It is clear that H is a supporting
hyperplane for S and that p ∈ H but q /∈ H. It follows that F ∩H is a strict subface of F
containing our original point p, contradicting the minimality of F .

Because polyhedra have finitely many faces, every admissible face must belong to some
maximal admissible face. This gives us the following immediate corollary:

Corollary 3.3. The set of all admissible points in S is precisely the union of all maximal
admissible faces of S . The same is true if we replace S with Q, S ∨ or Q∨.

Remarks. It should be noted that this union of maximal admissible faces is generally not
convex. This means that we cannot (easily) apply the theory of convex polytopes to the
“admissible region” within S , which causes difficulties both for theoretical analysis (as
in this paper) and for practical algorithms (see [6] for a detailed discussion). The maximal
admissible faces are the largest admissible regions that can be described as convex polytopes,
and our strategy in Sections 5 and 6 of this paper is to work with each maximal admissible
face one at a time.

It should also be noted that there may be faces of S that are not admissible faces, but
which contain admissible points. In particular, S itself is such a face. We also see this in
lower dimensions; for instance, S might have a non-admissible edge whose endpoints are
both admissible vertices.

We turn our attention now to the face lattices of the various solution spaces, and the
structures formed by the admissible faces within them.

Definition 3.4 (Admissible face semilattice). Let P represent one of the solution spaces S ,
Q, S ∨ or Q∨. The admissible face semilattice of P , denoted LA(P ), is the poset consisting
of all admissible faces of P , ordered again by the subface relation.

The use of the word “semilattice” will be justified shortly. In the meantime, it is clear
that the admissible face semilattice LA(P ) is a substructure of the face lattice L(P ). Figure 5
illustrates this for the quadrilateral projective solution space, showing both L(Q) and LA(Q)
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for a three-tetrahedron triangulation8 of the product space RP 2 × S1. The full face lattice
is shown in grey, and the admissible face semilattice is highlighted in black. The admissible
face semilattice contains one maximal admissible edge, two maximal admissible vertices, and
no other maximal admissible faces at all.

Empty face

0-faces (vertices)

1-faces (edges)

2-faces

3-faces

4-faces (facets)

Full polytope Q

Figure 5: The face lattice and admissible face semilattice for an example triangulation

One striking observation from Figure 5 is how few admissible faces there are in compar-
ison to the size of the full face lattice. This is a pervasive phenomenon in normal surface
theory, and it highlights the importance of incorporating admissibility into enumeration
algorithms and complexity bounds.

The admissible face semilattice retains several key properties of the face lattice, which
we outline in the following lemma. For this result we use interval notation: in a poset S
with elements x ≤ y, the notation [x, y] denotes the interval {w ∈ S |x ≤ w ≤ y}.

Lemma 3.5. The admissible face semilattice LA(S ) is the union of all intervals [∅, F ] in
the face lattice L(S ), where F ranges over all maximal admissible faces of S .

Every pair of faces F,G ∈ LA(S ) has a meet (i.e., a unique greatest lower bound), and
LA(S ) has a unique minimal element (the empty face). The rank function of the face lattice
r : L(S )→ N maintains its covering property when restricted to LA(S ); that is, whenever
G covers F in the poset LA(S ), we have r(G) = r(F ) + 1.

All of these results remain true if we replace S with Q, S ∨ or Q∨.

Proof. The fact that LA(S ) is the union of intervals [∅, F ] for all maximal admissible faces
F follows immediately from Corollary 3.3. The remaining observations follow from the
properties of the face lattice L(S ) and the observation that, for any face F ∈ LA(S ), all
subfaces of F are also in LA(S ). The arguments are identical for Q, S ∨ and Q∨.

The poset LA(S ) is generally not a lattice, since joins F ∨ G need not exist. Because
meets exist however, LA(S ) is a meet-semilattice (and likewise for Q, S ∨ and Q∨); see
[26] for details.

Throughout this section we work in all four solution spaces S , Q, S ∨ and Q∨. However,
the cones S ∨ and Q∨ are precisely the cones over the projective solution spaces S and
Q, and so their facial structures are tightly related. The following result formalises this
relationship, allowing us to transport results between different spaces where necessary.

8The precise triangulation is described by the dehydration string dafbcccxaqh, using the notation of
Callahan, Hildebrand and Weeks [9].
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Lemma 3.6. Consider the cone map F 7→ F∨ from faces of S into the cone S ∨. This
cone map satisfies all of the properties described in Lemma 2.2; in particular, F 7→ F∨ is a
bijection between the faces of S and the non-empty faces of S ∨.

Moreover, this bijection and its inverse both preserve admissibility. In other words, F∨

is an admissible face of S ∨ if and only if F is an admissible face of S . This means that the
cone map is also a bijection between the admissible faces of S and the non-empty admissible
faces of S ∨, and a bijection between the maximal admissible faces of S and the maximal
admissible faces of S ∨.

All of these results remain true if we replace S and S ∨ with Q and Q∨ respectively.

Proof. We are able to use Lemma 2.2 because S lies entirely within the projective hyper-
plane

∑
xi = 1, and so the origin lies outside the affine hull of S . It is simple to show that

the bijection F 7→ F∨ and its inverse preserve admissibility: any inadmissible point in F is
also an inadmissible point in F∨, and if x is an inadmissible point in F∨ then x/

∑
xi is an

inadmissible point in F . The remaining claims follow immediately from Lemma 2.2.

One consequence of Lemma 2.2 is that the face lattice of S ∨ is “almost isomorphic” to
the face lattice of S ; the only difference is that L(S ∨) contains one new element (the empty
face) that is dominated by all others. What Lemma 3.6 shows is that the same relationship
exists between the admissible face semilattices.

From here we turn our attention to admissible faces and compatible pairs of points.
Throughout the remainder of this section we explore the relationships between these two
concepts, culminating in Corollary 3.12 which categorises maximal admissible faces in terms
of pairwise compatible points and vertices.

Lemma 3.7. Let F be an admissible face of S , Q, S ∨ or Q∨. Then any two points in F
are compatible.

Proof. Suppose that F contains two incompatible points x,y. Because x and y are admissi-
ble but incompatible, their sum x+y must have non-zero entries in the coordinate positions
for two distinct quadrilateral types within the same tetrahedron. Therefore the midpoint
z = (x + y)/2 is inadmissible, contradicting the admissibility of the face F .

From this result we obtain a simple but useful bound on the complexity of admissible
faces within our solution spaces. Note that by a “facet” of some i-face F , we mean an
(i− 1)-dimensional subface of F .

Corollary 3.8. Every admissible face of Q or Q∨ has at most n facets, and every admissible
face of S or S ∨ has at most 5n facets.

Proof. Let F be an admissible face of Q∨. Because any two points in F are compatible
(Lemma 3.7), it follows that for each tetrahedron of the underlying triangulation, two of the
three corresponding quadrilateral coordinates are simultaneously zero for all points in F . In
other words, F lies within 2n distinct hyperplanes of the form xi = 0 (and possibly more).

Recall that Q∨ is the intersection of R3n with the hyperplanes defined by the matching
equations and the 3n half-spaces defined by the inequalities xi ≥ 0. Because F is the
intersection of Q∨ with a supporting hyperplane, the argument above shows that F is
precisely the intersection of R3n with some number of hyperplanes and at most 3n− 2n = n
half-spaces of the form xi ≥ 0.

It is a standard result of polytope theory [30] that the number of half-spaces in any
representation of a polytope is at least the number of facets, whereupon the number of
facets of F can be at most n.

The corresponding result in Q is immediate from Lemma 3.6, and the corresponding
arguments in S ∨,S ⊆ R7n show that F has at most 7n− 2n = 5n facets instead.
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In Lemma 3.7 we showed that every admissible face must be filled with pairwise com-
patible points. In the following result we turn this around, showing that any set of pairwise
compatible points must belong to some maximal admissible face.

Lemma 3.9. Let X ⊆ S be any set of admissible points in which every two points are
compatible. Then there is some maximal admissible face F of S for which X ⊆ F . The
same is true if we replace S with Q, S ∨ or Q∨.

Proof. We consider the case X ⊆ S ; again the arguments for Q, S ∨ and Q∨ are identical.
As in the proof of Corollary 3.8, the pairwise compatibility constraint shows that, for each
tetrahedron of the underlying triangulation, two of the three corresponding quadrilateral
coordinates are simultaneously zero for all points in X. As a consequence, X lies within all
2n corresponding hyperplanes of the form xi = 0.

Let G be the intersection of S with these 2n hyperplanes. It follows that every point
in G is admissible, and that X ⊆ G ⊆ S . Moreover, because each hyperplane xi = 0 is a
supporting hyperplane for S , it follows that G is a face of S (and therefore an admissible
face). By finiteness of the face lattice, the admissible face G must in turn belong to some
maximal admissible face F containing all of the points in X.

Note that the set X might be contained in several distinct maximal admissible faces.
However, there is always a unique admissible face of minimal dimension containing X (specif-
ically, the intersection of all admissible faces containing X).

We come now to our categorisation of maximal admissible faces. Lemma 3.10 gives nec-
essary and sufficient conditions for a face to be a maximal admissible face, and Corollary 3.12
extends these to necessary and sufficient conditions for an arbitrary set of points.

Lemma 3.10. Let F be any admissible face of the projective solution space S . Then the
following conditions are equivalent:

(i) F is a maximal admissible face of S ;

(ii) there is no admissible point in S that is not in F but that is compatible with every
point in F ;

(iii) there is no admissible vertex of S that is not in F but that is compatible with every
vertex of F .

The same is true if we replace S with Q. In the solution cones S ∨ and Q∨, conditions (i)
and (ii) are equivalent but we cannot use (iii).

Proof. We first prove (i) ⇔ (ii) for all four solution spaces. As usual we work in S only,
since the arguments in the other solution spaces are identical.

For (i) ⇒ (ii), suppose that F is a maximal admissible face and there is some admissible
point x ∈ S \F compatible with every point in F . Then by Lemma 3.9 there is some
admissible face containing F ∪ {x}, contradicting the maximality of F .

For (ii) ⇒ (i), suppose that F is not a maximal admissible face. This means that there
is some larger admissible face G ⊃ F , and from Lemma 3.7 it follows that there is some
point x ∈ G\F that is admissible and compatible with every point in F .

To prove (ii) ⇔ (iii) we require the additional fact that S (or Q) is a polytope, which
means that every face is the convex hull of its vertices. This is why condition (iii) fails in
the cones S ∨ and Q∨, where the only vertex is the origin.

For (i) ⇒ (iii), suppose that F is a maximal admissible face with vertex set V , and
suppose there is some admissible vertex u of S not in F but compatible with every v ∈ V .
By Lemma 3.9 there is some admissible face G containing V ∪ {u}, and by convexity of
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faces it follows that G ⊇ conv(V ) = F . Because u /∈ F we have G 6= F , contradicting the
maximality of F .

For (iii) ⇒ (i), suppose that F is not a maximal admissible face; again there must be
some larger admissible face G ⊃ F . Because faces are convex hulls of their vertices, G must
contain some admissible vertex v not in F , and applying Lemma 3.7 again we find that v
is an admissible vertex of S not in F but compatible with every vertex of F .

We digress briefly to make a simple observation based on Lemma 3.10. Recall the vertex
links from Section 2.1, which correspond to normal surfaces that surround the vertices of
the triangulation T and consist entirely of triangular discs.

Corollary 3.11. In the standard solution cone S ∨, every maximal admissible face contains
every vertex link from the underlying triangulation.

Proof. Vertex links represent surfaces with only triangular discs, and so the corresponding
vectors in R7n do not contain any non-zero quadrilateral coordinates at all. Therefore every
vertex link is admissible and compatible with every point x ∈ S ∨, and so by Lemma 3.10
every vertex link must belong to every maximal admissible face of S ∨.

It should be noted that Corollary 3.11 extends to the standard projective solution space
S if we replace each vertex link v with the scaled multiple v/

∑
vi. However, it does not

extend to the quadrilateral projective solution space Q, since in quadrilateral coordinates
every vertex link projects to the zero vector.

For our final result of this section, we extend the categorisation of Lemma 3.10 to apply
to arbitrary sets of points within the solution spaces.

Corollary 3.12. Let X ⊆ S be any set of points. Then the following conditions are
equivalent:

(i) X is a maximal admissible face of S ;

(ii) X is a maximal set of admissible and pairwise compatible points in S ;

(iii) X is the convex hull of a maximal set of admissible and pairwise compatible vertices
of S .

In conditions (ii) and (iii), “maximal” is used in the context of set inclusion. For in-
stance, in (ii) it means that there is no larger set X ′ ⊃ X of admissible and pairwise
compatible points in S .

These equivalences remain true if we replace S with Q. In the solution cones S ∨ and
Q∨, conditions (i) and (ii) are equivalent but again we cannot use (iii).

Proof. Steps (i) ⇒ (ii) and (i) ⇒ (iii) follow immediately from Lemma 3.10. To prove the
remaining steps (ii) ⇒ (i) and (iii) ⇒ (i) we work in S as always, since the arguments are
identical for Q, and also S ∨ and Q∨ where applicable.

For (ii) ⇒ (i), let X be some maximal set of admissible and pairwise compatible points
in S . By Lemma 3.9 there is some maximal admissible face F ⊇ X, and if F 6= X then
Lemma 3.7 contradicts the maximality of our original set X.

For (iii) ⇒ (i), let X = conv(V ) where V is a maximal set of admissible and pairwise
compatible vertices of S . Again Lemma 3.9 gives some maximal admissible face F ⊇ V .
Because F is the convex hull of its vertices, if F 6= X then F must have some additional
vertex v /∈ V . By Lemma 3.7 it follows that v is admissible and compatible with every
vertex in V , contradicting the maximality of V .
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4 Bounds for general polytopes

Our ultimate aim is to place bounds on the complexity of the admissible face semilattice for
the projective solution space. To do this, we must first understand the complexity of the
full face lattice for an arbitrary polytope.

We begin this section by examining the behaviour of McMullen’s upper bound as we
change the number of facets k (Lemma 4.1) and the dimension d (Lemma 4.2). We follow
with an asymptotic summation result that will prove useful in later sections (Corollary 4.4).

Notation. For any integers 2 ≤ d < k, let Md,k denote McMullen’s upper bound as expressed
in Theorem 2.3:

Md,k =

(
k − bd+1

2 c
k − d

)
+

(
k − bd+2

2 c
k − d

)
.

A simple rearrangement gives the equivalent expression:

Md,k =


(k− d

2
d
2

)
+
(k− d

2−1
d
2−1

)
if d is even;

2
(k− d+1

2
d+1
2 −1

)
if d is odd.

(4.1)

Our first simple result describes the behaviour of Md,k as we vary the number of facets.

Lemma 4.1. For any integers 2 ≤ d < k < k′, we have Md,k < Md,k′ . That is, increasing
the number of facets of a polytope will always increase McMullen’s upper bound.

Proof. This follows immediately from equation (4.1), using the relations
(
m
i

)
<
(
m+1
i

)
for

1 ≤ i ≤ m and
(
m
0

)
=
(
m+1
0

)
for 0 ≤ m.

Varying the dimension is a little more complicated. McMullen’s bound is not a monotonic
function of d, and in general there can be many local maxima and minima as d ranges from
2 to k − 1; Figure 6 illustrates this for k = 100 facets. However, Md,k is well-behaved for
d ≤ k/2, as shown by the following result.

Figure 6: McMullen’s upper bound Md,k for k = 100 facets

Lemma 4.2. For any integers d, k with 2 ≤ d ≤ k/2, we have Md,k ≤ Md+1,k. That is,
increasing the dimension of a polytope will not decrease McMullen’s upper bound, as long as
there are sufficiently many facets.

Proof. We begin by noting that 2 ≤ d ≤ k/2 implies d + 1 < k, so both Md,k and Md+1,k

are defined. Our proof relies on a straightforward expansion of the binomial coefficients in
equation (4.1). As with equation (4.1), we treat even and odd d separately.
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If d is even, let d = 2s. Then Md,k ≤Md+1,k expands to
(
k−s
s

)
+
(
k−s−1
s−1

)
≤ 2
(
k−s−1
s

)
, or

(k − s)!
s!(k − 2s)!

+
(k − s− 1)!

(s− 1)!(k − 2s)!
≤ 2(k − s− 1)!

s!(k − 2s− 1)!
.

Cancelling common factors reduces this to (k − s) + s ≤ 2(k − 2s); that is, 4s ≤ k, which is
immediate from our initial condition d ≤ k/2.

If d is odd, let d = 2s− 1. Now Md,k ≤Md+1,k expands to 2
(
k−s
s−1
)
≤
(
k−s
s

)
+
(
k−s−1
s−1

)
, or

2(k − s)!
(s− 1)!(k − 2s+ 1)!

≤ (k − s)!
s!(k − 2s)!

+
(k − s− 1)!

(s− 1)!(k − 2s)!
.

This simplifies to 2(k − s)s ≤ (k − s)(k − 2s + 1) + s(k − 2s + 1), which in turn can be
rearranged to k2 − k ≤ 2(k − s)2.

The odd case therefore gives Md,k ≤Md+1,k if and only if k2 − k ≤ 2(k− s)2, and again
we prove this latter inequality from our initial conditions. Using 2 ≤ d ≤ k/2 we obtain
s ≤ (k + 2)/4, and so k − s ≥ (3k − 2)/4 > 0. From this we obtain

2(k − s)2 ≥ 2

(
3k − 2

4

)2

= k2 − k +
1

8
(k − 2)2 ≥ k2 − k,

and the result Md,k ≤Md+1,k is established.

We finish this section by studying sums of the form
∑
d α

dMd,k; these sums reappear
in sections 5 and 6 of this paper. Our focus is on the asymptotic growth of these sums as
a function of k. We approach this by first examining the binomial coefficients

(
m−i
i

)
, and

then returning to the sums
∑
d α

dMd,k in Corollary 4.4.

Lemma 4.3. For any integer m ≥ 0 and any real α > 0, define

Sα(m) =

bm/2c∑
i=0

αi
(
m− i
i

)
.

Then Sα satisfies the recurrence relation Sα(m) = Sα(m− 1) + αSα(m− 2) for all m ≥ 2,
and the asymptotic growth rate of Sα relative to m is

Sα(m) ∈ Θ

([
1 +
√

1 + 4α

2

]m)
.

Proof. First we note that Sα(m) can be written as a sum over all i ∈ Z, since
(
m−i
i

)
= 0

whenever i < 0 or i > bm/2c. Using the identity
(
m−i
i

)
=
(
m−i−1

i

)
+
(
m−i−1
i−1

)
, we have

Sα(m) =
∑
i∈Z

αi
(
m− i
i

)
=
∑
i∈Z

αi
(
m− i− 1

i

)
+
∑
i∈Z

αi
(
m− i− 1

i− 1

)
=
∑
i∈Z

αi
(

(m− 1)− i
i

)
+ α

∑
i∈Z

αi−1
(

(m− 2)− (i− 1)

i− 1

)
= Sα(m− 1) + αSα(m− 2),

thereby establishing our recurrence relation.

The characteristic equation for this recurrence is x2−x−α = 0, with roots r1 = 1−
√
1+4α
2

and r2 = 1+
√
1+4α
2 ; it is clear that r1 < 0 < r2 and 0 < |r1| < |r2|. It follows that
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Sα(m) = c1r
m
1 + c2r

m
2 for some non-zero coefficients c1, c2 depending only on α, and that

the growth rate of Sα(m) relative to m is therefore

Sα(m) ∈ Θ(rm2 ) = Θ

([
1 +
√

1 + 4α

2

]m)
.

Corollary 4.4. For any real α in the range 0 < α ≤ 1, consider the sum
∑k−1
d=2 α

dMd,k as
a function of the integer k > 2. This sum has an asymptotic growth rate of

k−1∑
d=2

αdMd,k ∈ Θ

[1 +
√

1 + 4α2

2

]k .

Proof. Using equation (4.1) and setting d = 2i or d = 2i− 1 for even or odd d respectively,
we obtain the following identity:

k−1∑
d=2

αdMd,k =
∑

2≤d<k

d even

αd

[(
k − d

2
d
2

)
+

(
k − d

2 − 1
d
2 − 1

)]
+ 2

∑
3≤d<k

d odd

αd
(
k − d+1

2
d+1
2 − 1

)

=

b(k−1)/2c∑
i=1

α2i

(
k − i
i

)
+

b(k−1)/2c∑
i=1

α2i

(
k − i− 1

i− 1

)
+ 2

bk/2c∑
i=2

α2i−1
(
k − i
i− 1

)
=

∑
i∈Z

(α2)i
(
k − i
i

)
− 1− {αk if k is even}

+ α2
∑
i∈Z

(α2)i−1
(

(k − 2)− (i− 1)

i− 1

)
− {αk if k is even}

+ 2α
∑
i∈Z

(α2)i−1
(

(k − 1)− (i− 1)

i− 1

)
− 2α− {2αk if k is odd}

= Sα2(k) + α2Sα2(k − 2) + 2αSα2(k − 1)− 2αk − 2α− 1,

where Sα2(·) is the function defined earlier in Lemma 4.3 (though note that the subscript
is now squared). Because each Sα2(k) is non-negative and |α| ≤ 1, it follows immediately
from Lemma 4.3 that

k−1∑
d=2

αdMd,k ∈ Θ

[1 +
√

1 + 4α2

2

]k .

5 The quadrilateral solution set

In this section we combine the structural results of Section 3 with the asymptotic bounds of
Section 4 to yield our first main result: a new bound on the size of the quadrilateral solution
set.

Recall that the quadrilateral solution set is the set of all admissible vertices of the quadri-
lateral projective solution space Q. Little is currently known about the size of this set; the
only theoretical bound to date is 4n, as outlined in Section 2.1.

In this paper we employ more sophisticated techniques to bring this bound down to
approximately O(3.303n). Our broad strategy is as follows. We first bound the number of
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maximal admissible faces of each dimension; in particular, we show that there are at most
3n−1−d maximal admissible faces of each dimension d ≤ n− 1, and no maximal admissible
faces of any dimension d ≥ n. We then convert these results into a bound on the number of
admissible vertices using McMullen’s theorem and the asymptotic results of Section 4.

Throughout this section we denote the coordinates of a vector x ∈ R3n by

x = (x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, . . . , xn,1, xn,2, xn,3),

where xi,j is the coordinate representing the jth quadrilateral type within the ith tetrahe-
dron. We also make repeated use of the tetrahedral solutions τ (1), . . . , τ (n) ∈ Q∨; recall

from Section 2.1 that the kth tetrahedral solution τ (k) has τ
(k)
k,1 = τ

(k)
k,2 = τ

(k)
k,3 = 1 and all

(3n− 3) remaining coordinates set to zero.

Lemma 5.1. Every admissible face of the quadrilateral projective solution space has dimen-
sion ≤ n− 1.

Proof. Let F be some d-dimensional admissible face of the quadrilateral projective solution
space Q, and let F∨ be the corresponding (d+1)-dimensional admissible face of the quadri-
lateral solution cone Q∨. Every pair of points in F∨ must be compatible (Lemma 3.7),
and so for each i = 1, . . . , n at least two of the three coordinates xi,1, xi,2, xi,3 must be
simultaneously zero for all points x ∈ F∨.

It follows that the entire face F∨ lies within some n-dimensional subspace S ⊆ R3n

defined by setting 2n coordinates equal to zero. We therefore have dimF∨ ≤ dimS; that is,
d+ 1 ≤ n, or d ≤ n− 1.

Lemma 5.2. For each d ∈ {0, . . . , n − 1}, the number of maximal admissible faces of
dimension d in the quadrilateral projective solution space is at most 3n−1−d.

Proof. Let F1, . . . , Fk be distinct maximal admissible d-faces within the quadrilateral pro-
jective solution space Q, where k > 3n−1−d. For convenience we work in the quadrilateral
solution cone Q∨ instead, using the corresponding maximal admissible faces F∨1 , . . . , F

∨
k

each of dimension d+ 1.
Our strategy is to construct a decreasing sequence of linear subspaces R3n ⊃ S0 ⊃ S1 ⊃

. . . ⊃ Sn with the following properties:

(i) Each subspace Si contains all of the tetrahedral solutions τ (i+1), . . . , τ (n).

(ii) For each subspace Si, there is some integer ti ≥ 0 for which Si has dimension ≤
2n − i − ti, and for which Si contains strictly more than 3n−1−d−ti of the maximal
admissible faces F∨1 , . . . , F

∨
k .

(iii) For each subspace Si and each integer j = 1, . . . , i, the subspace Si is contained in at
least two of the three hyperplanes xj,1 = 0, xj,2 = 0 and xj,3 = 0. In other words,
for each of the first i tetrahedra, at least two of the three corresponding quadrilateral
coordinates are simultaneously zero for all points in Si.

We construct this sequence inductively as follows:

• We set the initial subspace S0 to be the solution space to the quadrilateral matching
equations. Property (i) holds because τ (1), . . . , τ (n) ∈ Q∨ ⊆ S0. Property (ii) holds
with t0 = 0, since we have dimS0 = 2n from Theorem 2.1, and since all k > 3n−1−d

of our maximal admissible faces are contained within Q∨ ⊆ S0. Property (iii) is
vacuously satisfied for i = 0.

17



• For each i > 0, we construct Si from Si−1 as follows. Let X = {F∨j |F∨j ⊆ Si−1};
that is, the set of all maximal admissible faces from our original collection that are
contained within the previous subspace Si−1. Because each F∨j is an admissible face,
we know from Lemma 3.7 that each F∨j lies in at least two (and possibly all three) of
the hyperplanes xi,1 = 0, xi,2 = 0 and xi,3 = 0 (though which of these hyperplanes
F∨j belongs to will typically depend on j). Consider the following two cases:

(a) Suppose that all F∨j ∈ X are simultaneously contained in at least two of the
three hyperplanes xi,1 = 0, xi,2 = 0 and xi,3 = 0; that is, this choice does not
depend on j. Without loss of generality, let these two hyperplanes be xi,2 = 0
and xi,3 = 0.

In this case we let Si be the intersection of the subspace Si−1 with the hyperplanes
xi,2 = 0 and xi,3 = 0. Note that every face F∨j ∈ X belongs to the subspace Si
as a result.

Property (i) holds for Si because each of the tetrahedral solutions τ (i+1), . . . , τ (n)

belongs to Si−1 as well as all three hyperplanes xi,1 = 0, xi,2 = 0 and xi,3 = 0.
Property (iii) for Si follows immediately from our construction.

Property (ii) for Si is established as follows. Let ti = ti−1. We note that Si
is a strict subspace of Si−1, because the tetrahedral solution τ (i) lies in Si−1
(from property (i) for Si−1) but not Si (because τ

(i)
i,2 , τ

(i)
i,3 6= 0). It follows that

dimSi ≤ dimSi−1 − 1 ≤ 2n− (i− 1)− ti−1 − 1 = 2n− i− ti. Furthermore, our
construction ensures that every face F∨j ∈ X lies within Si, and using property (ii)

for Si−1 there are strictly more than 3n−1−d−ti−1 = 3n−1−d−ti such faces.

(b) Otherwise, all F∨j ∈ X are not simultaneously contained in at least two of the
three hyperplanes xi,1 = 0, xi,2 = 0 and xi,3 = 0. Consider the three sets

X1 = {F∨j ∈ X
∣∣ F∨j lies in both hyperplanes xi,2 = 0, xi,3 = 0};

X2 = {F∨j ∈ X
∣∣ F∨j lies in both hyperplanes xi,3 = 0, xi,1 = 0};

X3 = {F∨j ∈ X
∣∣ F∨j lies in both hyperplanes xi,1 = 0, xi,2 = 0}.

We know from our earlier comments that X = X1 ∪ X2 ∪ X3. Without loss
of generality suppose that X1 is the largest of these three sets; in particular,
|X1| ≥ |X|/3.

For this case we define Si to be the intersection of the subspace Si−1 and the two
hyperplanes xi,2 = 0 and xi,3 = 0. Note that the faces F∨j that lie within Si are
precisely those in the set X1.

Once again properties (i) and (iii) for Si are simple consequences of our construc-
tion. To establish property (ii) for Si, we let ti = ti−1 + 1. The number of faces
F∨j in Si is |X1| ≥ |X|/3 > 3n−1−d−ti−1/3 = 3n−1−d−ti as required. Bounding
the dimension of Si requires a little more work.

We know that there is some face F∨a ∈ X that is not in the set X1 (otherwise
we would have fallen back to case (a)). However, this face F∨a must belong to
one of X1, X2 or X3; without loss of generality suppose that F∨a ∈ X2. Let S′i
be the intersection of the subspace Si−1 with the hyperplane xi,3 = 0. Because

τ (i) ∈ Si−1 but τ
(i)
i,3 6= 0 it follows that S′i is a strict subspace of Si−1, and we

have dimS′i ≤ dimSi−1 − 1.

Now we find that Si is the intersection of S′i with the hyperplane xi,2 = 0. The
face F∨a lies within the hyperplane xi,3 = 0 and therefore lies in S′i; however,
because F∨a /∈ X1 it cannot also lie in the hyperplane xi,2 = 0, which means
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that F∨a does not lie in Si. Therefore Si is a strict subspace of S′i, and we
have dimSi ≤ dimS′i − 1 ≤ dimSi−1 − 2, giving a final dimension dimSi ≤
2n− (i− 1)− ti−1 − 2 = 2n− i− ti.

This establishes properties (i)–(iii) for our sequence of linear subspaces R3n ⊃ S0 ⊃ S1 ⊃
. . . ⊃ Sn. We finish our proof by considering the final subspace Sn.

From property (ii) we know that Sn contains at least one of the maximal admissible faces
F∨1 , . . . , F

∨
k , and so dimSn ≥ d + 1. The dimension constraint of property (ii) then gives

tn ≤ n− 1−d, whereupon we find that Sn contains strictly more than 3n−1−d−tn ≥ 1 of the
maximal admissible faces F∨1 , . . . , F

∨
k . That is, Sn must contain at least two of these faces.

Let these faces be F∨a and F∨b .
By property (iii) we know that all points in Sn are pairwise compatible, and so every

point in F∨a must be compatible with every point in F∨b . However, from Corollary 3.12 we
know that F∨a and F∨b are each maximal sets of admissible and pairwise compatible points
in Q∨, giving F∨a = F∨b and a contradiction.

This bound of ≤ 3n−1−d maximal admissible faces of dimension d appears to be tight for
large dimensions d (in particular, for d ≥ n

2−1 as we discuss in Section 7). Nevertheless, even
for large dimensions this not the entire story. We might be able to achieve equality for some
large dimensions d, but we cannot achieve equality for all large dimensions simultaneously,
as indicated by the following result.

Lemma 5.3. If the quadrilateral projective solution space has a maximal admissible face of
dimension n− 1, then this is the only maximal admissible face (of any dimension).

Proof. Suppose that we have two distinct maximal admissible faces F,G ⊆ Q where dimF =
n− 1. Once again we work in the quadrilateral solution cone Q∨, using the corresponding
maximal admissible faces F∨, G∨ with dimF∨ = n.

For each i = 1, . . . , n, Lemma 3.7 shows that face F∨ must lie within at least two of the
three hyperplanes xi,1 = 0, xi,2 = 0 and xi,3 = 0. Likewise, G∨ must lie within at least
two of these hyperplanes, and so both F∨ and G∨ must simultaneously lie in at least one of
the hyperplanes xi,1 = 0, xi,2 = 0 or xi,3 = 0. Without loss of generality let this common
hyperplane be xi,1 = 0.

Let S be the solution space to the quadrilateral matching equations in R3n; by Theo-
rem 2.1 we have dimS = 2n. Let S′ be the subspace of S formed by intersecting S with
each of the hyperplanes xi,1 = 0 for i = 1, . . . , n.

Each of the tetrahedral solutions τ (i) belongs to S but not S′. It is clear that the
tetrahedral solutions are linearly independent (their non-zero coordinates appear in distinct
positions), and so dimS′ ≤ dimS − n = n. Faces F∨ and G∨ still lie within S′ however,
and because dimF∨ = n it follows that dimS′ = n and that S′ is the affine hull of F∨.

We now see that the face G∨ lies within the affine hull of the face F∨; it follows that G∨

must be a subface of F∨, contradicting the maximality of G∨.

Lemmata 5.1 and 5.2 together bound the number of maximal admissible faces of every
dimension in Q. We can now use these results to prove our main theorem, which is a new
bound on the size of the quadrilateral solution set (that is, the number of admissible vertices
of Q).

Theorem 5.4. The size of the quadrilateral solution set is asymptotically bounded above by

O

([
3 +
√

13

2

]n)
' O(3.303n).
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Proof. Let κ denote the number of admissible vertices of the quadrilateral projective solution
space Q. Our strategy is to bound κ by working through the maximal admissible faces of
each dimension. To avoid small-case irregularities, we assume that n ≥ 3.

More specifically, each admissible vertex must belong to some maximal admissible face
of dimension ≥ 0. We can therefore bound κ by (i) computing McMullen’s bound for the
number of vertices of each maximal admissible face, and then (ii) summing these bounds
over all maximal admissible faces of all dimensions. We might count some vertices multiple
times in this sum, but each vertex will be counted at least once.

We piece this sum together one dimension at a time, using Lemma 5.2 to bound the
number of maximal admissible d-faces for each d.

• There are ≤ 3n−1 maximal admissible 0-faces, adding 3n−1 admissible vertices to our
sum.

• There are ≤ 3n−2 maximal admissible 1-faces, adding 2 · 3n−2 admissible vertices to
our sum (since each 1-face is an edge, and has precisely two vertices).

• For each d in the range 2 ≤ d ≤ n−1, there are ≤ 3n−1−d maximal admissible d-faces.
Each of these d-faces has at most n facets (Corollary 3.8) and therefore at most Md,n

vertices (Theorem 2.3 and Lemma 4.1). This adds ≤ 3n−1−d ·Md,n admissible vertices
to our sum.

By Lemma 5.1 there are no admissible d-faces for any dimension d ≥ n, and so our final
bound on κ becomes

κ ≤ 3n−1 + 2 · 3n−2 +

n−1∑
d=2

3n−1−d ·Md,n

= 3n−1 + 2 · 3n−2 + 3n−1
n−1∑
d=2

(1/3)d ·Md,n

∈ O

(
3n + 3n ·

[
1 +

√
1 + 4/9

2

]n)
,

using the asymptotic bound from Corollary 4.4. The second term in this final expression
dominates the first, and we have

κ ∈ O

([
3 ·

1 +
√

13/9

2

]n)
= O

([
3 +
√

13

2

]n)
' O(3.303n).

6 The standard solution set

Having established new bounds for the quadrilateral projective solution space Q ⊆ R3n, we
can now transport this information to the standard projective solution space S ⊆ R7n.

As noted in the introduction, the first upper bound on the number of admissible vertices
of S was 128n, proven by Hass et al. [14]. The best bound known to date is approximately
O(29.03n), proven by the author [4]. The argument by Hass et al. relies on the fact that
each vertex can be described as an intersection of facets of S , and with ≤ 7n facets there
can be at most 27n = 128n such intersections. The bound of O(29.03n) was obtained by
deriving a simple asymptotic extension to McMullen’s upper bound theorem.
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In this paper we tighten the best upper bound in standard coordinates to approximately
O(14.556n) admissible vertices. Our strategy is to draw on our earlier results in quadrilateral
coordinates. We begin by describing a bijection between maximal admissible faces of Q and
S , and then once again we aggregate over faces of varying dimensions.

As a further application of these techniques, we examine the special but important case
of a one-vertex triangulation. The author sketches a proof in [6] that for a one-vertex
triangulation the solution space S has approximately O(15n/

√
n) vertices. Our final result

of this paper is to tighten this bound to approximately O(4.852n).

Lemma 6.1. Let v be the number of vertices in the underlying triangulation T . Then there
is a bijection between the maximal admissible faces of Q and the maximal admissible faces
of S that maps i-faces of Q to (i+ v)-faces of S for every i.

Proof. For convenience we work in the solution cones S ∨ and Q∨ instead of the projective
solution spaces S and Q; Lemma 3.6 shows this formulation to be equivalent. We establish
our bijection in the direction from S ∨ to Q∨ using the (linear) quadrilateral projection map
π : R7n → R3n. Recall from Section 2.1 that π is an onto map that preserves admissibility
and inadmissibility, as well as compatibility and incompatibility.

We can apply the map π to sets of points (and in particular, faces of S ∨). Let π(X)
denote the image {π(x) | x ∈ X} for any set X ⊆ S ∨. Although π might not map faces
to faces in general, we claim that it does map maximal admissible faces of S ∨ to maximal
admissible faces of Q∨. Moreover, we claim that π is in fact the bijection that we seek. We
prove these claims in stages.

• π maps maximal admissible faces of S ∨ to maximal admissible faces of Q∨.

Let F be a maximal admissible face of S ∨. Because π preserves admissibility and
compatibility, all points in π(F ) are admissible and pairwise compatible. It follows
from Lemma 3.9 that there is some maximal admissible face G of Q∨ for which π(F ) ⊆
G.

If π(F ) is not itself a maximal admissible face then we can find some admissible point
g ∈ G\π(F ). We know that g is compatible with every point in π(F ) (Lemma 3.7),
and because π preserves inadmissibility and incompatibility it follows that every point
in the preimage π−1(g) ⊆ S ∨\F is admissible and compatible with every point in F .
This contradicts the assumption that F is a maximal admissible face of S ∨ (Corol-
lary 3.12), and it follows that π(F ) must indeed be a maximal admissible face of Q∨.

• As a map between maximal admissible faces, π is one-to-one. That is, for every two
distinct maximal admissible faces F,G ⊆ S ∨, we have π(F ) 6= π(G).

Let F and G be distinct maximal admissible faces of S ∨. By Corollary 3.12 there
exist admissible and incompatible points f ∈ F and g ∈ G. Because π preserves
incompatibility it follows that π(f) and π(g) are incompatible points in Q∨. That is,
we have two incompatible points π(f) and π(g) in the maximal admissible faces π(F )
and π(G) respectively, and from Corollary 3.12 again it follows that π(F ) 6= π(G).

• As a map between maximal admissible faces, π is onto. That is, for every maximal
admissible face G ⊆ Q∨, there is a maximal admissible face F ⊆ S ∨ for which
π(F ) = G.

Let G be any maximal admissible face of Q∨, and consider the preimage π−1(G).
Because π preserves inadmissibility and incompatibility, π−1(G) must be a collection
of admissible and pairwise compatible points in S ∨. By Lemma 3.9 there is some
maximal admissible face F ⊆ S ∨ for which F ⊇ π−1(G). This gives us π(F ) ⊇ G,
and because both π(F ) and G are maximal admissible faces of Q∨ it follows that
π(F ) = G.
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This shows that π yields a bijection between the maximal admissible faces of S ∨ and
the maximal admissible faces of Q∨. All that remains now is to establish how π affects the
dimensions of these faces.

Let F be some maximal admissible face in S ∨. We know from Section 2.1 that the
kernel of the linear map π is generated by the v linearly independent vertex links (where v
is the number of vertices in the underlying triangulation). Moreover, Corollary 3.11 shows
that all v vertex links belong to the maximal admissible face F . Therefore we must have
dimF = dimπ(F ) + v.

It should be noted that Q may contain no admissible points at all; in this case Q has a
single maximal admissible face of dimension −1 (the empty face). In standard coordinates,
S will always have admissible points (in particular, we always have the vertex links).

Now that we are equipped with this bijection, we aim to bound the dimensions of the
maximal admissible faces of S . To do this, we must place a bound on the number of vertices
v of the underlying triangulation.

Lemma 6.2. Any closed and connected 3-manifold triangulation with n > 2 tetrahedra can
have at most n+ 1 vertices.

Proof. Let T be such a triangulation, and let G denote the face pairing graph of T . This is
the connected 4-valent multigraph whose vertices represent tetrahedra of T and whose edges
represent identifications between tetrahedron faces (in particular, loops and multiple edges
are allowed). See [2] for further discussion and explicit examples of face pairing graphs.9

Let S be a spanning tree within G, and let TS denote the “partial triangulation” con-
structed from the same n tetrahedra by making only the face identifications described by the
edges of S. This means that TS is a connected simplicial complex formed from n tetrahedra
by identifying precisely n − 1 pairs of faces. Moreover, the original triangulation T can be
obtained from TS by identifying the remaining n + 1 pairs of faces that correspond to the
edges of G\S. Figure 7 illustrates a face pairing graph G with a spanning tree S, and shows
how the partial triangulation TS might appear.

Face pairing graph G Spanning tree S Partial triangulation TS

Figure 7: The partial triangulation TS corresponding to a spanning tree in G

Let v and vS denote the number of vertices in T and TS respectively. It is clear that
v ≤ vS , since we obtain T from TS by making additional face identifications (which may
identify vertices of TS together to reduce the total vertex count) but never adding new
tetrahedra (and therefore never increasing the total vertex count).

It is straightforward to count the number of vertices in TS . Because S is a spanning tree,
we construct TS as follows:

• Begin with some initial tetrahedron ∆1, which gives us four initial vertices for TS .

9G can also be thought of as the dual 1-skeleton of T , with a dual vertex at the centre of every tetrahedron
of T and a dual edge running through every face of T .
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• Follow by joining some new tetrahedron ∆2 to ∆1 along a single face. This introduces
precisely one additional vertex to TS , since the other three vertices of ∆2 (those on
the joining face) become identified with the original vertices from ∆1.

• Next we join some new tetrahedron ∆3 to either ∆2 or ∆1 along a single face. Again
this introduces precisely one new vertex to TS (the vertex of ∆3 not on the joining
face).

• We continue this procedure, joining the remaining tetrahedra ∆4, . . . ,∆n into our
structure along a single face each, creating one new vertex for TS every time.

It follows that the number of vertices in TS is precisely vS = n+ 3, and we obtain v ≤ n+ 3
as a result.

We can reduce our bound from n+ 3 to n+ 1 by studying the leaves of the tree S; that
is, vertices of the tree with only one incident edge. Each leaf corresponds to a tetrahedron
of TS with only one face joined to the remainder of the structure. Moreover, the vertex
opposite this face is not (yet) identified with any other vertices of any tetrahedron at all; we
call this the isolated vertex of the leaf. This situation is illustrated in Figure 8.

Leaf

Spanning tree S

Isolated vertex

Partial triangulation TS

Figure 8: A tetrahedron of TS corresponding to a leaf in the spanning tree S

Every tree of size n > 2 has at least two leaves; let ` be one such leaf, and let ∆` be the
corresponding tetrahedron in TS . Consider the three faces of ∆` that surround the isolated
vertex of `. At least one of these faces must be joined to face of a different tetrahedron in
the final triangulation T ; as a consequence, the isolated vertex of ` will be identified with
some other tetrahedron vertex and we will have v ≤ vS − 1 = n+ 2 vertices in total.

We can repeat this argument upon a second leaf `′ to lower our bound once more,
establishing the final result v ≤ vS − 2 = n + 1. The only way this argument can fail is if
both “new” vertex identifications are the same; that is, from our first leaf we find that the
isolated vertex of ` is identified with the isolated vertex of `′, and then from our second leaf
we find that the isolated vertex of `′ is identified with the isolated vertex of `.

We are only forced into this redundancy if every additional edge from ` in the comple-
mentary graph S\G runs to `′ or is a loop back to `; likewise, every additional edge from `′

in S\G must run to ` or be a loop back to `′. In other words, we must have one of the two
scenarios depicted in Figure 9.

Even still, we can avoid this redundancy if the tree S has three or more leaves (we simply
replace `′ with a different selection). In fact, given that we can choose any spanning tree
S, we are only forced into this redundancy if every spanning tree within G has precisely
two leaves and gives one of the scenarios of Figure 9. The only such connected 4-valent
multigraph G on n > 2 vertices is the graph depicted in Figure 10; that is, a single n-cycle
with a loop at every vertex.

For such a face pairing graph we can lower our bound from n+ 3 to n+ 1 as follows. Let
i be a non-leaf vertex of the tree S. The full graph G has a loop at vertex i, which means
that two distinct vertices of the corresponding tetrahedron in TS will be identified in the
final triangulation T . This identification does not involve the isolated vertices of the leaves,
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Spanning tree S

Spanning tree S

Full graph G

Full graph G

ℓ

ℓℓ

ℓ
ℓ′

ℓ′ℓ′

ℓ′

Scenario #1:

Scenario #2:

Figure 9: The two “redundant” scenarios in our analysis of leaves

Figure 10: The only face pairing graph that forces redundancy in our leaf analysis

and so we can now return to our earlier argument on a single leaf to find a second (and
different) identification between distinct vertices of TS , showing that v ≤ vS−2 = n+1.

It can in fact be shown that this bound of v ≤ n+ 1 is tight; the proof involves a general
construction for arbitrary n, and we omit the details here. For n = 2 there is a closed
3-manifold triangulation with n + 2 = 4 vertices (this is the triangulation of the 3-sphere
obtained by identifying the boundaries of two tetrahedra using the identity mapping).

We proceed now to the main result of this section, which is a new bound on the asymptotic
growth rate of the size of the standard solution set (that is, the number of vertices of the
standard projective solution space S ).

Theorem 6.3. The size of the standard solution set is asymptotically bounded above by

O

9 ·

(
1 +

√
13/9

2

)5
n ' O(14.556n).

Proof. Let σ denote the number of admissible vertices of the standard projective solution
space S . Following the analogous result in quadrilateral coordinates (Theorem 5.4), our
strategy is to bound σ by working through the maximal admissible faces of each dimension.
As usual, we let v denote the number of vertices in the underlying triangulation T .

Once again we assume that n ≥ 3 to avoid small-case anomalies. Furthermore, we
assume that the quadrilateral projective solution space Q has at least one admissible vertex
(otherwise it is simple to show that there are precisely v ≤ n+ 1 admissible vertices in S ,
corresponding to the v vertex links in T ).

Let F be any maximal admissible face of S . From Corollary 3.8 we know that F has
at most 5n facets. Furthermore, Lemma 5.1 and Lemma 6.1 together show that F has
dimension d+ v for some d in the range 0 ≤ d ≤ n− 1. Our immediate aim is to bound the
number of vertices of F . There are two cases to consider:

• If d > 0 or v > 1 then the dimension of F is ≥ 2, and we can combine McMullen’s the-
orem with Lemma 4.1 to show that F has at most Md+v,5n vertices. Using Lemma 6.2
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we then have d + v ≤ d + n + 1 ≤ 2n < 5n/2, whereupon Lemma 4.2 gives us
Md+v,5n ≤Md+n+1,5n. It follows that F has at most Md+n+1,5n vertices.

• If d = 0 and v = 1 then F is a 1-face (an edge) with precisely 2 vertices. It is simple
to show that 2 ≤Mn+1,5n = Md+n+1,5n, so again F has at most Md+n+1,5n vertices.

Once more we observe that each admissible vertex of S is a vertex of some maximal
admissible face, and so we can bound σ by summing this bound of Md+n+1,5n over all
maximal admissible faces. Lemma 5.2 and Lemma 6.1 together show that S has at most
3n−1−d maximal admissible faces of dimension d+ v for each d, and so we have

σ ≤
n−1∑
d=0

3n−1−d ·Md+n+1,5n =

2n∑
e=n+1

32n−e ·Me,5n. (6.1)

We can loosen this bound by extending the summation index e to the full range 2 ≤ e < 5n,
yielding

σ ≤
5n−1∑
e=2

32n−e ·Me,5n = 9n
5n−1∑
e=2

(1/3)e ·Me,5n,

whereupon Corollary 4.4 gives us an asymptotic growth rate of

σ ∈ O

9n ·

[
1 +

√
1 + 4/9

2

]5n = O

9 ·

(
1 +

√
13/9

2

)5
n ' O(14.556n).

We finish this section by applying our techniques to the important case of a one-vertex
triangulation. In this case we are able to strip an extra 3n from our bound, yielding the
following asymptotic result.

Theorem 6.4. If we restrict our attention to triangulations with precisely one vertex, then
the size of the standard solution set is asymptotically bounded above by

O

3 ·

(
1 +

√
13/9

2

)5
n ' O(4.852n).

Proof. The argument is almost identical to the proof of Theorem 6.3, and we do not repeat
the details here. The main difference arises in the derivation of equation (6.1):

• For the case d > 0, we replace the bound v ≤ n + 1 with the more precise v = 1,
allowing us to replace the term Md+n+1,5n with the tighter Md+1,5n.

• For the case d = 0, we cannot use McMullen’s bound at all since we are looking at
maximal admissible faces of dimension d+ v = 1. Instead we note that every 1-face is
an edge with precisely two vertices, and we replace Md+n+1,5n with the constant 2.

Separating out the cases d > 0 and d = 0, equation (6.1) then becomes

σ ≤ 2 · 3n−1 +

n−1∑
d=1

3n−1−d ·Md+1,5n =
2

3
· 3n +

n∑
e=2

3n−e ·Me,5n.

Again we extend the summation index e to the full range 2 ≤ e < 5n, giving

σ ≤ 2

3
· 3n +

5n−1∑
e=2

3n−e ·Me,5n =
2

3
· 3n + 3n

5n−1∑
e=2

(1/3)e ·Me,5n,
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whereupon Corollary 4.4 shows the asymptotic growth rate to be

σ ∈ O

3n + 3n ·

[
1 +

√
1 + 4/9

2

]5n = O

3 ·

(
1 +

√
13/9

2

)5
n ' O(4.852n).

7 Discussion

The complexity bounds of Sections 5 and 6 are significant improvements upon the prior state
of the art. The reason for this success is because we have been able to integrate admissibility
(in particular, the quadrilateral constraints) with the high-powered machinery of polytope
theory (in particular, McMullen’s upper bound theorem). Previous results have either used
polytope theory on only a superficial level [14], or else drawn on deeper polytope theory but
without any use of admissibility at all [4, 6].

The difficulty in integrating admissibility with polytope theory arises because the quadri-
lateral constraints are non-linear, and the admissible region of each projective solution space
is far from being a convex polytope. In this paper we circumvent these difficulties by working
with maximal admissible faces. However, this leads to certain inefficiencies, as we discuss
further below.

It is known that any complexity bound on the size of the standard and quadrilateral
solution sets must be exponential, even if we restrict our attention to one-vertex triangula-
tions [4, 5]. However, the new bounds in this paper still leave significant room to move. In
standard coordinates the worst known cases grow with complexity O(17n/4) ' O(2.03n) in
comparison to our O(14.556n); see [4] for details.10 In quadrilateral coordinates, compre-
hensive experimental evidence from [5] suggests that the worst cases grow with complexity
well below O(φn) ' O(1.618n), in contrast to our current bound of O(3.303n).

This gap between theory and practice suggests that further research into theoretical
bounds could be fruitful. The methods of this paper suggest several potential avenues for
improvement:

• Because the proofs of Theorems 5.4 and 6.3 iterate through each maximal admissible
face, it is likely that we count each admissible vertex many times over. Finding a
mechanism to avoid this multiple-counting could help tighten our bounds further.

• The key to all of the new bounds in this paper is Lemma 5.2, where we show that Q
has at most 3n−1−d maximal admissible faces of each dimension d ≤ n−1. This bound
has been empirically tested against all ∼ 150 million closed 3-manifold triangulations
of size n ≤ 9 (the same census used in [4]), with intriguing results.

The outcomes of this testing are summarised in Table 1. For high dimensions d ≥ n
2−1,

the bound of ≤ 3n−1−d maximal admissible faces appears to be tight (these numbers
appear in bold in the table). For low dimensions d < n

2 − 1 the number of maximal
admissible faces drops away significantly, right down to what appears to be O(n)
maximal admissible faces of dimension 0.

As an exploratory exercise, for each n ≤ 9 we can work through the original proof of
Theorem 5.4 but replace each bound of 3n−1−d maximal admissible d-faces with the
corresponding figure from Table 1. The resulting bounds on the number of admissible
vertices of Q are shown in Table 2, and their growth rate settles down to roughly

10These cases are constructed and analysed for all n > 5, and experimental evidence supports the conjec-
ture that these are the worst cases possible.
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Number of Most maximal admissible faces of dimension . . . Number of
tetrahedra (n) 0 1 2 3 4 5 6 7 8 triangulations

1 1 4
2 3 1 17
3 4 3 1 81
4 5 9 3 1 577
5 6 15 9 3 1 5 184
6 4 22 27 9 3 1 57 753
7 8 31 50 27 9 3 1 722 765
8 6 40 78 81 27 9 3 1 9 787 509
9 4 48 118 180 81 27 9 3 1 139 103 032

Table 1: The largest number of maximal admissible faces of various dimensions

Number of tetrahedra (n) 1 2 3 4 5 6 7 8 9

Max. number of admissible vertices 1 5 13 39 104 315 859 2458 7018

Table 2: Empirical complexity bounds based on the results of Table 1

O(2.86n), well below our current bound of O(3.303n). This suggests that, if we can
tighten Lemma 5.2 for low dimensions, we can significantly improve our bounds again.

• Finally, even for high-dimensional faces where Lemma 5.2 does appear to be tight, we
know from Lemma 5.3 that equality cannot hold for all high dimensions simultaneously.
Empirical testing again suggests that Lemma 5.3 is merely one example of a larger
set of constraints, and exploring these constraints may yield more useful information
about the structure and number of maximal admissible faces.

For a final observation, we return to the worst known cases in standard coordinates.
These are pathological triangulations of the 3-sphere for arbitrary n > 5, each with O(17n/4)
admissible vertices in S , and there is strong empirical evidence [4] to suggest that this family
of triangulations yields the largest number of vertices for all n.

What is interesting about these cases is each triangulation has only one maximal admis-
sible face. In quadrilateral coordinates this maximal face is just an (n− 1)-simplex, and the
quadrilateral projective solution space Q has only n admissible vertices in total. In other
words, for these cases the pathological complexity only appears in the extension to standard
coordinates. These observations suggest that a better understanding of the relationships
between the face lattices in S and Q could be an important step in achieving stronger
bounds on the complexities of these polytopes.
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