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An extension of ordinary parastatistics is considered which makes use of all the representations of
the parastatistics algebra obtained from the usual ansatz. Govorkov’s demonstration that such an
extension, for parastatistics of order 2, implies a U(2) symmetry, is generalized for parastatistics of
order p. The parastatistics algebra, restricted to V. dynamical states, is characterized by the
irreducible representations of U(N), SO(2N), and SOQ2N + 1) which it contains. It is shown that
these representations have multiplicities equal to the dimensions of associated representations of
U(p), O(p) and C(p), respectively, where C(p) is a subalgebra of the enveloping algebra of O(p),
but is not a Lie algebra. The symmetric group S(p) also appears, as a subalgebra of the enveloping
algebra of C(p). It is shown how a nondegenerate vacuum state may be defined for the generalized
parastatistics algebra of order p, and how to construct state vectors corresponding to arbitrary
numbers of quarklike particles and antiparticles. Such states belong to irreducible representations of
U(N), and can be obtained by the application of one kind of creation and annihilation operators to
certain basic states, here called reservoir states, which correspond to the different irreducible
representations of S O(2N + 1). The specialization to parastatistics of order 3 is discussed in detail
with the application to a quark model of the hadrons in view. It is shown how to define isospin and
hypercharge in a significant way in this model, which, however, differs in some respects from
Gell-Mann’s well-known 3-fermion model, and also from Greenberg’s 3-parafermion model. Some of

the physical implications are examined.

1. INTRODUCTION

The idea that all particles appearing in nature should
be formed from particles of spin half is an old one,
which suggested, for instance, de Broglie's theory of
fusion,® the neutrino theory of light,2 and Yukawa's non-
local model for composite particles.3 All such theories
have met with grave difficulties, but a more recent
manifestation of the same idea, the quark model of the
hadrons, 4 has been sufficiently successful to be taken
seriously. Since quarks have not been positively identi-
fied in isolation,3 however, there is ample room for
speculation concerning their nature and properties.

In the original proposal of Gell-Mann,4 a triplet of
quark fermi fields is considered, the three types of
quarks and antiquarks being assigned to the triplet and
antitriplet representations of U(3). However, Green-
berg® has suggested that quarks may be parafermions,
satisfying parastatistics of order 3. As Fritzsch and
Gell-Mann? have pointed out, the introduction of a trip-
let of parafermi fields of order 3 is in a certain sense
equivalent to the introduction of nine fermi fields, to-
gether with supplementary conditions which place a
restriction on the allowed states. To see this, one need
only recall that a parafermi field of order 3 may be
thought of as constructed from three (commuting)
fermi fields via the ansatz introduced by one of us8 in
the original formulation of parafermi field quantization.
The supplementary conditions then reflect the fact that
the ansatz yields a reducible representation of the
parafermi field algebra, from which a suitable irredu-
cible representation is to be selected.

These observations suggest a further possibility, that
only one type of parafermi field of order 3 need be
iptroduced in order to describe all the hadrons and
the associated U(3) multiplet structure. In the context
of the usual formulation of the quantization of such a
field, this suggestion proves unrewarding, because the
states available do not form complete U(3) multiplets.
This deficiency may be traced to the fact that one has
restricted one's attention to an irreducible represen-
tation of the parafermion algebra, and, following
Govorkov,? one is led to consider more general re-
presentations previously rejected on the grounds that
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the “vacuum state” appeared to be degenerate.1? From
Govorkov's point of view, this degeneracy was only a
consequence of the incorrect identification of the
vacuum state, and the generalized parafermi statistics
had real possibilities for the definition of such physical
quantities as isospin and hypercharge. He considered
generalized parafermi statistics of order p = 2, showed
that n-particle states form U(2) multiplets, and gave
the expressions for the U(2) generators. However, he
was unable to complete the corresponding task for p =
3, although he did indicate that one-, two-, and three-
particle states form SU(3) multiplets, and, despite
some effort,1! his idea has not been properly realized.

In the meantime, progress has been made in the
investigation of parastatistics algebras,12 and the
authors13 have described the structure of those repre-
sentations of the parafermion algebras usually adopted,
with emphasis on the representations of subalgebras
isomorphic to the Lie algebras of certain unitary
groups. Here we undertake a similar task for the gene-
ralized parafermion algebras, with particular reference
to the case p = 3.

Irreducible representations of the algebra of N pairs
of parafermion creation and annihilation operators are
known to correspond to irreducible representations of
SO(2N + 1). We adopt a certain reducible representa-
tion of SO(2N + 1), defined by the well-known ansatz,8
and are then concerned with labeling not only the vari-
ous irreducible representations of SO(2N + 1) which
occur, but also the irreducible representations of U(N)
contained within each irreducible representation of
SO(2N + 1), since these correspond to collections of
states with a fixed number of particles present,and a
fixed symmetry type. So we are led to consider a rather
difficult state labeling problem, essentially that of com-
pleting the set of commuting operators provided by the
invariants of the chain,

SO(2N + 1) D O(2N) D SO(2N) D UM[DPU{N—-1) D ---
D U] (1)

We find that there is a related chain of algebras also
represented in the space of generalized parafermi sta-
tistics of order p, viz.
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U(r) 2 0(p) 2 SO(p) - C(p), (2)

where SO(p) — C(p) means that the algebra C(p), which
is not a Lie algebra, is a subalgebra of the enveloping
algebra of SO(p). Recently Driihl, Haag, and Roberts,
and subsequently Ohnuki and Kamefuchi, 14 have con-
sidered the generalized parafermion algebra from a
quite different point of view, and in their work, the chain
U(p) 2 O(p) > SO(p) is identified and discussed as a
chdin of “non-Abelian gauge groups.” We find that in
fact the algebras U(p) ® U(N), O(p) ® SO(2N), SO(p) ®
O(2N), and C(p) ® SO(2N + 1) are all represented, and
the Casimir invariants of associated algebras, such as
U(p) and U(N), are so related that the problem of com-
pleting the commuting set of operators defined by the
chain (1) is precisely that of completing the set defined
by the chain (2), in a certain class of representations of
U(p). For p = 3, this is well-known to be a very diffi-
cult problem, and we do not find an explicit solution.
However, for p = 3 we do find an operational way of
establishing a satisfactory basis in the representation
space, thus implicitly defining a solution to the prob-
lem. Stated briefly, the picture which emerges in that
case is as follows.

One begins with an irreducible representation of
three commuting fermi fields, the ansatz components.
This contains a reducible representation of the para-
fermion algebra of order 3, whose irreducible com-
ponents may be labeled completely by the eigenvalues
of two operators I and I 5, which we identify with the
total isospin and third component of the isospin: Thus
for each /=0,3,1,...,onehas I; =I,/—1,...,— L
Representations labeled by different values of 7 are in-
equivalent, while those labeled by the same I and differ-
ent I3 are equivalent. The representation with /= I3 =
0 is the one usually adopted for the descriptions of para-
fermions of order 3, and it contains the nondegenerate
vacuum state. Each of the other representations con-
tains degenerate “reservoir states”, which may be
thought of as containing a number 27 of isospin-carry-
ing particles and antiparticles, but on which all the
parafermion annihilation operators vanish. Other states
within each representation are obtained by applying
polynomials in the parafermion creation operators to
such reservoir states. Every state in a particular basis
for the Fock space of the system can be characterized
by the U(3) multiplet to which it belongs and its asso-
ciated eigenvalues of J, I; and the hypercharge Y [to-
gether with the U(N — 1) D U(N — 2) D-.- D U(1) labels
associated with the space—time degrees of freedom].
The U(3) multiplet structure is precisely the same as
that obtained in the usual model with three anticommut-
ing fermi fields. Indeed one can assert that within the
space of the generalized parafermion algebra, there
acts irreducibly the algebra of three anticommuting
fermi fields, in terms of which the physical U(3) genera-
tors may be defined in the usual way. However, such
fields have no important role in the physical interpre-
tation of the model. For example, they carry definite
quanta of Y and I,, while the parafermion creation and
annihilation operators, which are more appropriately
associated with the “quarks” in this model, are iso-
scalars and do not carry definite quanta of hyper-
charge. The hypercharge and other U(3) labels only
become diagonal in this picture when an z—particle
state is appropriately symmetrized. So we have here a
model which reproduces all the multiplet structure of
the usual quark model, but has a quite different inter-
pretation at the level of the constituent subparticles.

Section 2 is concerned with analysis of the structure
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of the representation space for quantized parafermi
statistics of order p. Emphasis is given to the repre-
sentations of the algebras SO(2N + 1) D O(2N) D
SO(2N) D U(N) and U(p) D O(p) D SO(p) —» C(p). The
labeling problem is precisely defined. In Section 3, the
structure and multiplicity of “reservoir states” are
examined, together with the way in which other states
can be constructed from these by application of para-
fermion creation operators. Section 4 is devoted to a
more detailed treatment of the case p = 3, with impli-
cit solution for the state-labeling problem, and defini-
tion of the U(3) generators. A brief description of the
physical interpretation of some U(3) multiplets is given.

2. GENERALIZED PARASTATISTICS

The absorption and emission operators of a kind of
parafermions will be represented by a, and a” = o¥,
and for convenience we shall suppose that the affix »
takes only a finite number of values 1, 2, ..., N, though
in the applications N is, of course, unlimited. As in our
earlier paper,!3 we define a, as equal to @, when p =7,
and equal to a” when p = 7 + N, so that the Greek sub-
script takes values from 1 to 2N, Then, if the non-
vanishing elements of g, are

gpozl, lp—OI:N,

the commutation relations
[ap’ ac] = 20‘pc’
[ap’ a, 1'] = 8ol — 8p1%

imply that the ¢, and o, may be regarded as generators
of a representafion of SO(2N + 1). We also define gfo =
&oo and af = gfda,, etc.

If an arbitrary irreducible representation of SO(2N +
1) is labeled in the usual way by its highest weight (L,
L,,...,L,),the representation ([3p]¥) = (3P, 3P, ...,
2P) corresponds13 to ordinary parastatistics of order
?. In the generalization which we wish to consider, the
reducible representation ([3]¥) ® ([3]¥) ®--- ® ([3]¥),
with p factors, is adopted. Then each irreducible re-
presentation with 3 > L, > Ly > ... > L, > 0 (and 4p —
L, integral) occurs with a definite multiplicity in the cor -
responding representation space, which we shall de-
note by H,. In particular, the ordinary parastatistics
represenfation ([$£]") occurs once.15 If w = $p when
p is even,but w = 3(p — 1) when p is odd, and M is the
number of L, not less thanj (j = 1,2,...,w), the re-
presentations (L, Lo, ..., Ly) may also be labeled
[My, M, ... ,M,],where N = M, 2 M, 2+++2M, 20
{and M; is integral).

The L, and M; can be regarded as operators in 4,
with eigenvalues constant within any irreducible re-
presentation of SO(2N + 1), In this sense they are con-
nected with the Casimir invariants of SO(2N + 1), con-
structed from the generators a, and a,,. For example,
the quadratic invariant of SO(2N + 1) is16

(2N + 1) = af.00, + afa,
=22 L(L, +2N+1—2)
r

i

2(N(%p — w)(sh —w + N)

~ 22 MM, —p + 2w + 1—21’——2N)).
: (3)
The L, (or M,), of course, cannot distinguish between

isomorphic representations of SO(2N + 1) contained in

H,.
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Within each representation of SO(2N + 1), there are
generally several irreducible representations of SO(2N),
with generators Qe Any one of these is labeled by its .
highest weight (A, A5, ..., Ay), which occurs once and
only once within the representatmn (L, Ly, ..y Ly) of
SO(2N + 1),provided L, — A ,A, — L,,;and L ,, —

)\ »+1 ar€ nonnegative mtegers for ally < Nand |ay] s

. It follows that if the representation (A ;,2,,...,2y)
occurs, so does the representation (A;,2,,...,— .
This pair of irreducible representatlons of SO(ZN) (or
single irreducible representation in the case A, = 0)
forms an irreducible representation of O(2N), which can
also be labeled by [u,, ks, - . ., 1, ], Where p; is the num-
ber of |A, Inotlessthan](]_l 2,... w). Then N >
By =pgz-e2pn, 20, The A, and K; are related to
the Casimir mvar1ants of SO(ZN) and O(ZN), construc-
ted from the a,,, with the quadratic invariant being
given by16

0,(2N) = akad,
2Zr) (A, +2N—27)

il

li

z@&p—m@p—w+N—n
—Z}ui(pi——p+2w+2—2i—21\’)). (4)

The A, (or K ) cannot distinguish between isomorphic
representatwns of SO(2N) or O(2N) contained in H,.

Within each representation of SO(2N), there are
generally many irreducible representations of U(N),
with generators

ar, = 3([a”,a,] + po7,).

Any such representation is labeled by its highest
weight ([, ,Iy), where [since the weights of
SO(2N + 1) and SO(ZN) are sets of elgenvalues of
all“zp,az 2p;3tc]0<l+1<l S A, + 3P <
L, + 3p <p. The 1, are integers, which can be re-
garded as the lengths of the rows in the Young dia-
gram associated in the usual way with the symmetry
type of the corresponding tensor representation of
U(N). Alternatively, the representation may be labeled
[mq,mg,...,m,], where m; is the number of /, not less
than i (i = 1, 2,...,p), or the length of the ith column
in the associated Young diagram. Then N = m, >
mg =+++ 2m, > 0. The [, and m,; are related to the
Casimir invariants of U(N), constructed from the a” ,
with, for example,17

rr:Z:lr=Z>mi’
r 12

ar as =240, +N+1—2r)
s r r

=—2 mm, — N+ 1— 2i).
i

The I, (or m;) cannot distinguish between isomorphic
representations of U(N) contained in H, [nor indeed
between isomorphic representations of U(N) contained
in an irreducible representation of SO(2N)]. We now
turn our attention to the problem of describing the
multiplicity with which isomorphic representations of
U(N) occur in H,.

One way of defining the generalized parastatistics
representation is via the ansatz8

?
ap = Z;l o’p (i)’ (5)
i=

in which the ¢, ¢ are fermion creation and annihilation
generators for a fixed value of i, but commute for dif-
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ferent values of 7. The only way we shall make use of
this ansatz, however, is by the properties with which it
endows the operators

c G = gr® a, (¢} ),
in particular
[cGD, a7 ] =0,

{c @n, e (jk)} =cCG® (i =j=k),

[c @, ¢ GD] = ¢ Gi) — c G (i =j),
[cC),cUD =0 (i =j),
[c€i), c @] = cC) (i =j),
[cCD,ct] =0 (i=j =k =1) (6)
and
Ec(ij) = z(aka, — Np),
p)
E Gi) — q7 =EIT=Z)mi,
i=1 r i
?]{ cGdc )= — g7 as, + (N +p)ar,

—El,(l,—p—ZrJr 1)
=2mi(mi+p—2i+ 1).
i

Now the operator ¢ ¢4) has integral eigenvalues, and
it is evident from (6) that

6, = cos(mc ¢1)),
which has unit square, anticommutes with ¢ ¢ and ¢ (G9)

provided j = i, and commutes with all other ¢ (¥, Let
us define

k—uw*o i<k,
- (Z)]+ @ .+1 .7 < k:
bj]. = ¢ U, (7

1" " B¢ U,

. B, (&R,

where the subscripts a,a + 1,...,b of the 0's include

all values between the odd integer a,equaltoj orj + 1,
and the even integer b, equal to & or k — 1. Thus b,, =
— 10,0,¢ 2, by5 = ic (23) and by, = 6,6,8,6,c 61, Then
it is easy to ver1fy that

[bu’ bkz] = ijbil -

the commutation relations characteristic of U(p). It
follows that an irreducible representation of the b;;, and
of the ¢ ¢” also, defines an irreducible representation of
U(p). Moreover, since the b;; are U(N) invariants, H,
carrles a representatlon of U( ) ® U(N), with generators

6ilbkj ’

b;;,a”s. Now
Z)b”=20(“)=2mi,
i i i
Z)b,] » =2,c@DcUD =3 mm, +p —2i+ 1),
i.j i

and the expressions on the right sides of these equa-
tions are precisely those adopted by the Casimir in-
variants of U(p), when the irreducible representations
are labeled (m,, 7, . ..,mp). In other words, each irre-
ducible representation of U(p) ® U(N) contained in H,

is labeled by the my, m,, . . ., m,, which are the lengths
of the rows in the Young diagram corresponding to the
U(p) representation (m,, my, ...,m,), and the lengths
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of the columns in the Young diagram corresponding to
the associated U(N) representation [m,,m,, ..., m,].
Since there are no invariants of U(N) which cannot be
expressed in terms of the b;;, no irreducible represen-
tation of U(p) ® U(N) can occur more than once in H,.
Then it is not difficult to see that every such repre-
sentation with N = m; = m, =--- =2 m, > 0 must occur
just once. We may say that the representation [m,,
My, . .., m,] of U(N) occurs in H, with a multiplicity
equal to the dimension of the representatlon (ml, LOTERES
m ) of U(p). This is one way of describing the struc-
ture of H,.

Turning now to the question of the multiplicity with
which isomorphic representations of SO(2N) occur in
H,, we note that

y @) = ¢ GD 4 ¢ G (i = j)
is an SO(2 N) invariant and that, with one exception, all
invariants of SO(2N) can be constructed from the €3,
[The exception is the pseudoscalar SO(2N) invariant
associated with the sign of A,. More precisely, the
y (9 are O(2N) invariants, from which all invariants of
O(2N) can be constructed.] It follows from (6) that

{y @,y GO} =y G (i =j = &),
[y @y =0 (i=j =k =1) (8)
and, consequently,
(3 GB) £ o GRY)yy @) = — (3 G 1 1)(y GB) £ o GB)), (9)
We define
Yy = Z}i y @) = 3(aPa, — Np). (10)
7

By subtraction of (4) from (3) we find

afa, = 2(N(%p—w) + 2 pilp; — P + 2w + 2 20— 2N)
— 2D M{M;—p + 2w + 1—21—21\7)),
i

and it follows that the eigenvalues of y are integral.
From consideration of the parastatistics algebra of
order 2 contained within the entire algebra, for which

y reduces to y 12), we infer that y 12 has integral eigen-
values, and this concluswn is, of course, independent of
the superscripts of y @2, Hence the commuting invariants
y 2,0, 69, ., Cw-1.2w) of O(2N) all have integral
eigenvalues. If we introduce

6,; = cos (my ¢9), (11)

it follows further from (9) that o,; » anticommutes with
y @) and 4 (U®) when i = j = k. Let us define
Bjk = - (i)j+k Ga,a*‘l o
Brj = — B
where the subscripts a,a + 1,...,b — 1,b constitute

the same sequence of integers as in (7). Then it is
readily verified that

“ By 5y UR, <k,

[Bijs Bedd = 0By + 8,86 — OBy~ 8;,Bs

the commutation relations characteristics of SO(p). It
follows that an irreducible representation of the 5, and
of the y (9 also, defines an irreducible representation

of SO(p). Since the eigenvalues of iB;, are integral, ten-
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sor but not spinor representations of SO(p) occur. In-
deed, a close examination reveals that 6;; = 6,6, so that

B = b;; — by,
and the SO(p) algebra is a subalgebra of the U(p) alge-
bra already discussed. Now U(p) contains O(p) as well
as SO(p). In the present situation, O(p) may be regard-
ed as obtained from SO(p) by the addition of the “re-
flections” 6;. Since the g ,; are O(2 N) invariants, and the
6, are SO(ZN) invariants, it follows that H, carries re-
presentatlons of SO(p) ® O(2N) and O(p) ® SO(2N).
Recalling that U(N) € SO(2N) C O(2N), we may charac-
terize the structure of the generalized parastatistics
algebra by the diagram

O(2N) D SO(2N) D U(N)

U(p) D Q(p) 2> SO(p)
If an irreducible representation of SO(p) is labeled

by its highest weight (ky, 5, ..., k,), the quadratic in-
variant of SO(p) is

0'2(17) = E 3,‘] Bji
1.J

=22 yGn2
i>]
=22 kK + b — 2j). (12)
But Y
6(2N) =— 27 42 + N(N— 1)p + §Np2
j>i
= 2N(zp —w)(3p —w + N— 1)
+ 22 (N — k)& + N +p — 2j), (13)
7

and by comparison with (4) above, we see that for p even
K]‘=N_p'w+1—j (j:1,2""’w_1),
and for p odd

K=N—pg,.q; (G=12...,w).

[Note that if p is even and k,, = 0, then (14) implies
#q < N, which in turn means A = 0. Thus « A, = 0 for

P even. Moreover, (14) 1mp11es also that A, and «,, can-
not both be zero in that case.]

(14')

From these relationships between the invariants of
SO(p) and SO(2N), we can deduce the SO(p) ® SO(2N)
structure of H,. Each irreducible representation of
So(p) ® 50(21\13 in H,is labeled {(ky, Ky, ..., 4 ), (A,
» Ay}, where tﬁe k; are integers related fo the
p; asin (14) or (14", the u; being defined in terms of
the |2, | as before. Every ‘such representation with

Agsees

Nz 222k, =20 (15)
for p even, but
Nzgzr2002k,20 (157

for p odd, occurs just once in H,. This is another way
of describing the structure of that space.

A description of the SO(p) ® O(2N) or O(p) ® SO(2N)
structure of the space is rather involved, especially for
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peven. For podd, it follows from what we have said that if
the representation {(k;, K5, .+« -, £,), (A1, Agy « ooy A}
occurs, so does the representation {(Kl, Koy ooosKy)s
(A 1sA5, ..., — Ay)}. Each such pair forms an irreduc-
ible representation of SO(p) ® O(2N), which we may
label {(ky, &, «  « 5 £,), [Bqs B2y + « 5 By ]} Then every
such representation of SO(p) ® O(2N) occurs just once
in H,, provided the conditions (14’) and (15’) are satis-
fied. On the other hand, each member of this pair forms
an irreducible representation of O(p) ® SO(2N). On
the first member, the inversion operator §{ = 0,6,-+-6,,
which extends SO(p) to O(p), has the value

¢ = exp[im(h; + Ay + + ¢ + Ay + TND)], (16)
as may be seen by evaluating it on the state of highest
weight with respect to SO(2N). On the second member
of the pair, the value of ¢ is

exp[im(Ay + Xy + o0 + Ayoy — Ay + 2ND)],

which is opposite in sign to (16), since 2, is an odd
integer when p is odd. Irreducible representations of
O(p) ® SO(2N) may therefore be labeled {(x, k5, ...,
K3 €)s (A1, Agy « o, Ay)}, and every such representation
occurs just once in H,, provided the conditions (14’),
(15", and (16) are satisfied.

Now we come to the question of the multiplicity with
which isomorphic representations of SO(2N + 1) occur
in H,. Let us define

CEN = (35— D)6, (17)
From (14) and (10) we see that
GRN + 1) =—23 (CO2— ) + Np(N + £p). (18)
7>t
By considering the application of this result to para-
statistics of order 2, it is evident that C 122 is an

SO(2 N + 1) invariant, and the same must be true of
C @2, We can therefore resolve g, into two parts:

a, = (2 @ — D[y, ] + f ¢~ L,

the first of which anticommutes, and the second of which
commutes, with both y ¢) — 7 and 6;;. Hence C @) com-
mutes with @, and is itself an invariant of SO(2N + 1).
From (8) it tpollows that

{cap, cuk} = CcGh
[CED, C¢*D] =0

(i =j=k),
(i =j =k =1).

Although these relations are the same as those satis-
fied by the y G, the fact that the eigenvalues of the C €9
are half-integral and not integral ensures very different
properties. If we denote by C(p) the algebra of the C @2,
then in view of (11) and (17), C(p) is a subalgebra of
the enveloping algebra of SO(p), which relationship we
denote by SO(p) — C(p). In general an irreducible re-
‘presentation of SO(p) defines a reducible representation
of C(p). We shall show that irreducible representations
of C(p) in H, may be labeled (K, K, . .., K,), where the
K, are related to the M; already defined. Moreover, each
irreducible representa{ion of C(p) provides a (usually
reducible) representation of the symmetric group S(p),
i.e., C(p) = S(p). However, we have not been able, for
general values of p, to set up a one-to-one correspond-
ence between irreducible representations of C(p) and
irreducible representations of some Lie algebra, in the
way that irreducible representations of the ¢ ¢9 can be
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associated with those of U(p), and irreducible repre-
sentations of the y ¢ with those of SO(p). [For p =3,
we shall see in Sec. 4 that it is possible to set up such a
correspondence between C(3) and SU(2). |

Since the eigenvalues of y ¢ are 0,+ 1,+ 2,...,the
eigenvalues of C Gé? form a series 3,— 3,3,— %,...,
with a maximum value (— 1)%% + 3) in a particular
irreducible representation. We shall suppose that, in an
irreducible representation, the maximum eigenvalue of
[C 2] is K, + 7 and that the maximum eigenvalue of
|C@#12i| is K; + 4+, when the |C@#-121)| (7 < j) already
have their maxima. Then the K, (j = 1,...,w) may be
used to label the representation. Let

P,; = cos[z7(C ¢ — 3)].

Then it follows from the identities analogous to (9)
satisfied by the C ¢ that P,; commutes with C ¢# +
C (®) but anticommutes with C @) — C (%), and hence

Pij C Grk) = C (GR)P,

ey LEIEk

Since also Pl% = 1,the P, provide a representation of
the symmetric group S(ﬁ).

To establish the relation between the K; and the M,
we note that the vector |z) corresponding to the maxi-

mum eigenvalue (— 1)#(z + %) of C G5 satisfies

(CER) — (—1)2CGR) [n) =0 (i =j =k),
(CGR2 + CGRI2Y |n) = (n + 3) n),

and hence compute the unique eigenvalue of the invariant

w
X COn= 3 (K, + DK, +p—2j +3)
j>i j=1

within the irreducible representation considered. From
this result and (18) we obtain the value

(2N + 1) = Np(N + 3p) — 225 K(K; +p — 25 + 1) (19)
i

for the quadratic invariant of SO(2N + 1). By compari-
son with (3) we see that

K,=N—-M, G=12...,w). (20)

+1-j

Since the C ¢/ are SO(2N + 1) invariants, H, carries
a representation of C(p) ® SO(2N + 1). The result (20)
shows that each irreducible representation of C(p) ®
SO(2N + 1) in H, is completely characterized by the
K;. It is easily seen that # contains, just once, each
such representation of C(pf@ SO(2N + 1) with

NzK 2K,z 2K = 0.

w

We may say that the representation {My, M,, ..., M,] of
SO(2N + 1) occurs in H, with a multiplicity equal to the
dimension of the representation (X, K,, ..., K,) of
C(p), where K;=N—M,. This is a third way of
describing the structure of H,.

Since SO(p) — C(p) - S(p) and SO(2N + 1) 2 O(2N),
we may enlarge the characteristic diagram to

SO(2N + 1) D O(2N) D S0(2N) O U(N)
@02 020 > 5
_—
UbYS 0(h) > SOBISC(p) - S(2)

Because no representation of U(p) ® U(N), O(p) ®
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SO(2N), SO(p) ® O(2N),or C(p) ® SO(2N + 1) is con-
tained more than once in H,, it is possible to make cer-
tain deductions from the results described above. In
particular, the representation [m,,m,, ..., m,] of U(N)
is contained in the representation [M, My, ..., M,] of
SO(2N + 1) the same number of times as the represen-
tation (N — M,,N —M,,_,, ..., N — M) of C(p) is con-
tained in the representation (my, m,, . ..,m,) of U(p).
Similarly, if p is odd, the representation [m;, my, ...,
m,] of U(N) is contained in the representation (Ay»
Agy...sAy) of SO(2N), the same number of times as the
representation (k;, Ko, . . ., K,; §) Of O(p) is contained in
the representation (m,, my, ..., m,) of U(p), where the

k; and ¢ are related to the A, by (14’) and (16). But it is
easily seen that { = exp[in(m, + my + -+ + my)] through-
out the representation (my, m,, ..., m,) of U(p). Hence
the representation [m,, my, ..., m,] of U(N) cannot occur
in the representation (A1, A5, ..., 2,) of SO(2N) unless

explim(m, + my + -+ + mp)]
= exp[im(Ay + Xy + -+ + Ay + TNP)].

We turn next to the problem of finding a suitable com-
plete set of labeling operators in the space H,. Such a
set should contain the M; (or ), since these charac-
terize irreducible representations in H, of the ordinary
parafermion [SO(2N + 1)] algebra. It should also con-
tain the m;, since these label irreducible representa-
tions of U(N), each of which corresponds to a collection
of state vectors with a fixed member of particles pre-
sent and with a definite symmetry type.13 So it is
appropriate to try and set up a SO(2N + 1) > O(2N) 2 SO(2N) ©
UN) [ UWN — 1) D--- > U(1)] basis. The set of Casi-
mir invariants of SO(2N + 1) D O(2N) D SO(2N) D U(N)
is not in general a complete set of commuting U(N) in-
variants in H,. We have seen that these invariants are
directly related to those of U(p) D O(p) 2 SO(p) -

C(p), in associated representations. Then the problem
of completing the former set by the addition of further
suitable U(N) invariants is precisely that of completing,
in the associated representations of U(p), the set of
labeling operators provided by the Casimir invariants
of U(p) D O(p) D SO(p) = C(p). It is well known18 that
it is extremely difficult to find an operator suitably to
complete, in general representations of U(3), the set of
labeling operators provided by the invariants of U(3) o
S0(3), so the problems facing us here for p > 3 are
formidable indeed. One complete set of commuting
operators in a representation of U( p) is provided by the
invariants of the chain U(p) D U{(p — 1) D--+ D U(1). In
the present situation, the corresponding subalgebras of
the b;; algebra are obtained by restricting the ranges of
the subscripts 7 and j to the values 1 top — 1,then 1 to
p — 2,and so on. The corresponding orthonormal basis
is quite unsuitable for our purposes, as it is a basis in
which the K; and k. are not diagonal. However, there
must exist at leastI one orthonormal basis in which

they are diagonal, and this basis must be related to the
former one by a unitary transformation 7. If we de-
fine ¢, = Tb,, T*, then the ¢;; will generate an equiva-
lent set of U(P) representations, and the invariants of
the chain U(p) > U(p — 1) D--- D U(1) defined now in
terms of the ¢;; rather than the b; o will again be a com-
plete set of commuting operators. In the corresponding
orthonormal basis, the K; and «; will be diagonal. If
we can find the operator T, or at least the ¢;; and can
identify the functional dependence of the K (in particu-
lar) on the invariants of U(p) D U(p —1) D>--- D (1)
(defined in terms of the eij), then we shall have a satis-
factory solution to the labeling problem.
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For p = 2, the problem may be solved more directly.
We have in that case

by, =cAD, by, =—if6,c 13,

21
byy = ¢ @), (21)

by, = i6;6,c @D,

and while the operators 2, ¥;;, 2J; ;b,;b;;,and by ; do not
comprise a suitable complete commuting set, the opera-
tors 2;b;;,20; ;0;;0;;,and p = i (b5 — by,) do. For

p = 6,5y @2 = 5 cosmy, whence y = p cosnp, and the
SO(2) and C(2) labels «, and K,; are related to y by (12),
(17), (18), and (19), which yield

(k)2 =2,

However, one can also give explicit expressions for
the ¢;; in this case, following Govorkov.? He found

K (K + 1) =y — 1).

e, = 3cAD+ cUD + c @D + ¢ C2),

e, = H—cAD+ cAD — cCD + cC2),

ey, = %(_ c) — £ (2) 4 ¢ RD + ¢ R2),

€y = Hc @D — cAD — c @D + ¢ C2), (22)

and the operators 25, ¢,;,25; ;€ ¢;,2nd e, are a suit-
able complete commuting set, since & ; — &, = vy.

In this paper, we are concerned mainly with the case
p = 3. Rather than attempt to write down simple closed
expressions for all the operators ¢;; in that case, we
shall define some of them explicitly, and the rest in a
rather implicit, but nevertheless complete way. Es-
sentially, our method involves the identification of all
the states in a suitable U(3) D U(2) > U(1) basis, which
then defines a suitable set of U(3) operators ¢;. We
shall show how all states in H, can be built up by apply-
ing creation operators to certain “vacuumlike” states,
and subsequently how each state so constructed can be
allotted U(3) O U(2) D U(1) quantum numbers, depending
on its mode of construction. So we have an “opera-
tional” definition of the required complete set of label-
ing operators. In the next section, we discuss the struc-
ture and multiplicity of “vacuumlike” states in A, and
the way in which other states in H, can be constructed
from them. These observations form the basis of our
treatment of the case p = 3, given in the following sec-
tion, and should be useful if a complete solution of the
labeling problem for larger values of p ever becomes
desirable.

3. PARTICLE AND ANTIPARTICLE STATES

We shall call an eigenvector in H, of each of the U(N)
generators a”, a state vector, or state, provided it be-
longs to an irreducible representation of U(N). It will
be called a basic state vector, or basic state, provided
it also belongs to an irreducible representation of
SO(2N + 1).

In a theory in which both particles and antiparticles
are present, we assume that N = 2W is even, and that,
for » < W, a” creates a particle, but for v > W, a,
creates an antiparticle. The vacuum state vector then
belongs to the representation of U(N) labeled (p¥%, OW)
and is defined by

al)=0, 7<W,

ar|)=0, 7r>W,
together with the conditions

(c@»—wg;) |) = 0.

(23)
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This last condition ensures that the vacuum state is also
a basic state, belonging to the representation of

SO(2N + 1) labeled ([3p]"). Other vectors are formed
by applying a sequence of creation operators and in-
variants of U(N) to the vacuum state vector; the result-
ing tensors, e.g., a%a”c 12)g c @3q«| ) (where s > W),
may be resolved into components belonging to irreduc-
ible representations of U(N) which are, by definition,
state vectors. We wish to describe in detail how this
decomposition is to be effected.

The conditions (23) alone are insufficient to define
the vacuum (unless p = 1), and there may be many basic
states, which we call reservoir states, corresponding to
vectors |K’) satisfying

a,’, IK’> = 0,
ar|K') =0,

r <W,

r> W, (24)
Within a given representation of SO(2N + 1), such
states correspond to weights which are in the same
equivalence class as the highest weight, i.e., their
weights are obtained from the highest weight by certain
permutations and changes of sign of its elements. Since
all such weights are simple,21 it follows that any repre-
sentation of U(N) containing a reservoir state can occur
at most once within a given representation of SO(2N +
1). Moreover, it can be seen, again from the weights,
that all such representations of U(N) are contained in
the same representation of SO(2N), labeled (L, L,, ...,
Ly i, Ly or (L, Ly, ...,Lyq,— Ly),according as W is
even or odd. Supposing that ]]K *) belongs to an irreduc-
ible representation of U(N) labeled (I, 4, ...,I}),or
[#{, k%, ..., k], within the representation (L,, L,,...,
L,) of SO(2N + 1), we shall next determine the limita-
tions on the values of the /; and %/.

By applying a suitable product of particle creation
operators a” to the reservoir state |K’), we can attain
a vector of highest weight, in the same representation
of SO(2N + 1), belonging to the representation of U(N)
labeled (L, + 3p,L, + 3p,...,Ly + 3p). Since only
W of the I/ are changed in this process, at least W of
the I must have values not less than 3p. Again, by
applying a suitable product of antiparticle creation
operators a, to such a vector |K’) we can attain a vec-
tor of lowest weight in the same representation of
SO(2N + 1), belonging to the representation of U(N)
labeled (2p — Ly, 30 — Ly._q5 -+, 30 — L ). Since only
W of the // are changed in this process, at least W of
the /! must have values not greater than p. Hence,
pzl=z2lpz25p2ll 12,21l = 0,and N =k >
. ..;k'y}aWzkl’,_wﬂ;. ..2k, > 0,where, asbefore, w =
L1p if p is even,but w = 3(p — 1) if p is odd and in that
event k,;“l =W.

In general, the number of antiparticles in a reservoir
state is different from zero. However, corresponding to
any reservoir state |K’) there exists another reservoir
state | K),within the same representation of SO(2N),
in which the antiparticles have been replaced by par-
ticles. Explicitly,

|K> - I‘I[ (Ol" r-W) IK'>
,
where the product I1,, is over all values of 7 (greater
than W) associated with antiparticles in |K*). Suppose

that | K) belongs to the representation of U(N) labeled
(W, W+ kgyouo, Wt kP],where k; <0 wheni>w.
If

N
= p
S r =lvg+1 (ar)
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is the operator which creates antiparticles to saturate
every level, then S|K) is a basic state, in the same re-
presentation of SO(2N + 1) as the reservoir states
|K) and |K'),and is labeled [&), ks, ..., k,]. Since
must here be nonnegative,
k=0, i=w+1,...,p.

By multiplying S|K) with a contravariant tensor opera-
tor formed entirely from the @7 (i.e., without factors
a, or c 69)) with a symmetry corresponding to the irre-
ducible representation [, j,, . . . ,j,] of U(N), we obtain
a vector |J, K) of the direct product of the irreducible
representations [jy, 5, ...,j,] and [#, k,, ..., k,]. This
vector |J, K) can be resolved into basic vectors
|M(J, K)) belonging to irreducible representations
[my, my, ..., m,] of UN), wherel?

max(j, + ky, Ry +j,) <my <j; + ky,

max(j; +jp + Ry + Ry gy Ry + Ry +j, + pq)
Smy +my Sjp+ gy + Ry + Ry,

My + g+t my =gyt Ryt gyt Ryttt g, Ry
(25)

Each of the vectors |M(J, K)) belongs to the same irre-
ducible representation of SO(2N + 1) as |K).

The above discussion suggests that isomorphic re-
presentations of U(N) in H, may be distinguished by the
associated sets of values of the j; and the %, and the
eigenvalues of the commuting invariants of SO(2N + 1)
(constructed from the C ¢)which resolve the multipli-
city of representations with the same %, among the
reservoir states. In the next section, we shall confirm
that this is so for p = 3. However, it should be pointed
out that we have no guarantee that every set of values
of the j; and %; consistent with a given set of values of
the m; will correspond to a different isomorphic repre-
sentation of U(N) in general. In fact, it is easy to con-
firm that the only completely symmetric tensor involv-
ing p operators a”,as,...,a* is {a”, {as, {...,a*}... }},
and even in expressions where other creation and anni-
hilation operators are present, such a symmetrized
product can be separated in this form. Hence it may be
assumed that Jp = My,

4. PARASTATISTICS OF ORDER 3

According to what has been said in Sec. 2, the repre-
sentation [m,, m,, ms] of U(N) occurs in H; a number of
times equal to the dimension of the representation
(my, my, my) of U(3), and there act in H; a corresponding
set of U(3) generators ¢g; (i,j = 1, 2, 3) such that the
Casimir invariants of the chain U(3) > U(2) O U(1) form
a complete set of commuting invariants of U(N). More-
over, the elements of this set may be assumed to com-
mute also with the operators K; (= K below) and k, (=«
below), which label representations of C{3) ® SO(2N + 1)
and SO(3) ® O(2N) in H,, so that K and « are functions
of the elements of that set.

Rather than the notation ¢;; for all the U(3) genera-
tors, we shall use the more familiar I = (e, — &),
L=h+ily=¢, L=k —il=¢;andY =(g, +
€55 — 2e33)/3, together with e 3, €34, €53, and e3,. We
seek to identify or characterize these operators, and
to express K (in particular) as a function of the Casi-
mir invariants of the chain U(3) > U(2) > U(1), i.e., of
my, My, M3, Y, I, and I ; (where I2 = KI + 1), 1= 0).
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By considering the reduction of the representation
([3]™ ® ([2]™) © ([3]¥), we find that the irreducible
representations of SO(2N + 1) contained in Hy are
labeled ([$]¥-X [3]¥), or alternatively [N — K], where
K=0,1,...,N,andthere are (K + 1) isomorphs corres-
ponding to a particular value of K. These may be dis-
tinguished by the eigenvalues 3,— 5,... (— DE(X + 3)
of C(12), The corresponding representation of C(3) is
thus (K + 1)-dimensional, and is labeled (X). Each such
irreducible representation of SO(2N + 1) decomposes
with respect to SO(2N) as ([$]¥-K-1,[3]%,+ 3) ©
(317X [3]¥-1, £ 3), with the exception of ([Z]¥), which
gives ([3]¥1,2 3) @ ([3]1¥-1,% 3), and ([3]¥), which gives
([2]¥-1, % 3) only. Thus in H, there are (2« + 1) irreduc-
ible representations of SO(2 N) labeled ([$]¥%,[3]%),
where k = 0,1,...,N and a similar number with the
sign of the last weight reversed; alternatively there are
(2k + 1) irreducible representations of O(2N) labeled
[N — k]. The isomorphs may be distinguished by the
eigenvalues 0,% 1,...,% « of (12)  and the correspond-
ing representation of SO(3) is labeled (), and is (2« + 1)-
dimensional. Clearly, when k has a value «,, then K =
Ky Or ko — 1, except that K = 0 if « = 0. In other words,
the (2« + 1)-dimensional representation (k = K) of
SO(3) reduces into irreducible representations of C(3)
of dimension «, labeled (K = k, — 1), and k4 + 1, labeled
(K = kg); except that the representation (0) of SO(3)
yields only the representation (0) of C(3). Now it is
easily seen that if a representation of U(3) contains re-
presentations of SO(3) labeled (k,), (x5), ..., of dimen~
sion (2«; + 1),(2x, + 1), ..., then it contains represen-
tations of SU(2) corresponding to I = 3k, z(k; — 1);
2Ko, 3(ky — 1);++ -, of dimension k, + 1, k436, + 1,
Kgs**+. It follows that the irreducible representation
(K) of C(3) appears in any given representation of U(3)
the same number of times as the irreducible represen-
tation of SU(2) with / = 3 K, which has the same dimen-
sion (K + 1). We may therefore choose the ¢ in such
a way that J is equal to 3K, and the enveloping algebras
of C(3) and SU(2) (with generators I, I,, and I;) are the
same, Then we see from (18) and (19) that

412 = K(K +2)=C322 4+ ¢c@32 + CBD2 — 3, (26)

It also follows from this identification of C(3) and
SU(2) representations that the isospin generators I,
I,,and I; are SO(2N + 1) invariants, commuting with
all a” and a,. Thus these parafermion operators are
associated with isoscalar particles. Note that the func-
tional dependence of K on m,, m,, m3, Y, I, and I3 has
now been fixed as simply K = 21, The most natural
characterization of the isospin in this formalism is by
the C(3) operators C; = C@3), C, = C6GD,and C5 =
C 12), which satisfy

{C, Cot=C5 (27
ete., rather than by the components of I, which are gene-

rators of SU(2). However, we shall show later in this
section how the two sets of operators are related.

Next we come to the identification of the hypercharge
operator Y. It is convenient to introduce the O(2N) in-
variant y defined in (10), which reduces here to

Y = éapap — 3N/2
=y U2 4,03 4+, @3 (28)
and which may be seen from (13), (18), and (19) to have
the eigenvalues (K + 2) or — K in the representation
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[N — K] of SO(2N + 1),and (x + 1) or — « in the repre~
sentation [N — k] of O(2N), Hence K = x — 1 if the
eigenvalue of y is positive and otherwise K = . Con-
sider now the reservoir states, which, according to the
analysis of the preceding section, belong to U(N) re-
presentations of the form [W + k), W, W + k3], Here &,
is the number of particles, and — k5 the number of
antiparticles in the reservoir. From (24) and (28) we
find that the corresponding eigenvalues of y are — (k; —
k;). Thus I = é(k1 — k3) on such reservoir states. A
general M representation of U(N), labeled [m, m,, m;],
may be regarded as belonging to the decomposition of
the direct product of a J representation [ j;, j5,j3], asso-
ciated with an appropriately symmetrized product of
operators a7, and a K representation [k, 0, 0], to a state
of which that product is applied. Such basic states in
[%,0, 0] are obtained by adding all possible antiparticles
to reservoir states | K), which contain % particles only,
and are therefore labeled [W + &, W, W]. (The “preced-
ing” vectors of Govorkov? belong to representations
labeled [, 0, 0].)

Bearing in mind that 7 commutes with &, one sees
that if a particular M representation is associated with
a certain value of /, then the corresponding K represen-
tation has # = 2. Moreover, in view of the inequalities
(25), the maximum isospin in a set of isomorphic M
representations will be 3(m; —ms). This can be re-
solved into two Casimir operators 3(m; — my,) and
3(m, —mj), corresponding to the isospins in the sub-
multiplets of greatest and least hypercharge, respec-
tively. The hypercharge Y itself should vary between a
minimum value (my + mg — 2m,)/3 attained when k =
Mg — M3, jo = j; and j; = my, and a maximum value
(mq + my — 2m,)/3 attained when & = my — my,j; = Jjp,
and j; = my. Thus

Y = glmy +my + mg) + jo — jy — Ja.

As we pointed out at the end of the last section, multi-
plets corresponding to different values of the j; are not
always independent, and for p = 3 the ambiguity is most
simply removed by imposing the condition

so that the formula for the hypercharge and isospin may
be written

Y = g(my + my — 2mg) + jp — jy,
I= 3k = 3(my +my) — 3(j; + Jp). (30)

Within a given representation [m,, my, m;] of U(N), it
is evident that the values of the j; are completely deter-
mined by Y and 7, when the condition (29) is adopted;
moreover, the values of ¥ and I allowed are just those
which occur in the U(3) multiplet (s, 7y, m3). Thus, we
have verified that the condition (29) does not exclude any
states contained within the representations of the genera-
lized parastatistics algebras. :

The operators m,, my, mg, ¥, I, and I (which we have
not yet defined) form a complete set of commuting U(N)
invariants in Hj, and by fixing their eigenvalues on a set
of basic states we implicitly define the ¢ ; completely,
since all their matrix elements are then determined.
Although these U(3) generators do not provide the sim-
plest characterization of the algebraic structure-we
have already seen that C(3) arises more naturally than
SU(2)-we wish to show how they can be constructed if
required.
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The choice of the .isospin SU(2) generators 7, and L
is not, of course, unique, but can be made so by requiring
that
UI,,W = wL,
ULU* = I3,

ULU* = w2[,
(31)

where w is a complex cube root of 1, and U is the opera-
tor inducing a cyclic transformation of the ansatz com-
ponents. Thus

Ua, U* = wa,, Ua, U* = w2a,

(d

32
Uap U* = ap, ( )
where we have defined
a = gM+ wo® + w2q,®),
7 5@ 2 3
a; = oD + w20,® + wg,®. (33)

in terms of the psuedofermion operators appearing in
the ansatz (5). This U is in the symmetric group S(3)
discussed in Sec. 2. Indeed, if

[]j = COS[%TT(C} - %)]7 .

it follows from (27) that, e.g., U;C, = C,U; and U3C, =
C,U,, and since U must be an SO(2N + 1) invariant, we
have

U=UU,=0U; = UU.
We can easily construct one set of SU(2) generators

H, and H; by writing

H3 = %[CS - %(_ I)K]:

H =f(C3)(Cl + Cz)(cz - C]_)’

H. = (G, — C )Gy + GIAG).
Since

[Hs’ H:I:] =+H,

HH. = [AG2[(K + 1)2— (G + 2?][(K + 1)2 — (C3~ 2)?],

H_H, =[AC; + D]2[(K + 1)2 —(C5 + $)2(K + 1)2
— (G — 22],
the required commutation relations will be satisfied,
provided f{(;) is defined by
4 A(CZ[(K + 12 — (G + 2K + 1)2 — (G — I)?]
= (K +1)2 —[C; — 3— )& — Z]2.

It is important to note that any SO(2 N) vector, i.e.,a
linear combination of a,, &, and g, with coefficients
which may be SO(2 N) invariants, can change the eigen-

value of H; by at most + 1; the same will apply to I, as
defined below.

The H; and [, are evidently connected by a unitary
transformation, which we next determine. If

Vo =1+ Unug* + Utug,
u; = exp (477 Hy/3),
it is easy to verify that the relations (31) are satisfied,

provided .
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VH, = I,V

and hence that

5=V,

V=1lm (V3 + ) [(V5* + e)(V; + €)]" V2.
The need to take a limit here arises from the fact that
V3 has one accidentally vanishing eigenvalue, in the
representation of C(3) corresponding to K = 2. In any
irreducible representation of SO(2N + 1), the matrix
elements of U can readily constructed from the norma-

lized eigenvectors of H, in a representation in which
H; is diagonal, and those of V can be derived therefrom.

The hypercharge changing operators €53, €35, €3,
and e5, can be split into two parts, one of which increa-
ses the isospin 7 by one-half unit, and the other decrea-
ses it by one-half unit; thus

e;; = (ei].)+ + (eij)‘,
(eij)*lz (I— —12') (ei]')*

(e I=(+ 3) (e;;)-

((<j=3o0rj<i=3)

Instead of (e,.j)+ and (eij)‘, we shall first construct
operators (D,;)*'and (0,;)” which differ from them only
in normalization. We shall need to make use of the
U(N) invariants m,, m,, and ms, and since our object is
to construct all the SU(3) generators at least implicitly
from the creation and annihilation operators, we note
that the m; are determined by m; + my + mg =a”,,

2(my + 2my, + 3mg) — (Mg + m + m3)
=ar,as, —(N— la”,,

3(m, + dm, + Im,) — 3(m2 + 2mZ + 3m3)

1 2 3 1 5
+ (m3 + m§ + md) = a7 a%,at, — (2N — })a” a5,
+ a7 [as, + (N — 1)(2N — 1)]

(summation over repeated affixes implied). The opera-
tors a” ; = [m;,a”] and a, ; = [a,,m;] change the eigen-
values of m; by + 1 and — 1, respectively, leaving the
other m; unchanged. Moreover, they have no effect on
Ior I, since they commute with the SO(2N + 1) invari-
ants.

The hypercharge changing operators are U(N) invari-
ants which change the value of both I; and I by one-half
unit, and must therefore involve g/ and 4". It follows
from (31) and (32) that 4/ has components which change
I3 by + 3 and — 1, while a ; has components which change
I3 by — 3 and + 1. To separate the components which
change I; by + 3, we make use of the identity

[42,[A2,[42,q]]]] = [24% — A%, 4]],

where we have set A = y — 3. This identity can be veri-
fied directly, or deduced from the fact that a4/ can have
only components which change the eigenvalue A’ of A to
+ A"+ (A’ + 1) or = (A’ — 1). It is evident from (19)
and (28) that the components which change / by + 3 are
those which change A’ to — A’ or A’ + 1, and are there-
fore contained in the vector

o =1{4,[4%, 41} — [4,4].

Of course q; is defined similarly in terms of @,’. The
vectors @', a”"(r < W) and a’, @, (» > W) can be used
to create particles and antiparticles respectively in the
reservoir, :
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We may now assert that the invariants which increase
the hypercharge and change the isospin (5, I) by fixed
amounts are

(1)13)+ = [CY ,r’ar 1]’ (023)+ = [OZ rr a 1],

(Dyg) = [a” 5, 0/], (Dyy)” =[a”y, )]

For these invariants do not alter the values of m;,
msy, and mg, and whereas the factors a, ; change the
values of j, and j,, the factors o, and o cannot. By
inspection of the expression (30) for Y, it is clear that
the above operators will all increase Y by one unit;
their Hermitian conjugates (Dy,)7, (I4,)7, (Dy,)*, and
(Dg5)* will similarly decrease Y by one unit. Hence we
may write

(ei].)+ = Fij[(Dij)+ (Dji)_]_l/z (Dij)+
for  <j = 3 andj < i = 3, where the F;; are normaliza-

tion factors known from the work of Baird and Bieden-
harnl®;

Fi3=FY,—I—1,— 1),
Fyy =F(Y,— I—1,15),
Fyy=FF +1,1— 3,— I3+ 3),
Fyo =F(Y + 1,1— 3,13 — 3),
27+ )21+ VD[F(Y,LI5)]2 =—(T+ I3+ 1)
X (my—p+I1—3Y+2)(my—p+1—3Y+1)
X(m3—ﬂ+1‘"%Y),

p=3(my + my + mg).
This completes the determination of the U(3) generators.

Turning now to the physical interpretation implied by
the above identifications, we note that there are simi-
larities to Gell-Mann's well-known theory,4 but also
important differences. It is a requirement of Gell-
Mann's theory that the fundamental particles are quarks,
each of which has a definite isospin and hypercharge
and, on account of its fractional charge, cannot be posi-
tively identified with any particle so far observed in
nature. The generalized parastatistics also requires
the hadrons to be composite particles, but the funda-
mental particles do not carry a definite isospin and
hypercharge. The reservoir particles carry the iso-
spin, but are of two kinds, one of which has I; = — 1 or
+ %, and the other has Iy =— zor + 1. The external
particles have Zero 1so spin, but, as canbe seen from (30),
have Y =— % or + §. The mdetermmacy of these quan-
tities, and the charge I; + 1Y, is resolved by the sym-
metry type of the state in which the particles appear.
There are quarkish states with fractional hypercharge,
as in Gell-Mann's theory, which can, however, be ex-
cluded by requiring that the particle number should be
a multiple of 3, There is also a requirement that strong
interactions should involve only the U(N) generators
a” ., which conserve isospin and hypercharge and, as
Gray20 has shown, are consistent with the cluster pro-
perty which is indispensable in a theory of composite
particles.

In Table I, we list the well-known hadrons and the

corresponding quantum numbers suggested by the pre-
sent interpretation.

The x is of course formed by creating an antipar-
ticle and filling the “hole” with a particle. Even exclud-
ing the quarkish states, there are obviously some simple
assignments of quantum numbers to which no known
stable particle can be found to correspond, notably the
fermion singlet m; = m, = mz = W + 1, which can, how-
ever, be identified as a combination of a baryon and
meson. If we denote the number of objects of this kind
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TABLE 1. Table of hadrons and assignments of quantum numbers.
Particle(s) my—W my—mymg—mamy —j, my—j, I Y
X 0 0 0 0 0 0 0
(A, m, ) (2,,00 1 1 0 0 0 0
(N, K, =) " " " 1 0 1 1
(&, K, M) " " " 0 1 I
(z,m,Z) " " " 1 1 1 0

Q 3 3 0 0 0 0 -2
=* " " " 1 0 3 —1
Z# " ” " 2 0 1 0
N* " n " 3 0 % 1

by N,, the numbers of baryon, meson, and antibaryon
octet states by Ng, Vg, and Ng, we have in general

my—W=N, —N, + Nj + 2N,
my— W =N, — N, + Ny — Ny,
mg — W =Ny — Ny — Ng — 2Ng.

All possible values of the m; for which m, + my + my
is a multiple of 3 can be obtained by suitable substitu-
tions in this formula. It may be noticed that the higher
admissible SU(3) multiplets (e.g., the 27-et) can be con-
structed from octets, and even the decuplet can be con-
structed in this way.
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