
Lecture 3 Classical and quantum dynamics

First recall the general structure once again:–
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To summarize: The phase space rep is defined by the Weyl-Wigner transform:

A =W(â) â =W−1(A)

T W−→ K K W
−1
−→ T

In T : ((â, b̂)) = Tr(â†b̂). In K: (A, B) = 1
2π~

∫
A(q, p)∗B(q, p) dq dp .

A ? B =W(âb̂) 6=W(b̂â) = B ? A

A(q, p) =

∫
aK(q − y/2, q + y/2) eipy/~ dy

aK(x, y) =
1

2π~

∫
A(x+y

2 , p) eip(x−y)/~ dp
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Now to classical and quantum dynamics:–

Recall that in the Schrödinger picture, the dynamics of a closed quantum system is given

by

i~
∂ρ̂(t)

∂t
= [Ĥ, ρ̂]

and that this is mapped by the Weyl-Wigner transform into

i~
∂W (q, p, t)

∂t
= H(q, p) ? W (q, p, t)−W (q, p, t) ? H(q, p)

where

W =W( 1
2π~ρ̂) — the Wigner function.
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Next recall that

A ? B =W(âb̂) =W
(
W−1(A)W−1(B)

)
.

4



Next recall that

A ? B =W(âb̂) =W
(
W−1(A)W−1(B)

)
.

We find

(A ? B)(q, p)

=
1

(π~)2

∫
A(q′, p′)B(q′′, p′′) e−2i(p[q′−q′′]+p′[q′′−q]+p′′[q−q′])/~ dq′ dp′ dq′′ dp′′

— interesting form, but not very useful.
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To proceed, we use again

ei(αq̂−βp̂) = e−iαβ~/2eiαq̂ e−iβp̂ = eiαβ~/2 e−iβp̂ eiαq̂
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To proceed, we use again

ei(αq̂−βp̂) = e−iαβ~/2eiαq̂ e−iβp̂ = eiαβ~/2 e−iβp̂ eiαq̂

If â = ei(αq̂−βp̂), b̂ = ei(γq̂−θp̂), then

âb̂ = ei(αθ−γβ)~/2 ei([α+γ]q̂−i[β+θ]p̂)

so

W(âb̂) = ei(αθ−γβ)~/2 ei([α+γ]q−i[β+θ]p) .
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To proceed, we use again

ei(αq̂−βp̂) = e−iαβ~/2eiαq̂ e−iβp̂ = eiαβ~/2 e−iβp̂ eiαq̂

If â = ei(αq̂−βp̂), b̂ = ei(γq̂−θp̂), then

âb̂ = ei(αθ−γβ)~/2 ei([α+γ]q̂−i[β+θ]p̂)

so

W(âb̂) = ei(αθ−γβ)~/2 ei([α+γ]q−i[β+θ]p) .

But in this case,

A(q, p) = ei(αq−βp) , B(q, p) = ei(γq−θp) ,

and so

(A ? B)(q, p) = ei(αθ−γβ)~/2 ei([α+γ]q−i[β+θ]p) = ei(αθ−γβ)~/2 A(q, p)B(q, p) . (∗∗)
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We now introduce the ‘Janus’ operator in phase space:

J =

←
∂

∂q

→
∂

∂p
−
←
∂

∂p

→
∂

∂q

and the associated Poisson bracket

{A, B}PB = A J B .
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We now introduce the ‘Janus’ operator in phase space:

J =

←
∂

∂q

→
∂

∂p
−
←
∂

∂p

→
∂

∂q

and the associated Poisson bracket

{A, B}PB = A J B .

This enables us to express the star product in a more useful way.

In our special case we have

(A J B)(q, p) = (αθ − γβ)A(q, p)B(q, p)

and therefore, from (∗∗),

(A ? B)(q, p) = (A ei~J/2 B)(q, p) = (B e−i~J/2 A)(q, p) .
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But then we see that this must be true also for all A(q, p), B(q, p) that can be expanded

in such exponential functions (Fourier transforms!).

In this way we arrive at the much more useful form for the star product:

A ? B = A ei~J/2 B = B e−i~J/2 A
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But then we see that this must be true also for all A(q, p), B(q, p) that can be expanded

in such exponential functions (Fourier transforms!).

In this way we arrive at the much more useful form for the star product:

A ? B = A ei~J/2 B = B e−i~J/2 A

Especially useful for our purposes is the expanded form

A ? B = A ei~J/2 B = A (1 + i~J/2 + (i~J/2)2/2 + . . . ) B

This expansion in powers of ~ will converge for suitably smooth A and B, but in general

we must expect at best an asymptotic expansion.
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But then we see that this must be true also for all A(q, p), B(q, p) that can be expanded

in such exponential functions (Fourier transforms!).

In this way we arrive at the much more useful form for the star product:

A ? B = A ei~J/2 B = B e−i~J/2 A

Especially useful for our purposes is the expanded form

A ? B = A ei~J/2 B∼A (1 + i~J/2 + (i~J/2)2/2 + . . . ) B

This expansion in powers of ~ will converge for suitably smooth A and B, but in general

we must expect at best an asymptotic expansion.

Note that the series terminates if either A or B is a polynomial in q and p.

For practical purposes, we regard the expansion as valid for all A and B of interest.
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Next notice that

W([â, b̂]) = A ? B −B ? A = A ei~J/2 B − A e−i~J/2 B = 2iA sin(~J/2) B

or

W( 1
i~[â, b̂]) = 2

~A sin(~J/2) B
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Next notice that

W([â, b̂]) = A ? B −B ? A = A ei~J/2 B − A e−i~J/2 B = 2iA sin(~J/2) B

or

W( 1
i~[â, b̂]) = 2

~A sin(~J/2) B

This is the famous Moyal or star bracket,

{A, B}? = 2
~ A sin(~J/2) B

which we also use mainly in expanded form as

{A, B}? ∼ A J B − ~2

24
A J3 B +

~4

1920
A J5 B . . .

Note that the leading term is the Poisson bracket.
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Returning to the quantum dynamics, we now have

ρ̂t =
1

i~
[Ĥ, ρ̂]

W−→ Wt = {H, W}?

and so

Wt = {H, W}PB −
~2

24
H J3 W +

~4

1920
H J5 W + . . .
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Returning to the quantum dynamics, we now have

ρ̂t =
1

i~
[Ĥ, ρ̂]

W−→ Wt = {H, W}?

and so

Wt = {H, W}PB −
~2

24
H J3 W +

~4

1920
H J5 W + . . .

The leading term is the classical, Liouvillean evolution. We can say that quantum dynamics

is a deformation of classical dynamics with deformation parameter ~, where the Poisson

bracket is replaced by the star bracket in phase space, or equivalently, by (1/i~)× the

commutator in Hilbert space.
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Returning to the quantum dynamics, we now have

ρ̂t =
1

i~
[Ĥ, ρ̂]

W−→ Wt = {H, W}?

and so

Wt = {H, W}PB −
~2

24
H J3 W +

~4

1920
H J5 W + . . .

The leading term is the classical, Liouvillean evolution. We can say that quantum dynamics

is a deformation of classical dynamics with deformation parameter ~, where the Poisson

bracket is replaced by the star bracket in phase space, or equivalently, by (1/i~)× the

commutator in Hilbert space.

Wigner’s idea was to use this expansion to define quantum corrections to the evolution of

the classical Liouvillean density in phase space.

From that point of view, it defines one of many versions of semiclassical mechanics.
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Note that if

H = p2/2m + V (q) ,

then the evolution of the Liouville density ρ(q, p, t) is

ρt = {H, ρ}PB = V ′(q)
∂ρ

∂p
− p

m

∂ρ

∂p
.
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So, to do quantum mechanics in phase space:-
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So, to do quantum mechanics in phase space:-

• map operators (observables) into functions using W
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So, to do quantum mechanics in phase space:-

• map operators (observables) into functions using W

• use a Wigner function instead of a classical Liouville density
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So, to do quantum mechanics in phase space:-

• map operators (observables) into functions using W

• use a Wigner function instead of a classical Liouville density

• multiply functions (observables) using the noncommutative star product

23



So, to do quantum mechanics in phase space:-

• map operators (observables) into functions using W

• use a Wigner function instead of a classical Liouville density

• multiply functions (observables) using the noncommutative star product

• evolve the Wigner function using the star bracket rather than the Poisson bracket
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So, to do quantum mechanics in phase space:-

• map operators (observables) into functions using W

• use a Wigner function instead of a classical Liouville density

• multiply functions (observables) using the noncommutative star product

• evolve the Wigner function using the star bracket rather than the Poisson bracket

Then, to get semiclassical approximations:-

• ‘expand’ the star bracket in powers of ~.

25



• Conversely, we can do classical mechanics in Hilbert space . . .
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• Conversely, we can do classical mechanics in Hilbert space . . .

Given A(q, p), define 〈x|Â|y〉 (= AK(x, y)) =W−1 (A)K (x, y)

=
1

2π~

∫
A([x + y]/2, p) eip(x−y)/~ dp

or simply,

Â =W−1(A) — Weyl’s quantization map!
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• Conversely, we can do classical mechanics in Hilbert space . . .

Given A(q, p), define 〈x|Â|y〉 (= AK(x, y)) =W−1 (A)K (x, y)

=
1

2π~

∫
A([x + y]/2, p) eip(x−y)/~ dp

or simply,

Â =W−1(A) — Weyl’s quantization map!

In particular, given a Liouville density ρ(q, p, t), set

Ĝ(t) = 2π~W−1 (ρ(t))

- the Groenewold operator.
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We find that

〈A〉(t)
[
≡

∫
A(q, p)ρ(q, p, t) dq dp

]
= Tr

(
Ĝ(t)Â

)
and

Tr
(
Ĝ(t)

)
= 1
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We find that

〈A〉(t)
[
≡

∫
A(q, p)ρ(q, p, t) dq dp

]
= Tr

(
Ĝ(t)Â

)
and

Tr
(
Ĝ(t)

)
= 1

but

Ĝ(t) is not positive definite — a quasidensity operator.
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For a Gaussian density

ρ(q, p, t) ≡ ρ(q, p) =
1

πβγ
e−(q2/β2+p2/γ2) ,

with classical uncertainty product

∆q∆p = βγ/2

we find for the spectrum of G,

λn =
2~

βγ + ~

(
(βγ − ~)

(βγ + ~)

)n

.
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For a Gaussian density

ρ(q, p, t) ≡ ρ(q, p) =
1

πβγ
e−(q2/β2+p2/γ2) ,

with classical uncertainty product

∆q∆p = βγ/2

we find for the spectrum of G,

λn =
2~

βγ + ~

(
(βγ − ~)

(βγ + ~)

)n

.

Note that if βγ < ~ (so that ∆q∆p < ~/2), then some of these eigenvalues are negative

and some are greater than 1.
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Consider W−1(AB) =W−1(W(â)W(b̂))

We find that
(
W−1 (A B)

)
K

(x, y)

=

∫
AK

(
3x + y − 2u

4
,
x + 3y + 2u

4

)
BK

(
3x + y + 2u

4
,
x + 3y − 2u

4

)
du

=
(
W−1 (B A)

)
K

(x, y)

or simply

W−1 (A B) = Â� B̂ = B̂ � Â

— commutative odot product.
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Question:-

ρt = {H, ρ}PB
W−1
−→ Ĝt = ?

So, what is W−1 ({A, B}PB)?
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Question:-

ρt = {H, ρ}PB
W−1
−→ Ĝt = ?

So, what is W−1 ({A, B}PB)?

Not hard to see that

W−1(Aq) = [Â, p̂]/(i~) = Âq , say ,

W−1(Ap) = [q̂, Â]/(i~) = Âp , say .
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Question:-

ρt = {H, ρ}PB
W−1
−→ Ĝt = ?

So, what is W−1 ({A, B}PB)?

Not hard to see that

W−1(Aq) = [Â, p̂]/(i~) = Âq , say ,

W−1(Ap) = [q̂, Â]/(i~) = Âp , say .

Then

W−1 (Aq Bp − Ap Bq) = Âq � B̂p − Âp � B̂q =
1

i~
[Â , B̂]� , say ,

so we have i~Ĝt = [Ĥ , Ĝ]�
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So, to do classical mechanics in Hilbert space:-
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So, to do classical mechanics in Hilbert space:-

• map functions (observables) into operators using W−1
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So, to do classical mechanics in Hilbert space:-

• map functions (observables) into operators using W−1

• use a Groenewold operator instead of a quantum density operator
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So, to do classical mechanics in Hilbert space:-

• map functions (observables) into operators using W−1

• use a Groenewold operator instead of a quantum density operator

• multiply operators (observables) using the commutative odot product

40



So, to do classical mechanics in Hilbert space:-

• map functions (observables) into operators using W−1

• use a Groenewold operator instead of a quantum density operator

• multiply operators (observables) using the commutative odot product

• evolve the Groenewold operator using the odot bracket rather than the commutator
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So, to do classical mechanics in Hilbert space:-

• map functions (observables) into operators using W−1

• use a Groenewold operator instead of a quantum density operator

• multiply operators (observables) using the commutative odot product

• evolve the Groenewold operator using the odot bracket rather than the commutator

Finally, to get semiquantum approximations:-

• ‘expand’ the odot bracket in powers of ~.

How do we do this?
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Setting Q = 2
~ sin(~J/2) , so that A J B = A ~J/2

sin ~J/2 QB,

we use θ/ sin(θ) = 1 + θ2/6 + 7θ4/360− . . . for |θ| < π

to see that as ~→ 0,

A J B ∼ A QB + ~2A J2 QB/24 + 7~4A J4 QB/5760− . . .

∼ A QB + ~2(Aqq QBpp − 2AqpQBqp + App QBqq)/24 + . . . .
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Setting Q = 2
~ sin(~J/2) , so that A J B = A ~J/2

sin ~J/2 QB,

we use θ/ sin(θ) = 1 + θ2/6 + 7θ4/360− . . . for |θ| < π

to see that as ~→ 0,

A J B ∼ A QB + ~2A J2 QB/24 + 7~4A J4 QB/5760− . . .

∼ A QB + ~2(Aqq QBpp − 2AqpQBqp + App QBqq)/24 + . . . .

Then, using W−1 (E QF ) = [Ê, F̂ ], we get

[Â, B̂]� ∼ [Â, B̂] + ~2
(
[Âqq, B̂pp]− 2[Âqp, B̂qp] + [Âpp, B̂qq]

)
/24 + . . .
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So we have, finally,

i~Ĝt ∼ [Ĥ, Ĝ] + ~2
(
[Ĥqq, Ĝpp]− 2[Ĥqp, Ĝqp] + [Ĥpp, Ĝqq]

)
/24 + . . .

— the analogue of the evolution equation for the Wigner function.

45



So we have, finally,

i~Ĝt ∼ [Ĥ, Ĝ] + ~2
(
[Ĥqq, Ĝpp]− 2[Ĥqp, Ĝqp] + [Ĥpp, Ĝqq]

)
/24 + . . .

— the analogue of the evolution equation for the Wigner function.

Note that we now get the quantum evolution plus a series of classical corrections.

This then is semiquantum mechanics — the quantum-classical interface can be explored

starting from the quantum side!

We see that we can also view classical mechanics as a deformation of quantum mechanics

– again ~ is the deformation parameter.
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Compare:

Wt ∼ {H, W}PB − ~2 (H J3 W )/24 + . . .

i~Ĝt ∼ [Ĥ, Ĝ] + ~2
(
[Ĥqq, Ĝpp]− 2[Ĥqp, Ĝqp] + [Ĥpp, Ĝqq]

)
/24 + . . . .
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Compare:

Wt ∼ {H, W}PB − ~2 (H J3 W )/24 + . . .

i~Ĝt ∼ [Ĥ, Ĝ] + ~2
(
[Ĥqq, Ĝpp]− 2[Ĥqp, Ĝqp] + [Ĥpp, Ĝqq]

)
/24 + . . . .

If H = p2/2m + V (q), Ĥ = p̂2/2m + V (q̂), then

Wt ∼ {H, W}PB − ~2V ′′′(q) Wppp/24 + ~4V ′′′′′(q)Wppppp/1920 + . . .

i~Ĝt ∼ [Ĥ, Ĝ] + ~2[V ′′(q̂), Ĝpp]/24 + 7~4[V ′′′′(q̂), Ĝpppp]/5760− . . . .
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To illustrate, consider Hamiltonians of the form

Hn = E (H1/E)n , n = 1, 2, . . .

H1 = p2/(2m) + mω2q2/2 (SHO)

where E has dimensions of energy. Set µ = ~ω/E.

Take as initial Liouville density a Gaussian

ρκ,α0(q, p, 0) =
κ

2π~
e−κ|α−α0|2

α = (
√

mω q + ip/
√

mω) /
√

2~, κ = ~ω/ε

where ε also has dimensions of energy.
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Density plots showing the classical evolution of an initial Gaussian density centered at

α0 = q0 = 0.5 with κ = 2, as generated by the Hamiltonian H2 = H2
1/E. The parameters

m, ω,E have been set equal to 1. The times of the plots are (a): t = π/4, (b): t = π/2,

(c): t = 3π/4 and (d): t = π.
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Quantum evolution of an initial gaussian density, with the same parameter values used in

Figure 1, with also µ = 1, and shown at the same times.
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Classical and Quantum time evolution of the first and second moments of (q + ip)/
√

2 as

generated by H2 = H2
1/E. Points on the classical curves are marked + (red) and points

on the quantum curve are marked × (black). The first moments are graphed on the left

and the second moments on the right. In the two upper graphs, κ = 2, µ = 1/2, α0 = 0.5

and in the lower two graphs, κ = 1, µ = 1/4, α0 = 1/
√

2.
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Comparison of first moments of (q + ip)/
√

2 for classical (+, red), semiquantum (�, blue),

quantum (×, black) and semiclassical (o, green) evolutions generated by the Hamiltonian

H3 = H3
1/E

2 over the time-interval [0, π]. Here κ = 2, µ = 1/2, α0 = 1.
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Identical to the preceding Figure except that ~ has been reduced by a factor of two, by

setting κ = 1, µ = 1/4.
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Comparison of largest two and least two eigenvalues for classical (red), semiquantum (blue)

and semiclassical (green) evolutions generated by H3 = H3
1/E

2, for the time interval [0, π],

with κ = 2, µ = 1/2, α0 = 1. The quantum spectrum is {0, 1}. The evolution of the first

moment is reproduced for comparison in the bottom RH corner. Values at the time-points

t = 1, 2, 3 are marked.
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Comparison of “square-negativity” for classical (red), semiquantum (blue) and semiclassical

(green) evolutions generated by H3 = H3
1/E

2 for the time-interval [0, π], with κ = 2, µ =

1/2, α0 = 1.
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Conclusions
• SQ mechanics opens a new window on the quantum-classical interface.

• Need to look at more realistic Hamiltonians, for example

H =
p2

2m
+ V (q)

• Need to look at more degrees of freedom — what happens for classically chaotic systems,

for example to the spectrum of the Groenewold operator?

• What is the relationship between SQ and SC approximations?

• What are the asymptotics of SQ approximations?
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