Phase Space Formulation of Quantum Mechanics

Tony Bracken
Centre for Mathematical Physics
and
Department of Mathematics
University of Queensland

SMFT07, Melbourne, January-February 2007

Lecture 1 Introduction:

- from the coordinate representation to the phase space representation; the Weyl-Wigner transform

Lecture 2 The Wigner function:

- nonpositivity; quantum tomography

Lecture 3 Classical and quantum dynamics:

- the Groenewold operator; semiquantum mechanics

Lecture 1 Introduction:

- QM has many representations
- coordinate rep, momentum rep, Bargmann rep, Zak's $k q$ - rep, ...
— each has its own advantages - most are equivalent

Lecture 1 Introduction:

- QM has many representations
- coordinate rep, momentum rep, Bargmann rep, Zak's $k q$ - rep, . . .
- each has its own advantages - most are equivalent
- The phase space rep is different in character
- not equivalent to the above
- prominent in recent years for applications to quantum optics, quantum information theory, quantum tomography, ...
- also for questions re foundations of QM and classical mechanics (CM) - QM as a deformation of CM, the nature of the QM-CM interface, ...

Lecture 1 Introduction:

- QM has many representations
- coordinate rep, momentum rep, Bargmann rep, Zak's $k q$ - rep, ...
— each has its own advantages - most are equivalent
- The phase space rep is different in character
- not equivalent to the above
- prominent in recent years for applications to quantum optics, quantum information theory, quantum tomography, ...
- also for questions re foundations of QM and classical mechanics (CM)
- QM as a deformation of CM, the nature of the QM-CM interface, ...
- The development of the theory is associated with a very long list of names: Weyl, Wigner, von Neumann, Groenewold, Moyal, Takabayasi, Stratonovich, Baker, Berezin, Pool, Berry, Bayen et al., Shirokov, ...

Our treatment will necessarily be very selective ...

- Start with some familiar reps of QM, related by unitary transformations.

Consider how we form the coordinate rep for a quantum system with one linear degree of freedom - dynamical variables \hat{q}, \hat{p}.

- Start with some familiar reps of QM, related by unitary transformations.

Consider how we form the coordinate rep for a quantum system with one linear degree of freedom - dynamical variables \hat{q}, \hat{p}.

- Start with abstract \mathcal{H} : complex Hilbert space of state vectors $|\varphi\rangle,|\psi\rangle, \ldots$
— scalar product $\langle\varphi \mid \psi\rangle$.
- Start with some familiar reps of QM, related by unitary transformations.

Consider how we form the coordinate rep for a quantum system with one linear degree of freedom - dynamical variables \hat{q}, \hat{p}.

- Start with abstract \mathcal{H} : complex Hilbert space of state vectors $|\varphi\rangle,|\psi\rangle, \ldots$
— scalar product $\langle\varphi \mid \psi\rangle$.
- Introduce generalized eigenvectors of $\hat{q}: \quad \hat{q}|x\rangle=x|x\rangle$
— orthonormal $\langle x \mid y\rangle=\delta(x-y)$ and complete $\int|x\rangle\langle x| d x=\hat{I}$
- Start with some familiar reps of QM, related by unitary transformations.

Consider how we form the coordinate rep for a quantum system with one linear degree of freedom - dynamical variables \hat{q}, \hat{p}.

- Start with abstract \mathcal{H} : complex Hilbert space of state vectors $|\varphi\rangle,|\psi\rangle, \ldots$
— scalar product $\langle\varphi \mid \psi\rangle$.
- Introduce generalized eigenvectors of $\hat{q}: \quad \hat{q}|x\rangle=x|x\rangle$
- orthonormal $\langle x \mid y\rangle=\delta(x-y)$ and complete $\int|x\rangle\langle x| d x=\hat{I}$
- Define a unitary mapping

$$
\mathcal{H} \xrightarrow{u} \mathcal{H}^{\prime}=L_{2}(C, d x), \quad|\varphi\rangle \xrightarrow{u} \varphi=u|\varphi\rangle
$$

by setting

$$
\varphi(x)=\langle x \mid \varphi\rangle
$$

- Inverse

$$
\begin{aligned}
|\varphi\rangle=u^{-1} \varphi & =\int|x\rangle\langle x \mid \varphi\rangle d x \\
& =\int \varphi(x)|x\rangle d x
\end{aligned}
$$

Unitarity is evident - $\quad u^{-1}=u^{\dagger}:$

$$
\langle\varphi \mid \psi\rangle=\int\langle\varphi \mid x\rangle\langle x \mid \psi\rangle d x=\int \varphi(x)^{*} \psi(x) d x
$$

- Inverse

$$
\begin{aligned}
|\varphi\rangle=u^{-1} \varphi & =\int|x\rangle\langle x \mid \varphi\rangle d x \\
& =\int \varphi(x)|x\rangle d x
\end{aligned}
$$

Unitarity is evident - $\quad u^{-1}=u^{\dagger}:$

$$
\langle\varphi \mid \psi\rangle=\int\langle\varphi \mid x\rangle\langle x \mid \psi\rangle d x=\int \varphi(x)^{*} \psi(x) d x
$$

- In the same way we can form the momentum rep:-

$$
\begin{gathered}
\hat{p}|p\rangle=p|p\rangle \\
\tilde{\varphi}=v|\varphi\rangle \in L_{2}(C, d p), \quad \tilde{\varphi}(p)=\langle p \mid \varphi\rangle \\
v^{\dagger} \tilde{\varphi}=|\varphi\rangle=\int|p\rangle \tilde{\varphi}(p) d p
\end{gathered}
$$

- Then the coordinate and momentum reps are also related by a unitary transformation:

$$
\begin{aligned}
\varphi & =u|\varphi\rangle=u v^{\dagger} \tilde{\varphi} \\
\varphi(x) & =\int\langle x \mid p\rangle \tilde{\varphi}(p) d p
\end{aligned}
$$

- the Fourier Transform:

$$
\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi}} e^{i x p / \hbar}
$$

All very familiar — dates back (at least) to Dirac's book.

- Before we move on, consider what happens to operators, e.g. in the coordinate rep:

$$
\begin{gathered}
\hat{a} \longrightarrow \hat{a}^{\prime}=u \hat{a} u^{\dagger} \\
\left(\hat{a}^{\prime} \varphi\right)(x)=\left(u \hat{a} u^{\dagger} \varphi\right)(x)=\int\langle x| \hat{a}|y\rangle \varphi(y) d y
\end{gathered}
$$

— integral operator with kernel $a_{K}(x, y)=\langle x| \hat{a}|y\rangle$.

Note that

$$
\hat{a} \hat{b} \longrightarrow u \hat{a} \hat{b} u^{\dagger}=u \hat{a} u^{\dagger} u \hat{b} u^{\dagger}=\hat{a}^{\prime} \hat{b}^{\prime}
$$

- so these unitary transformations preserve the product structure of the algebra of operators on \mathcal{H}
- they define algebra isomorphisms.
- To define the phase space rep, we have a different starting point:

Consider \mathcal{T} : complex Hilbert space of linear operators \hat{a} on \mathcal{H} s.t.

$$
\operatorname{Tr}\left(\hat{a}^{\dagger} \hat{a}\right)<\infty
$$

- Hilbert-Schmidt operators
- scalar product $\quad((\hat{a}, \hat{b}))=\operatorname{Tr}\left(\hat{a}^{\dagger} \hat{b}\right)$
- To define the phase space rep, we have a different starting point:

Consider \mathcal{T} : complex Hilbert space of linear operators \hat{a} on \mathcal{H} s.t.

$$
\operatorname{Tr}\left(\hat{a}^{\dagger} \hat{a}\right)<\infty
$$

- Hilbert-Schmidt operators
- scalar product

$$
((\hat{a}, \hat{b}))=\operatorname{Tr}\left(\hat{a}^{\dagger} \hat{b}\right)
$$

- The importance of \mathcal{T} stems from the fact that it contains the density operator (matrix)

$$
\begin{aligned}
& \hat{\rho}(t)=\left\{\begin{array}{l}
|\psi(t)\rangle\langle\psi(t)| \quad \text { pure state } \\
\sum_{r} p_{r}\left|\psi_{r}(t)\right\rangle\left\langle\psi_{r}(t)\right| \quad \text { mixed state } \\
p_{r}>0, \quad \sum_{r} p_{r}=1
\end{array}\right. \\
& \hat{\rho}(t)^{\dagger}=\hat{\rho}(t), \quad \hat{\rho}(t) \geq 0, \quad \operatorname{Tr}(\hat{\rho}(t))=1
\end{aligned}
$$

In fact

$$
((\hat{\rho}(t), \hat{\rho}(t))) \equiv \operatorname{Tr}\left(\hat{\rho}(t)^{2}\right) \leq 1,
$$

so $\hat{\rho}(t)$ is in \mathcal{T}.
Furthermore, we can calculate the expectation value of any observable $\hat{a} \in \mathcal{T}$ as

$$
\langle\hat{a}\rangle(t)=\operatorname{Tr}(\hat{\rho}(t) \hat{a})=((\hat{\rho}(t), \hat{a})) .
$$

Unfortunately, \mathcal{T} does not contain $\hat{I}, \hat{q}, \hat{p}, \ldots$

- We overcome this by 'rigging' \mathcal{T} :

Consider $\mathcal{S} \subset \mathcal{T}$ with $\overline{\mathcal{S}}=\mathcal{T}$. Then $\mathcal{T}^{*} \subset \mathcal{S}^{*}$, so

$$
\mathcal{S} \subset \mathcal{T} \equiv \mathcal{T}^{*} \subset \mathcal{S}^{*}
$$

or, with an abuse of notation,

$$
\mathcal{S} \subset \mathcal{T} \subset \mathcal{S}^{*} \quad \mathrm{Gel}^{\prime} \text { fand triple }
$$

Choosing e.g.

$$
\mathcal{S}=\text { linear } \operatorname{span}\{|m\rangle\langle n|\}
$$

in terms of the number states $|m\rangle$ for $m, n=0,1,2, \ldots$, it is easy to see that \mathcal{S}^{*} contains all polynomials in $\hat{I}, \hat{q}, \hat{p}$.

We can extend the definition of $((.,)$.$) to \mathcal{S}^{*}$ in a natural way. Then we can calculate

$$
\langle\hat{a}\rangle(t)=((\hat{\rho}(t), \hat{a}))
$$

for most observables of interest.

Question: Do we need \mathcal{H}, the space of state vectors, to do QM, or can we get by with \mathcal{T} (or more precisely, with \mathcal{S}^{*})?
(Berry phase? Charge quantization?)

- Suppose that we can get by with \mathcal{T}. Then we can proceed to consider unitary transformations of \mathcal{T}, just as we did in the case of \mathcal{H} :

$$
\begin{gathered}
\mathcal{T} \xrightarrow{U} \mathcal{T}^{\prime} \quad \hat{a} \xrightarrow{U} \hat{a}^{\prime}=U(\hat{a}) \\
\left(\left(\hat{a}^{\prime}, \hat{b}^{\prime}\right)\right)_{\mathcal{T}^{\prime}}=((U(\hat{a}), U(\hat{b})))_{\mathcal{T}^{\prime}}=((\hat{a}, \hat{b}))_{\mathcal{T}} .
\end{gathered}
$$

- Suppose that we can get by with \mathcal{T}. Then we can proceed to consider unitary transformations of \mathcal{T}, just as we did in the case of \mathcal{H} :

$$
\begin{gathered}
\mathcal{T} \xrightarrow{U} \mathcal{T}^{\prime} \quad \hat{a} \xrightarrow{U} \hat{a}^{\prime}=U(\hat{a}) \\
\left(\left(\hat{a}^{\prime}, \hat{b}^{\prime}\right)\right)_{\mathcal{T}^{\prime}}=((U(\hat{a}), U(\hat{b})))_{\mathcal{T}^{\prime}}=((\hat{a}, \hat{b}))_{\mathcal{T}} .
\end{gathered}
$$

- The previously-defined transformations of operators, induced by transformations of vectors in \mathcal{H}, provide examples:

$$
\begin{gathered}
U(\hat{a})=u \hat{a} u^{\dagger} \\
\left.\left(\left(\hat{a}^{\prime}, \hat{b}^{\prime}\right)\right)_{\mathcal{T}^{\prime}}=\operatorname{Tr}\left(u \hat{a} u^{\dagger}, u \hat{b} u^{\dagger}\right)\right)_{\mathcal{T}^{\prime}}=\operatorname{Tr}(\hat{a}, \hat{b})=\left((\hat{a}, \hat{b})_{\mathcal{T}}\right.
\end{gathered}
$$

However, it is important to see that not every possible $U(\hat{a})$ is of the form $u \hat{a} u^{\dagger}$.

- Then we have a complication:

How is $U(\hat{a} \hat{b})$ related to $U(\hat{a})$ and $U(\hat{b})$?

There may not even exist á priori a well-defined product of $U(\hat{a})$ and $U(\hat{b})$ in \mathcal{T}^{\prime} !

- Then we have a complication:

How is $U(\hat{a} \hat{b})$ related to $U(\hat{a})$ and $U(\hat{b})$?

There may not even exist á priori a well-defined product of $U(\hat{a})$ and $U(\hat{b})$ in \mathcal{T}^{\prime} !

- To recover the situation, we have to define a product in \mathcal{T}^{\prime} :

$$
U(\hat{a}) \star U(\hat{b}) \stackrel{\text { def }}{=} U(\hat{a} \hat{b})
$$

Then since $\hat{a} \hat{b} \neq \hat{b} \hat{a}$ in general, we have

$$
U(\hat{a}) \star U(\hat{b})=U(\hat{a} \hat{b}) \neq U(\hat{b} \hat{a})=U(\hat{b}) \star U(\hat{a})
$$

- non-commutative star-product in \mathcal{T}^{\prime}.
- To set up the unitary U defining the phase space rep, consider the (hermitian) kernel operator (Stratonovich, 1957)

$$
\hat{\Delta}(q, p)=2 \hat{P} e^{2 i(q \hat{p}-p \hat{q}) / \hbar}=2 e^{-2 i q p / \hbar} \hat{P} e^{-2 i p \hat{q} / \hbar} e^{2 i q \hat{p} / \hbar}=2 e^{2 i q p / \hbar} \hat{P} e^{2 i q \hat{p} / \hbar} e^{-2 i p \hat{q} / \hbar}
$$

where \hat{P} is the parity operator: $\quad \hat{P}|x\rangle=|-x\rangle$.

- To set up the unitary U defining the phase space rep, consider the (hermitian) kernel operator (Stratonovich, 1957)

$$
\hat{\Delta}(q, p)=2 \hat{P} e^{2 i(q \hat{p}-p \hat{q}) / \hbar}=2 e^{2 i q p \hbar} \hat{P} e^{2 i q \hat{p} / \hbar} e^{-2 i p \hat{q} / \hbar}=2 e^{-2 i q p \hbar} \hat{P} e^{-2 i p \hat{q} / \hbar} e^{2 i q \hat{p} / \hbar}
$$

where \hat{P} is the parity operator: $\quad \hat{P}|x\rangle=|-x\rangle$.

- The kernel sits in \mathcal{S}^{*} and defines a continuous generalized basis for \mathcal{T}.

Orthonormal:

$$
\left(\left(\hat{\Delta}(q, p), \hat{\Delta}\left(q^{\prime}, p^{\prime}\right)\right)\right)=\operatorname{Tr}\left(\hat{\Delta}(q, p)^{\dagger} \hat{\Delta}\left(q^{\prime}, p^{\prime}\right)\right)=2 \pi \hbar \delta\left(q-q^{\prime}\right) \delta\left(p-p^{\prime}\right)
$$

Complete:

$$
\frac{1}{2 \pi \hbar} \int \hat{\Delta}(q, p)((\hat{\Delta}(q, p), \hat{a})) d q d p=\hat{a} \quad \forall \hat{a} \in \mathcal{T}
$$

- To set up the unitary U defining the phase space rep, consider the (hermitian) kernel operator (Stratonovich, 1957)

$$
\hat{\Delta}(q, p)=2 \hat{P} e^{2 i(p \hat{q}-q \hat{p}) / \hbar}=2 e^{2 i q p \hbar} \hat{P} e^{-2 i q \hat{p} / \hbar} e^{2 i p \hat{q} / \hbar}=2 e^{-2 i q p \hbar} \hat{P} e^{2 i p \hat{q} / \hbar} e^{-2 i q \hat{p} / \hbar}
$$

where \hat{P} is the parity operator: $\quad \hat{P}|x\rangle=|-x\rangle$.

- The kernel sits in \mathcal{S}^{*} and defines a continuous generalized basis for \mathcal{T}.

Orthonormal:

$$
\left(\left(\hat{\Delta}(q, p), \hat{\Delta}\left(q^{\prime}, p^{\prime}\right)\right)\right)=\operatorname{Tr}\left(\hat{\Delta}(q, p)^{\dagger} \hat{\Delta}\left(q^{\prime}, p^{\prime}\right)\right)=2 \pi \hbar \delta\left(q-q^{\prime}\right) \delta\left(p-p^{\prime}\right)
$$

Complete:

$$
\frac{1}{2 \pi \hbar} \int \hat{\Delta}(q, p)((\hat{\Delta}(q, p), \hat{a})) d q d p=\hat{a} \quad \forall \hat{a} \in \mathcal{T}
$$

- cf.

$$
\langle x \mid y\rangle=\delta(x-y)
$$

$$
\int|x\rangle\langle x \mid \varphi\rangle d x=|\varphi\rangle \quad \forall|\varphi\rangle \in \mathcal{H}
$$

- We now define the phase space rep by setting

$$
A(q, p)=((\hat{\Delta}(q, p), \hat{a}))=\operatorname{Tr}\left(\hat{\Delta}(q, p)^{\dagger} \hat{a}\right)
$$

- symbolically,

$$
A=\mathcal{W}(\hat{a}) \quad \mathcal{W}=\text { Weyl-Wigner transform } .
$$

- We now define the phase space rep by setting

$$
A(q, p)=((\hat{\Delta}(q, p), \hat{a}))=\operatorname{Tr}\left(\hat{\Delta}(q, p)^{\dagger} \hat{a}\right)
$$

- symbolically,

$$
A=\mathcal{W}(\hat{a}) \quad \mathcal{W}=\text { Weyl-Wigner transform }
$$

- Then

$$
((\hat{a}, \hat{b})) \xrightarrow{\mathcal{W}} \frac{1}{2 \pi \hbar} \int A(q, p)^{*} B(q, p) d q d p
$$

so that $\mathcal{T}^{\prime}=L_{2}(C, d q d p)=\mathcal{K}$, say.

- We now define the phase space rep by setting

$$
A(q, p)=((\hat{\Delta}(q, p), \hat{a}))=\operatorname{Tr}\left(\hat{\Delta}(q, p)^{\dagger} \hat{a}\right)
$$

- symbolically,

$$
A=\mathcal{W}(\hat{a}) \quad \mathcal{W}=\text { Weyl-Wigner transform }
$$

- Then

$$
((\hat{a}, \hat{b})) \xrightarrow{\mathcal{W}} \frac{1}{2 \pi \hbar} \int A(q, p)^{*} B(q, p) d q d p
$$

so that $\mathcal{T}^{\prime}=L_{2}(C, d q d p)=\mathcal{K}$, say.

- The inverse mapping is

$$
\hat{a}=\mathcal{W}^{-1}(A)=\frac{1}{2 \pi \hbar} \int \hat{\Delta}(q, p) A(q, p) d q d p
$$

- cf.

$$
\varphi(x)=\langle x \mid \varphi\rangle
$$

- symbolically,

$$
\varphi=u|\varphi\rangle
$$

- Then

$$
\langle\varphi \mid \psi\rangle \xrightarrow{u} \int \varphi(x)^{*} \psi(x) d x
$$

so that $\mathcal{H}^{\prime}=L_{2}(C, d x)$.

- The inverse transformation is

$$
|\varphi\rangle=u^{-1} \varphi=\int|x\rangle \varphi(x) d x
$$

In the case of \mathcal{W}, there is a natural product in $\mathcal{T}^{\prime}=\mathcal{K}$, namely the ordinary product of functions $A(q, p) B(q, p)$

- but clearly this is not the image of $\hat{a} \hat{b}$, because it is commutative.

So in the case of the phase space rep, we will need to use

$$
\begin{gathered}
A \star B=\mathcal{W}(\hat{a} \hat{b}) \neq A B \\
(A \star B)(q, p)=((\hat{\Delta}(q, p), \hat{a} \hat{b})) .
\end{gathered}
$$

In particular, we have to use the star product to describe

- Quantum Dynamics:

$$
\begin{gathered}
i \hbar \frac{\partial \hat{\rho}(t)}{\partial t}=[\hat{H}, \hat{\rho}] \\
\xrightarrow{\mathcal{W}} \quad i \hbar \frac{\partial W(q, p, t)}{\partial t}=H(q, p) \star W(q, p, t)-W(q, p, t) \star H(q, p)
\end{gathered}
$$

where $W=\mathcal{W}\left(\frac{1}{2 \pi n} \hat{\rho}\right) \quad-\quad$ the Wigner function. \quad (Wigner, 1932)

In particular, we have to use the star product to describe

- Quantum Dynamics:

$$
\begin{gathered}
i \hbar \frac{\partial \hat{\rho}(t)}{\partial t}=[\hat{H}, \hat{\rho}] \\
\xrightarrow[\longrightarrow]{\mathcal{W}} \quad i \hbar \frac{\partial W(q, p, t)}{\partial t}=H(q, p) \star W(q, p, t)-W(q, p, t) \star H(q, p)
\end{gathered}
$$

where $W=\mathcal{W}\left(\frac{1}{2 \pi \hbar} \hat{\rho}\right) \quad-\quad$ the Wigner function. (Wigner, 1932)

- Quantum symmetries:

$$
\begin{gathered}
\hat{a}^{\prime}=\hat{u}_{g} \hat{a} \hat{u}_{g}^{\dagger} \\
\xrightarrow{\mathcal{W}} U_{g}(q, p) \star A(q, p) \star U_{g}(q, p)^{*} \\
\hat{u}_{g} \hat{u}_{g}^{\dagger}=\hat{u}_{g}^{\dagger} \hat{u}_{g}=\hat{I}, \quad \xrightarrow{\mathcal{W}} \quad U_{g} \star U_{g}^{*}=U_{g}^{*} \star U_{g}=1 .
\end{gathered}
$$

- To get $A(q, p)$ more explicitly, make use of the coordinate rep:-

$$
\begin{aligned}
&(\hat{a} \varphi)(x)=\int a_{K}(x, y) \varphi(y) d y, \quad a_{K}(x, y)=\langle x| \hat{a}|y\rangle . \\
& \Delta_{K}(x, y)=\langle x| \hat{\Delta}(q, p)|y\rangle=2 e^{2 i q p \hbar}\langle x| \hat{P} e^{2 i q \hat{p} / \hbar} e^{-2 i p \hat{q} / \hbar}|y\rangle \\
&=2 e^{2 i q p \hbar} e^{2 i p y / \hbar}\langle-x| e^{2 i q \hat{p} / \hbar}|y\rangle \\
&=e^{2 i p(q-y) / \hbar} \delta\left(\frac{x+y}{2}-q\right) .
\end{aligned}
$$

- To get $A(q, p)$ more explicitly, make use of the coordinate rep:-

$$
\begin{aligned}
&(\hat{a} \varphi)(x)=\int a_{K}(x, y) \varphi(y) d y, \quad a_{K}(x, y)=\langle x| \hat{a}|y\rangle \\
& \Delta_{K}(x, y)=\langle x| \hat{\Delta}(q, p)|y\rangle=2 e^{2 i q p \hbar}\langle x| \hat{P} e^{2 i q \hat{p} / \hbar} e^{-2 i p \hat{q} / \hbar}|y\rangle \\
&=2 e^{2 i q p \hbar} e^{2 i p y / \hbar}\langle-x| e^{2 i q \hat{p} / \hbar}|y\rangle \\
&=e^{2 i p(q-y) / \hbar} \delta\left(\frac{x+y}{2}-q\right)
\end{aligned}
$$

- Then

$$
\begin{aligned}
\operatorname{Tr}(\hat{\Delta}(q, p) \hat{a}) & =\int\langle x| \hat{\Delta}(q, p)|y\rangle\langle y| \hat{a}|x\rangle d x d y \\
& =\int e^{2 i p(q-y) / \hbar} \delta\left(\frac{x+y}{2}-q\right) a_{K}(y, x) d x d y \\
\text { i.e. } \quad A(q, p) & =\int a_{K}(q-y / 2, q+y / 2) e^{i p y / \hbar} d y
\end{aligned}
$$

$$
\begin{aligned}
a_{K}(x, y) & =\frac{1}{2 \pi \hbar} \int\langle x| \hat{\Delta}(q, p)|y\rangle A(q, p) d q d p \\
& =\frac{1}{2 \pi \hbar} \int e^{2 i p(q-y) / \hbar} \delta\left(\frac{x+y}{2}-q\right) A(q, p) d q d p \\
& =\frac{1}{2 \pi \hbar} \int A\left(\frac{x+y}{2}, p\right) e^{i p(x-y) / \hbar} d p
\end{aligned}
$$

Note: If $\hat{a}^{\dagger}=\hat{a}$, then $A(q, p)^{*}=A(q, p)$

To summarize: The phase space rep is defined by the Weyl-Wigner transform:

$$
\begin{array}{rl}
A=\mathcal{W}(\hat{a}) & \hat{a}=\mathcal{W}^{-1}(A) \\
\mathcal{T} \xrightarrow{\mathcal{W}} \mathcal{K} & \mathcal{K} \xrightarrow{\mathcal{W}^{-1}} \mathcal{T}
\end{array}
$$

In $\mathcal{T}: \quad((\hat{a}, \hat{b}))=\operatorname{Tr}\left(\hat{a}^{\dagger} \hat{b}\right)$.
In $\mathcal{K}: \quad(A, B)=\frac{1}{2 \pi \hbar} \int A(q, p)^{*} B(q, p) d q d p$.

$$
A \star B=\mathcal{W}(\hat{a} \hat{b}) \neq \mathcal{W}(\hat{b} \hat{a})=B \star A
$$

$$
A(q, p)=\int a_{K}(q-y / 2, q+y / 2) e^{i p y / \hbar} d y
$$

$$
a_{K}(x, y)=\frac{1}{2 \pi \hbar} \int A\left(\frac{x+y}{2}, p\right) e^{i p(x-y) / \hbar} d p
$$

