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Lecture 1 Introduction:

— from the coordinate representation to the phase space

representation; the Weyl-Wigner transform

Lecture 2 The Wigner function:

— nonpositivity; quantum tomography

Lecture 3 Classical and quantum dynamics:

— the Groenewold operator; semiquantum mechanics
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Lecture 1 Introduction:

• QM has many representations

— coordinate rep, momentum rep, Bargmann rep, Zak’s kq – rep, . . .

— each has its own advantages — most are equivalent
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Lecture 1 Introduction:

• QM has many representations

— coordinate rep, momentum rep, Bargmann rep, Zak’s kq – rep, . . .

— each has its own advantages — most are equivalent

• The phase space rep is different in character

— not equivalent to the above

— prominent in recent years for applications to quantum optics,

quantum information theory, quantum tomography, . . .

— also for questions re foundations of QM and classical mechanics (CM)

— QM as a deformation of CM, the nature of the QM-CM interface, . . .

• The development of the theory is associated with a very long list of names: Weyl, Wigner,

von Neumann, Groenewold, Moyal, Takabayasi, Stratonovich, Baker, Berezin, Pool, Berry,

Bayen et al., Shirokov, . . .

Our treatment will necessarily be very selective . . .
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• Start with some familiar reps of QM, related by unitary transformations.

Consider how we form the coordinate rep for a quantum system with one linear degree of

freedom — dynamical variables q̂, p̂.
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Consider how we form the coordinate rep for a quantum system with one linear degree of

freedom — dynamical variables q̂, p̂.

• Start with abstract H: complex Hilbert space of state vectors |ϕ〉, |ψ〉, . . .

— scalar product 〈ϕ|ψ〉.

• Introduce generalized eigenvectors of q̂: q̂|x〉 = x|x〉

— orthonormal 〈x|y〉 = δ(x− y) and complete
∫
|x〉〈x| dx = Î
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• Start with some familiar reps of QM, related by unitary transformations.

Consider how we form the coordinate rep for a quantum system with one linear degree of

freedom — dynamical variables q̂, p̂.

• Start with abstract H: complex Hilbert space of state vectors |ϕ〉, |ψ〉, . . .

— scalar product 〈ϕ|ψ〉.

• Introduce generalized eigenvectors of q̂: q̂|x〉 = x|x〉

— orthonormal 〈x|y〉 = δ(x− y) and complete
∫
|x〉〈x| dx = Î

• Define a unitary mapping

H u−→ H′ = L2(C, dx) , |ϕ〉 u−→ ϕ = u|ϕ〉

by setting

ϕ(x) = 〈x|ϕ〉 .
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• Inverse

|ϕ〉 = u−1ϕ =

∫
|x〉〈x|ϕ〉 dx

=

∫
ϕ(x)|x〉 dx .

Unitarity is evident — u−1 = u†:

〈ϕ|ψ〉 =

∫
〈ϕ|x〉〈x|ψ〉 dx =

∫
ϕ(x)∗ψ(x) dx .
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• Inverse

|ϕ〉 = u−1ϕ =

∫
|x〉〈x|ϕ〉 dx

=

∫
ϕ(x)|x〉 dx .

Unitarity is evident — u−1 = u†:

〈ϕ|ψ〉 =

∫
〈ϕ|x〉〈x|ψ〉 dx =

∫
ϕ(x)∗ψ(x) dx .

• In the same way we can form the momentum rep:–

p̂|p〉 = p|p〉

ϕ̃ = v|ϕ〉 ∈ L2(C, dp) , ϕ̃(p) = 〈p|ϕ〉

v†ϕ̃ = |ϕ〉 =

∫
|p〉ϕ̃(p) dp
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• Then the coordinate and momentum reps are also related by a unitary transformation:

ϕ = u|ϕ〉 = uv†ϕ̃

ϕ(x) =

∫
〈x|p〉ϕ̃(p) dp

— the Fourier Transform: 〈x|p〉 = 1√
2π
eixp/~

All very familiar — dates back (at least) to Dirac’s book.
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• Before we move on, consider what happens to operators, e.g. in the coordinate rep:

â −→ â′ = u â u†

(â′ϕ)(x) = (u â u†ϕ)(x) =

∫
〈x|â|y〉ϕ(y) dy .

— integral operator with kernel aK(x, y) = 〈x|â|y〉.

Note that

â b̂ −→ u â b̂ u† = u â u† u b̂ u† = â′ b̂′

— so these unitary transformations preserve the product structure of the algebra of

operators on H

— they define algebra isomorphisms.
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• To define the phase space rep, we have a different starting point:

Consider T : complex Hilbert space of linear operators â on H s.t.

Tr(â† â) <∞
— Hilbert-Schmidt operators

— scalar product ((â, b̂)) = Tr(â†b̂)
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• To define the phase space rep, we have a different starting point:

Consider T : complex Hilbert space of linear operators â on H s.t.

Tr(â† â) <∞
— Hilbert-Schmidt operators

— scalar product ((â, b̂)) = Tr(â†b̂)

• The importance of T stems from the fact that it contains the density operator (matrix)

ρ̂(t) =


|ψ(t)〉〈ψ(t)| pure state∑

r pr|ψr(t)〉〈ψr(t)| mixed state

pr > 0 ,
∑

r pr = 1

ρ̂(t)† = ρ̂(t) , ρ̂(t) ≥ 0 , Tr(ρ̂(t)) = 1
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In fact

((ρ̂(t), ρ̂(t))) ≡ Tr(ρ̂(t)2) ≤ 1 ,

so ρ̂(t) is in T .

Furthermore, we can calculate the expectation value of any observable â ∈ T as

〈â〉(t) = Tr(ρ̂(t)â) = ((ρ̂(t), â)) .

Unfortunately, T does not contain Î , q̂ , p̂ , . . .
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• We overcome this by ‘rigging’ T :

Consider S ⊂ T with S̄ = T . Then T ∗ ⊂ S∗, so

S ⊂ T ≡ T ∗ ⊂ S∗

or, with an abuse of notation,

S ⊂ T ⊂ S∗ Gel′fand triple

Choosing e.g.

S = linear span{|m〉〈n|}
in terms of the number states |m〉 for m, n = 0, 1, 2, . . . , it is easy to see that S∗

contains all polynomials in Î , q̂ , p̂ .

We can extend the definition of ((., .)) to S∗ in a natural way. Then we can calculate

〈â〉(t) = ((ρ̂(t), â))

for most observables of interest.
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Question: Do we need H, the space of state vectors, to do QM, or can we get by with T
(or more precisely, with S∗)?

(Berry phase? Charge quantization? ....)
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• Suppose that we can get by with T . Then we can proceed to consider unitary transfor-

mations of T , just as we did in the case of H:

T U−→ T ′ â
U−→ â′ = U(â)

((â′, b̂′))T ′ = ((U(â), U(b̂)))T ′ = ((â, b̂))T .
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• Suppose that we can get by with T . Then we can proceed to consider unitary transfor-

mations of T , just as we did in the case of H:

T U−→ T ′ â
U−→ â′ = U(â)

((â′, b̂′))T ′ = ((U(â), U(b̂)))T ′ = ((â, b̂))T .

• The previously-defined transformations of operators, induced by transformations of

vectors in H, provide examples:

U(â) = u â u†

((â′, b̂′))T ′ = Tr(u â u†, u b̂ u†))T ′ = Tr(â, b̂) = ((â, b̂))T .

However, it is important to see that not every possible U(â) is of the form u â u†.
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• Then we have a complication:

How is U(âb̂) related to U(â) and U(b̂)?

There may not even exist á priori a well-defined product of U(â) and U(b̂) in T ′ !
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• Then we have a complication:

How is U(âb̂) related to U(â) and U(b̂)?

There may not even exist á priori a well-defined product of U(â) and U(b̂) in T ′ !

• To recover the situation, we have to define a product in T ′ :

U(â) ? U(b̂)
def
= U(âb̂)

Then since âb̂ 6= b̂â in general, we have

U(â) ? U(b̂) = U(âb̂) 6= U(b̂â) = U(b̂) ? U(â)

— non-commutative star-product in T ′.
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• To set up the unitary U defining the phase space rep, consider the

(hermitian) kernel operator (Stratonovich, 1957)

∆̂(q, p) = 2P̂ e2i(qp̂−pq̂)/~ = 2e−2iqp/~ P̂ e−2ipq̂/~ e2iqp̂/~ = 2e2iqp/~ P̂ e2iqp̂/~ e−2ipq̂/~

where P̂ is the parity operator: P̂ |x〉 = | − x〉.
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• To set up the unitary U defining the phase space rep, consider the

(hermitian) kernel operator (Stratonovich, 1957)

∆̂(q, p) = 2P̂ e2i(qp̂−pq̂)/~ = 2e2iqp~ P̂ e2iqp̂/~ e−2ipq̂/~ = 2e−2iqp~ P̂ e−2ipq̂/~ e2iqp̂/~

where P̂ is the parity operator: P̂ |x〉 = | − x〉.

• The kernel sits in S∗ and defines a continuous generalized basis for T .

Orthonormal:

((∆̂(q, p), ∆̂(q′, p′))) = Tr(∆̂(q, p)†∆̂(q′, p′)) = 2π~δ(q − q′)δ(p− p′) .

Complete:
1

2π~

∫
∆̂(q, p)((∆̂(q, p), â)) dq dp = â ∀â ∈ T .
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• To set up the unitary U defining the phase space rep, consider the

(hermitian) kernel operator (Stratonovich, 1957)

∆̂(q, p) = 2P̂ e2i(pq̂−qp̂)/~ = 2e2iqp~ P̂ e−2iqp̂/~ e2ipq̂/~ = 2e−2iqp~ P̂ e2ipq̂/~ e−2iqp̂/~

where P̂ is the parity operator: P̂ |x〉 = | − x〉.

• The kernel sits in S∗ and defines a continuous generalized basis for T .

Orthonormal:

((∆̂(q, p), ∆̂(q′, p′))) = Tr(∆̂(q, p)†∆̂(q′, p′)) = 2π~ δ(q − q′) δ(p− p′) .
Complete:

1

2π~

∫
∆̂(q, p)((∆̂(q, p), â)) dq dp = â ∀â ∈ T .

• cf. 〈x|y〉 = δ(x− y) ,
∫
|x〉〈x|ϕ〉 dx = |ϕ〉 ∀|ϕ〉 ∈ H .
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• We now define the phase space rep by setting

A(q, p) = ((∆̂(q, p), â)) = Tr(∆̂(q, p)†â)

— symbolically, A =W(â) W = Weyl-Wigner transform.
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• We now define the phase space rep by setting

A(q, p) = ((∆̂(q, p), â)) = Tr(∆̂(q, p)†â)

— symbolically, A =W(â) W = Weyl-Wigner transform.

• Then

((â, b̂))
W−→ 1

2π~

∫
A(q, p)∗B(q, p) dq dp ,

so that T ′ = L2(C, dqdp) = K, say.
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• We now define the phase space rep by setting

A(q, p) = ((∆̂(q, p), â)) = Tr(∆̂(q, p)†â)

— symbolically, A =W(â) W = Weyl-Wigner transform.

• Then

((â, b̂))
W−→ 1

2π~

∫
A(q, p)∗B(q, p) dq dp ,

so that T ′ = L2(C, dqdp) = K, say.

• The inverse mapping is

â =W−1(A) =
1

2π~

∫
∆̂(q, p)A(q, p) dq dp .
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• cf.

ϕ(x) = 〈x|ϕ〉

— symbolically, ϕ = u|ϕ〉.

• Then

〈ϕ|ψ〉 u−→
∫
ϕ(x)∗ψ(x) dx

so that H′ = L2(C, dx).

• The inverse transformation is

|ϕ〉 = u−1ϕ =

∫
|x〉ϕ(x) dx .
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In the case of W , there is a natural product in T ′ = K, namely the ordinary

product of functions A(q, p)B(q, p)

— but clearly this is not the image of âb̂, because it is commutative.

So in the case of the phase space rep, we will need to use

A ? B =W(âb̂) 6= AB

(A ? B)(q, p) = ((∆̂(q, p), âb̂)) .
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In particular, we have to use the star product to describe

• Quantum Dynamics:

i~
∂ρ̂(t)

∂t
= [Ĥ, ρ̂]

W−→ i~
∂W (q, p, t)

∂t
= H(q, p) ? W (q, p, t)−W (q, p, t) ? H(q, p)

where W =W( 1
2π~ρ̂) — the Wigner function. (Wigner, 1932)
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In particular, we have to use the star product to describe

• Quantum Dynamics:

i~
∂ρ̂(t)

∂t
= [Ĥ, ρ̂]

W−→ i~
∂W (q, p, t)

∂t
= H(q, p) ? W (q, p, t)−W (q, p, t) ? H(q, p)

where W =W( 1
2π~ρ̂) — the Wigner function. (Wigner, 1932)

• Quantum symmetries:

â′ = ûg â û
†
g

W−→ Ug(q, p) ? A(q, p) ? Ug(q, p)∗

ûg û
†
g = û†g ûg = Î ,

W−→ Ug ? U
∗
g = U ∗g ? Ug = 1 .

— star-unitary representations of groups on phase space. (Fronsdal, 1978)
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• To get A(q, p) more explicitly, make use of the coordinate rep:–

(âϕ)(x) =

∫
aK(x, y)ϕ(y) dy , aK(x, y) = 〈x|â|y〉 .

∆K(x, y) = 〈x|∆̂(q, p)|y〉 = 2e2iqp~ 〈x|P̂ e2iqp̂/~ e−2ipq̂/~|y〉

= 2e2iqp~ e2ipy/~ 〈−x|e2iqp̂/~|y〉

= e2ip(q−y)/~ δ(x+y2 − q) .
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• To get A(q, p) more explicitly, make use of the coordinate rep:–

(âϕ)(x) =

∫
aK(x, y)ϕ(y) dy , aK(x, y) = 〈x|â|y〉 .

∆K(x, y) = 〈x|∆̂(q, p)|y〉 = 2e2iqp~ 〈x|P̂ e2iqp̂/~ e−2ipq̂/~|y〉

= 2e2iqp~ e2ipy/~ 〈−x|e2iqp̂/~|y〉

= e2ip(q−y)/~ δ(x+y2 − q) .

• Then

Tr(∆̂(q, p)â) =

∫
〈x|∆̂(q, p)|y〉〈y|â|x〉 dx dy

=

∫
e2ip(q−y)/~ δ(x+y2 − q)aK(y, x) dx dy

i.e. A(q, p) =

∫
aK(q − y/2, q + y/2) eipy/~ dy
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•

aK(x, y) =
1

2π~

∫
〈x|∆̂(q, p)|y〉A(q, p) dq dp

=
1

2π~

∫
e2ip(q−y)/~ δ(x+y2 − q)A(q, p) dq dp

=
1

2π~

∫
A(x+y2 , p) eip(x−y)/~ dp .

Note: If â† = â, then A(q, p)∗ = A(q, p)

****************
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To summarize: The phase space rep is defined by the Weyl-Wigner transform:

A =W(â) â =W−1(A)

T W−→ K K W
−1
−→ T

In T : ((â, b̂)) = Tr(â†b̂). In K: (A,B) = 1
2π~

∫
A(q, p)∗B(q, p) dq dp .

A ? B =W(âb̂) 6=W(b̂â) = B ? A

A(q, p) =

∫
aK(q − y/2, q + y/2) eipy/~ dy

aK(x, y) =
1

2π~

∫
A(x+y2 , p) eip(x−y)/~ dp
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