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Lecture 1 Introduction:
— from the coordinate representation to the phase space

representation; the Weyl-Wigner transform

Lecture 2 The Wigner function:

— nonpositivity; quantum tomography

Lecture 3 Classical and quantum dynamics:

— the Groenewold operator; semiquantum mechanics
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e The phase space rep is different in character
— not equivalent to the above
— prominent in recent years for applications to quantum optics,
quantum information theory, quantum tomography, . ..
— also for questions re foundations of QM and classical mechanics (CM)
— QM as a deformation of CM, the nature of the QM-CM interface, . ..

e The development of the theory is associated with a very long list of names: Weyl, Wigner,
von Neumann, Groenewold, Moyal, Takabayasi, Stratonovich, Baker, Berezin, Pool, Berry,
Bayen et al., Shirokov, ...

Our treatment will necessarily be very selective . ..



e Start with some familiar reps of QM, related by unitary transformations.

Consider how we form the coordinate rep for a quantum system with one linear degree of
freedom — dynamical variables ¢, p.



e Start with some familiar reps of QM, related by unitary transformations.

Consider how we form the coordinate rep for a quantum system with one linear degree of
freedom — dynamical variables ¢, p.

e Start with abstract H: complex Hilbert space of state vectors |¢), |¥), ...

— scalar product (p|v).



e Start with some familiar reps of QM, related by unitary transformations.

Consider how we form the coordinate rep for a quantum system with one linear degree of
freedom — dynamical variables ¢, p.

e Start with abstract H: complex Hilbert space of state vectors |¢), |¥), ...

— scalar product (p|v).

e Introduce generalized eigenvectors of ¢: qlz) = z|z)

— orthonormal (z|y) = §(x — y) and complete [ |z)(z|dz =T



e Start with some familiar reps of QM, related by unitary transformations.

Consider how we form the coordinate rep for a quantum system with one linear degree of
freedom — dynamical variables ¢, p.

e Start with abstract H: complex Hilbert space of state vectors |¢), |¥), ...

— scalar product (p|v).

e Introduce generalized eigenvectors of ¢: qlz) = z|z)

— orthonormal (z|y) = §(x — y) and complete [ |z)(z|dz =T

e Define a unitary mapping
H—H = Lo(Cydx),  |p) — o =ulp)

by setting

plx) = (z]p)



e Inverse
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e Inverse

) /wa

~ [ vlalls) o
Unitarity is evident — w =l
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e In the same way we can form the momentum rep:—

plp) = plp)



e Then the coordinate and momentum reps are also related by a unitary transformation:

]L~

o =ulp) =u'P

o) = / (Ip)3(p) dp

— the Fourier Transform: (x|p) = \/LZ? piap/h

All very familiar — dates back (at least) to Dirac’s book.



e Before we move on, consider what happens to operators, e.g. in the coordinate rep:

— integral operator with kernel ax(x,y) = (x

Note that
ab— uabu =vauubu’ =a'V
— so these unitary transformations preserve the product structure of the algebra of

operators on ‘H

— they define algebra isomorphisms.
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e To define the phase space rep, we have a different starting point:

Consider 7: complex Hilbert space of linear operators @ on H s.t.

Tr(a' @) < oo
— Hilbert-Schmidt operators

— scalar product ((a, b)) = Tr(a'd)

e The importance of 7 stems from the fact that it contains the density operator (matrix)

( [00(t))((t)| pure state

POZN Sl (0) (0] mised state
\pr>07 Z'r’przl




In fact
((p(t), p(t))) = Te(p(t)*) < 1,
so p(t) isin 7.

Furthermore, we can calculate the expectation value of any observable a € T as

(a)(t) = Te(p(t)a) = ((p(1), @) -

Unfortunately, 7" does not contain I,4, p,...



e We overcome this by ‘rigging’ 7

Consider S C 7 with S =7. Then 7* C 8%, so

ScT=T"CcS§*

or, with an abuse of notation,

ScCTCS8" Gelfand triple

Choosing e.g.
S = linear span{|m)(n|}

in terms of the number states |m) for m, n = 0, 1, 2, ..., it is easy to see that &*
contains all polynomialsin I, ¢, p.

We can extend the definition of ((.,.)) to S* in a natural way. Then we can calculate

for most observables of interest.



Question: Do we need H, the space of state vectors, to do QM, or can we get by with 7
(or more precisely, with §*)7

(Berry phase?  Charge quantization? ....)
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e The previously-defined transformations of operators, induced by transformations of
vectors in ‘H, provide examples:

Ula) =uvau'

(@', 1) = Tr(uaut,ubu®))r = Tr(a,b) = ((a,b))r .

However, it is important to see that not every possible U(a) is of the form wa u'.
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e Then we have a complication:

How is U(ab) related to U(a) and U(b)?

A

There may not even exist d priori a well-defined product of U(a) and U(b) in 7!

e To recover the situation, we have to define a product in T

Ula) = U(b) ¥ U(ab)

Then since ab # ba in general, we have

A A A

U(a)» U(b) = Ulab) # U(ba) = U(b) » U(a)

— non-commutative star-product in 7.
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(hermitian) kernel operator — (Stratonovich, 1957)

A(q,p) = 2P e2ipi—ap)/h _ 9 2iaph p =2igp/h ,2ipi/h _ 9, —2igph D 2ipg/h ,—2igp/h

where P is the parity operator:  Plz) = | — ).
e The kernel sits in S* and defines a continuous generalized basis for 7.

Orthonormal:

(Alq,p), Ald, ) = Te(Alq,p)'Ald, ') = 2mhd(qg — ¢') S(p — ).
Complete:

1 N N Ve AN A
— | A(g,p)((Alg,p),a))dgdp=a  VaeT.
2mh

o cf. (zly) = o(z —y), [lz)(zlp) de =)  V]p) e H.
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e We now define the phase space rep by setting
Alg,p) = ((Alg, p), a)) = Tr(Alg, p)'a)
— symbolically, A=W(a) W = Weyl-Wigner transform.

e Then

((a,b)) 2% %/A(q,p)*B(q,p) dq dp

so that 77" = Lo(C, dgdp) = IC, say.

e The inverse mapping is

1

d - W_1<A) - %

/ A(q,p)A(q.p) dqdp.



p(x) = (z]p)
— symbolically, © = uly).

e Then
(wlo) > [ plo)vio) do
so that H' = Lo(C, dx).

e The inverse transformation is

o) =u"ty Z/\ZCW(SL’) dz .



In the case of W, there is a natural product in 7’ = C, namely the ordinary

product of functions A(q, p)B(q, p)

— but clearly this is not the image of dl;, because it is commutative.

So in the case of the phase space rep, we will need to use

AxB=W(ab) # AB

(A% B)(q,p) = (Alg, p), ab)).



In particular, we have to use the star product to describe

e Quantum Dynamics:

Copt) .
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= H(q,p) * W(q,p,t) — W(g,p,t) * H(q, p)

where W =W(35p)  —  the Wigner function. (Wigner, 1932)



In particular, we have to use the star product to describe

e Quantum Dynamics:
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where W = W(55p)  —  the Wigner function.  (Wigner, 1932)

e Quantum symmetries:
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— star-unitary representations of groups on phase space. (Fronsdal, 1978)



e To get A(q, p) more explicitly, make use of the coordinate rep:—

(ap)(x) = /aK(SU,y)SO@) dy , ag(z,y) = (z|aly) .
Ax(z,y) = (2|Alg, p)y) = 26" (x| P ¥/ e=2pi/hy)
— 9Qp2laph S2ipy/h (—z| €2iqﬁ/h‘y>

— p2irlg=y)/h 5(:c2ﬂ —q).



e To get A(q, p) more explicitly, make use of the coordinate rep:—

(&90)(56)=/afc(56,y)90(y) dy,  ax(z,y)=(r|ay).

Ax(z,y) = (x|Alg, p)ly) = 26%%" (x| P X0/ ¢~ 2Ry
— 9p2iaph S2ipy/h <_ x\ eZiqﬁ/h‘y>

_ 2iplg—y)/h 0 —q).

e Then

>

TH(A(g, p)a) = / (el Alg, )y (ylalz) dz dy

/ P S (258 — qlag(y, =) du dy

ie.  Algp) = [ axlg—y/2,q+y/2)e™ " dy



1 A
ag(z,y) = ok (z|Alq,p)ly)Alg, p) dg dp

1 2ip(q—y)/h s(xty

- i T A
27Th/e 0(5% — q)A(g,p) dgdp
1 |

_ A%ty ip(x—y)/h .
27_‘_h ( 2 7p)€ dp

Note: If a' = a, then A(q,p)* = Alq, p)

SKOROROROR SR SRR K KRR KK kK



To summarize: The phase space rep is defined by the Weyl-Wigner transform:

A=Wla) a=WA)
72K KT
InT: ((a,b)) = Tr(afb). In K: (A, B)= 5= [Alg,p)*Blg,p)dqdp.

Ax B =W(ab) # W(ba) = B A

Algq,p) = /aK(q —y/2,q+y/2) ™" dy

a2, y) = — / A(EEL, ) eirta=)/h g




