Local conformal invariance of the wave equation for finite-component fields.
Il. Classification of relevant indecomposable fields
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It has been shown in Part I that the requirement of local conformal invariance of the wave
equation for finite-component fields focuses attention on fields whose index spaces carry a certain
type of finite-dimensional, indecomposable representation of the nonsemisimple Lie algebra
(ks D d )P sl(2, C)). All representations of this type are here described in complete detail, in each
case in an sl(2, C) basis. Although indecomposable, these representations are in general not fully

reducible.
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I. INTRODUCTION

In an earlier work' (henceforth referred to as BJ1), we
have considered the conditions for local conformal invari-
ance of the wave equation

O¢ix) =0, x=(x"), p=0,1,2,3, (1.1)

where ¢ is a classical field with some fixed, finite number of
complex-valued components. The index space of this field is
assumed to carry a corresponding finite-dimensional repre-
sentation of the Lie algebra

¥ = (k,Dd)Dsl2, C)), (1.2)

with basis operatorsk,,4,and 3, (= — %, )satisfying the
commutation relations

i[zﬂv’ zpa ] = g#PZVU + gvaz#p

— 8o — BuoZups (1.3a)
i[5, 20, ] = 8upk, —8uKps (1.3b)
[«.,«,] =0, (1.3¢)
[2.:4]1=0, (1.3d)
i[«,, 4] =x,. (1.3e)

Only if this assumption is made? can one define, for an arbi-
trary infinitesimal conformal transformation of space-time,
an appropriate cotransformation law for the field 1. The
generators of infinitesimal conformal transformations of ¥
then take the forms

homogeneous Lorentz

transformations: xude = %.0,) + 2, (L42)
space-time translations:  id,, (1.4b)
dilations: ix*d, + 4, (1.4c)

special conformal
. 2ix,x"3, +2x,4 — ix*x,3
transformations: # + X voH

+23,x" 4K, (1.4d)
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and satisfy on suitably smooth i the commutation relations
appropriate to the Lie algebra of the conformal group. The
significance of %" in this connection stems from the fact that
it is the Lie subalgebra associated with those conformal
transformations which leave invariant the point x = 0, viz.
those composed of homogeneous Lorentz transformations,
dilations, and special conformal transformations. (An iso-
morphic subalgebra is associate with the dilation group,
composed of homogeneous Lorentz transformations, dila-
tions, and space-time translations, and is of independent in-
terest. The dilation group, like the conformal group itself,
has been discussed as a possible approximate space-time
symmetry group in particle physics. In that context, howev-
er, the main interest is in infinite-dimensional representa-
tions® of #°.)

The problem of classifying all finite-component field
types having inequivalent cotransformation laws for infini-
tesimal conformal transformations, is seen to correspond to
the problem of classifying all inequivalent finite-dimensional
representations of 7. Such representations have been
called? of type I, as distinct from infinite-dimensional (type
II) representations. More particularly, a finite-dimensional
representation and corresponding field is called of type Ia if
the associated basis operators «,, vanish identically, and of
type Ib otherwise. The Lie algebra % is not semisimple, and
its representations of type I or II are not in general fully
reducible. The problem of classifying all inequivalent repre-
sentations of type Ib in particular seems quite beyond our
present powers.

In BJ1, we have defined the wave equation (1.1) to be
locally conformal-invariant on a vector space % of smooth
solutions, if % is invariant under the action of the conformal
algebra (1.4). Then we have shown that the non-zero compo-
nents of any 3 in such a % must belong to a representation of
" from a certain class &, characterized by the property
that the basis operators of any representation from this class
satisfy the % -invariant set of equations

K,k =0, (1.5a)
S =4 +ik,, (1.5b)
A4+ (C,+ 1A%+ (C)F =0, (1.5¢)
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where
C,=42,2",
C,=(1/8)ie"*°%, . 2,,.

(The metric tensor is diagonal with
800 = — &1 = — &= — &3 = -+ 1, and the alternating
tensor has €' = + 1.) Accordingly, we have restricted our
attention to indecomposable (but not necessarily irreducible)
representations of %" in Class £, and associated indecom-
posable Class 2 fields.

We have shown furthermore that if {a) ¢ is an indecom-
posable Class 2 field, (b) a locally conformal-invariant vec-
tor space % of solutions of the wave equation (1.1) does exist,
and (c) at least one of the solutions in % is a plane wave, then
the associated indecomposable Class £ representation of
% must be, for some integer 24 and non-negative integer u,
a representation of the type we have labeled [A, + ; 0, u].
Since we are interested primarily in the possibility of using
locally conformal-invariant spaces of solutions of Eq. (1.1} in
the description of free massless particles, the condition (c} is
important, and our attention has therefore been limited fur-
ther, to indecomposable [, + ; 0, u]-representations and
fields.

The basis operators of such a representation satisfy, by
definition, certain conditions additional to (1.5). In order to
be able to describe these conditions, we must first recall that
every finite-dimensional representation of %" must be fully
reducible when regarded as a representation of the sl(2, C)
subalgebra associated with the basis operators 2, . Let
(m, n) label the (2m + 1)(2n + 1)-dimensional irreducible re-
presentation® of sl(2, C), where 2m and 2n are non-negative
integers, associated with eigenvalues 2[m(m + 1)

+ n(n + 1)]and [m(m + 1) — n{n + 1)] of thesl(2, C }-invar-
iants C, and C,, respectively, of Egs. (1.6). An arbitrary fin-
ite-dimensional representation of #” must decompose into a
direct sum of such representations (m, n), with various values
of m and n, and various multiplicities. The operators C, and
C, in such a representation of %~ will therefore have the
form

C,=2MM+1)+2N(N + 1), (1.7a)
Cy=MM+1)— NN+ 1), (1.7b)

where M and N are non-negative, simultaneously diagonali-
zable, sl(2, C) scalar operators whose eigenvalues are non-
negative integers or semi-integers. On that subspace of the
representation space for % which is associated with the to-
tality of irreducible representations {m, n) of sl(2, C ) for fixed
m and n, M and N have the eigenvalues m and n, respective-
ly.

(1.6a)
(1.6b)

The additional defining properties of a [4, +; 0, u]-
representation of %" are then

A =iM+N +1), (1.8a)
implying in particular that 4 is diagonalizable,
(i) M —N=A4, {1.8b)

(iii) the eigenvalues of — i4 are exactly the set of
numbers

{Al+1 Al +2,= |A]+u+1}. (1.8c)
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The conditions (i) and (ii) taken together are stronger than,
and imply condition (1.5c), as can be seen with the help of
Egs. (1.7). Thus the independent conditions characterizing a
[A, + ;0, u]-representation are Egs. (1.5a), (1.5b} and condi-
tions (i)-{iii) above.

In BJ1 we have shown that a [4, + ; O, u]-representa-
tion is of type Iaif and only if u = 0. We have shown also that
for each integer 24 there exists, up to equivalence, exactly
one indecomposable [A, + ; 0, 0]-representation. It is in fact
irreducible, and remains so when restricted to sl(2, C), being
then labeled (4, 0) if A>0 and (0, — 4 ) if A <0. The basis
operator 4 is constant, having the value i(|4 | + 1), and of
course x, = 0.

We have shown also that if ¢ is an indecomposable
[A, +;0, 0] field, and lies in a locally conformal-invariant
vector space % of solutions of Eq. (1.1), then 1/ actually satis-
fies a set of equations including (1.1). These equations are
equivalent to the scalar wave equation if A = 0; to two-com-
ponent neutrino equations if |4 | = 1; to Maxwell’s free field
equations if |4 | = 1; and in general to the Bargmann—
Wigner equations for massless fields of helicity A. The con-
formal invariance of these sets of equations is well known.®
In order to find new conformal-invariant free massless field
theories, possibly of interest to physics, it is therefore neces-
sary to look at what are in effect, the only remaining possibi-
lities, indecomposable [A, + ; 0, ] fields with u > 0. These
are fields of type Ib, and the corresponding representations,
although indecomposable, are not irreducible.

We have not attempted a complete description of these
representations in BJ1. Indeed, we have not even proved
their existence for arbitrary integers 24 and u > 0. It is the
purpose of this work to fill these gaps. That we are able to
achieve this object completely, as the ensuing Theorem 2.1
shows, is remarkable, given the apparent intractability of the
corresponding task for the totality of representations of type
Ib, or even those of Class £. Our success depends upon the
diagonalizability of 4 in [A, + ; 0, u]-representations, and
the availability of Gabriel’s theorem,®” whose substance
should not be underestimated. We were able to derive our
own proof of the latter from ““first principles” for the special
case of interest to us (i.e., for the quiver corresponding to the
Dynkin diagram for 4, , | - see Sec. 2} but this proof runs to
several pages.

In subsequent work we shall describe the structure of
the new sets of locally conformal-invariant massless field
equations obtained for indecomposable [4, + ; 0, u] fields
with u > 0.

Il. STRUCTURE OF THE RELEVANT
REPRESENTATIONS OF 77~

Theorem 2.1: Up to equivalence, there is exactly one
indecomposable [4, + ; 0, u}-representation of %~ for each
integer or semi-integer A and each non-negative integer u.
When regarded as a representation of sl(2, C), this represen-
tation of 77 has the decomposition

A, 0 & (A + 4, %)9...@(/1 + Lu, iu) (2.1)

if A>0, and
0, —A)eh,i—A)e...e(u, lu—A1) (2.2)
A. J. Bracken and Barry Jessup 1948
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if A <0. The dimension of the representation is

d=Yu+ 1)u+2)2u+3+6/1]). (2.3)
A basis consisting of vectors

|8, s, 83,

SeflAl+ 1L, 141 +2,.., |2+ 1+u},

sefl[A, 1A+ 1, .,6—1],

sEf{s, s —1,..., —s}, {2.4)

can be introduced, on which the operators 4, > vs Ku» and
the related operators M, N, C,, and C, of Egs. (1.6) and (1.7)
act as follows [we write

(Z2 23, Z10) =8, (2.5a)
(Zoi» Zoz Zo3) =TJ: (2.5b)
A18,s,5;,) =i8 6,5, 54), (2.6a)
S-S|8, 5, 5,) = s(s + 1)18, 5, 53), (2.6b)
S$516, 8, 83) = 5516, 5, 53), (2.6¢)
Cil6,8,5,) =A*+ 82— 1)|8,5,55), (2.6d)
C,l6,5,5,) =488, 5, 55), (2.6e)
M|6,5,55) =46+ A —1){5,5,53), (2.6f)
N|8,5,53) =46 — 4 —1)|, s, 53), (2.6g)
(S, £ i$5)6, 5, 53)

=[5+ + Vs Fs)]'"28, 55,1+ 1), (2.7)

158, s, 53)
= D (s)[(6 — s)6 + s)is — s5)(s + s3)]'"°
X 18,5 — 1,583) + 5:6E (s)18, 5, 53)
—Dis+1)[6—s—1)6+s+1)
X (s — 55+ s + 5, + D]V, s + 1, 55), (2.8)
(T) £ iT5)|6, s, 53)
= £ D)6 — )8 + s)s Fslis Fss — 1]
X186, s— 1,55+ 1)
+8E ()is Fs3)ls 55+ 1)]'/%18, 5,55 + 1)
+Ds+ l[(—s—-1)6+s5s+1)
X(s £ 53+ 1is 554 2)])'"
X|6,5s+ 1,5, + 1), (2.9)

KO|5’ S, S3>

=l — )6 +5+ ]2+ 1,5, 55), (2.10)

K38, 5, 53)
= ikD (s)[(6 — s)6 — s + 1)(s — s5)(s + 53)]'"?
X6 +1,s—1,s;)
+ ik E ()6 — )8 + s+ D]'V25 4+ 1,5, 55)
—ikDis+ 16 +s+ 1)S+s+2)s—s5;,+ 1)
X(s+s3+ 10]"V36 4+ 1,5+ 1,5,), (2.11)

(), + ix))|8, s, 53)
= kD (s){{6 — sW6 — s + 1)s F s3)
XEFs;— )36+ 1,s— 1,534+ 1)
+ ikE (s)[(6 — 5)(6 + 5 + 1)(s F 53)
X(s+ 53+ 1)]”2|5 +1,85+1)
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+ikD(s+ D)6 +s+ 16 +s5+2)
X(s + 554 1)(s £ 55+ 2)]'"

X|6 + 1,5+ 1,55+ 1). (2.12)
where
D(s)=(s* — A 3)"3/s(4s* — 1)'?,
E(s)= —il/s(s+ 1), (2.13)

and « is a nonzero constant. The nonzero value of « is imma-
terial, representations which differ only in this value being
equivalent.® The formulas (2.10, 2.11) for «,, applied to
|8, s, 55) are only valid for § < (|4 | + 1 + u), and

k(A |+ 1 +u)s, 530 =0. (2.14)
The operators x,, are nilpotent, and the product (k,«, ...k, ) is
not identically zero only if it does not contain more than u
factors. (In particular, if # = O thenx, =0.)

Proof: We know that in such an indecomposable repre-
sentation of %7, ( — i4 ) has the eigenvalues (1.8¢)

S=A1+LA|+2, ., A|+1+u

Since Egs. (1.8a, b) hold, it follows that, if 10, the pair
(M, N ) has eigenvalue pairs

(m,n)=(A4,0,4 + 1,4, ..., (A + du, du), (2.15)
while if A <0, it has eigenvalue pairs
(m,n)=(0, —A), (1 —A4), ..., §u, ju — ). (2.16)

Accordingly, this representation of %7, when regarded as a
representation of sl(2, C), has the general form

rod, 0)erd + 4, )@ or, (A + du, bu), (2.17)
for A0, or
0, ~A)ernli—A)e-er,(uiu—1), (2.18)

for A <0, where o, 74, ..., r,, are certain positive integers. It is
convenient at this stage to go from the (m, n) to the [k, ]
labeling scheme* for the finite-dimensional irreducible re-
presentations of sl(2, C), where

ko=m —n,
c=m+n+ 1l (2.19)

In the case at hand, because Eq. (1.8b) holds, we get only
representations with k, = A, and the decompositions (2.15)
and (2.16) have the common form
rfd, 14|+ 1lerfA, A | +2]eer,[4, |4 +ul
(2.20)

We see that the eigenspace 7”4, associated with the eigenva-
lue & of { — i4 ), carries the direct sum of 7, copies of the
representation {4, § ] of sl(2, C), wherer =6 — |1 | — 1. We
imagine these copies ordered in some definite way, and la-
beled by an index «a taking values 1, 2, ..., 7.. Now each
representation [4, 6 ] of sl(2, C), when regarded as arepresen-
tation of its su(2) subalgebra spanned by the operators S, is a
direct sum of (25 + 1)-dimensional irreducible representa-
tions (s} of suf2), fors = |A {, |4 | + 1, ..., 6 — 1 {each occur-
ring once). And each representation (s) of su(2), when regard-
ed as a representation of its u(1) subalgebra spanned by the
operator S, is a direct sum of one-dimensional representa-
tions [s,] of u(1), fors, =s,5 — 1, ..., — s (each occurring
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once.) Accordingly, we can introduce a set of basis vectors
for the whole carrier space of the given representation of %,
labeled

|6, a, s, 557, 2.21)

where & runs over the eigenvalues of ( — i4 ) as in Egs. (2.4);
foreachd (=7 + |A | + 1),arunsoverthevalues 1,2,...,r,,
and independently s runs over the values |4 |, |1 ]| + 1, ...,
6 — 1; and for each 5, 5, runs over the valuess,s — 1, ..., —s.
On the basis vector (2.21), the operators 4, S-S and S, will
have the eigenvalues i, s(s + 1), and s;, respectively. More-
over, in view of Eqgs. (1.6) and (1.7), the operators M, N, C,,
and C, will have the eigenvalues §(§ +4 — 1), 46 — 4 — 1),
(A2 4+ 8% — 1),and A8, respectively. The action of thesl(2, C)
operators in an su(2)>u(1) basis of an irreducible representa-
tion [k, ] is well known.* We get Egs. (2.7), (2.8), and (2.9)
with |8, s, 5,) replaced by |8, a, s, 55) throughout. (These
operators do not “see” the label a.)

We now turn to the action of the operators «,, . In view
of the commutation relation (1.3e) and the fact that x, com-
mutes with S, we must have

Kolb, a, s, 53) = ZA,M |6 + 1,8, 5, s5), (2.22)
B

for some complex numbers 4, , which & priori could depend

ondands (but not onss). Thesumis overther, , | valuesof 8

(with 7 =6 — |4 | — 1). Equation (2.22) can only hold for

6 <bax = (|4 | + 1 + u), and we must have also

K()HIA I + 1 + ll), a, s, S3) - 0 (223)

According to Eq. (1.3b), «,, is a four-vector operator. The
most general structure possible for such operators within a
finite-dimensional representation of sl(2, C) is well known.*
We can apply these known general results to the particular
situation at hand, or determine the structure directly, noting
that a necessary and sufficient condition for «, as in Egs.
(2.22) and (2.23) to be the fourth component of a four-vector
is that

(ko T3], T51= — o (2.24)
[The remaining components of k,, can then be defined by
ik; = [K0, T; ], (2.25)

and the commutation relations (1.3b) will then be satisfied.]
We get, in place of Eq. (2.22),

K|, @, s, 53)

=S BRIE—s)6 +5+ 116+ 1,85, 53),(2.26)
2

wherethe BY,, r=(6 — |A| —1)=0, 1, ..., u — 1, are com-
plex numbers which do not depend on s or s, but are other-
wise not restricted by Eq. (2.24). For each value of 7, we may
regard them as the elements of an (r, , , Xr,) matrix B 7. We
might expect these matrices to be restricted in form by the
relations (1.5a), (1.5b) and (1.3c) which are required of a

A, +;0, u] representation, but in fact this is not the case.
These relations place no restrictions whatsoever on the B
but are satisfied once «, and «; have the forms determined by
Eqs. (2.26), (2.23), and (2.25). We see this most simply as
follows.
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The operators «,, as defined so far are shift operators for
(—id), M, and N, and in fact we have

Mk, =x,(M+1)), Nk, =k, (N+}). (2.27)
It follows that
Mlk,, k. ) =[x,k M+ 1),
[ 1= [0, 107+ 1) -

N[k, k. )= [k, 5, J(N+ 1)
Thus [«,, «, ] shifts any vector from a repesentation sub-
space of sl(2, C) labeled (m, n) to one labeled (m + 1, n + 1).
But, just as a four-vector operator [transforming according
to the representation (!, ) itself] can only link* (m, n) with
(m+ 1, n £ 14)and (m — 4, n + 1), so any antisymmetric ten-
sor operator like [«,, «, ] [transforming according to the
representation (1, 0) @ (0, 1)] can only link {m, n) with (m + 1,
n), (m, n), and (m, n + 1). It cannot link (m, n) with (m + 1,
n + 1)}—and to avoid a contradiction it must be true that

[« x.]1=0. (2.29)
Similarly, we have
Mk, k) = (K, )M + 1),
(i, i) = i, k) ) 2.30)

N [k, 1) = (K, "IN + 1).

But a scalar operator like (x, ) cannot link (m, n) with
(m+1,n+ 1), and so

K,k =0. (2.31)
Consider the commutator
[Kﬂ’ CI] = [K;u %Evpz Vp]
=22, k" + 3k, (2.32)

using the relations (1.3b), already established. In view of Eqgs.
(1.7) and (2.27) we then have

iS00+, = [k, MM +1)]+ [«, NN+ 1)]
=x, MM+ 1) = MM+ 1)k,
+ K, N(N+1) = NN+ 1)k,
=K, MM+ 1) — &, (M + )M +3)
+ K, NN+ 1) — &, (N + )N +3)

= —k,(M+N+1}), (2.33)
so that
2K =ik, M+ N+3) .
=iM+N+2k, =(i+4Kk,, (2.34)

as required. Thus we see that Eqs. (1.3c), (1.5a), and (1.5b) are
all satisfied.

How then are the matrices B ™ restricted? It is easy to
see that for no 7 can B '™ be identically zero; otherwise the
representation space splits into the direct sum of nontrivial
% -invariant subspaces, contradicting the assumed inde-
composability of the given representation. But the indecom-
posability restricts them much more than this. Consider the
effect of a change of basis, of the special form

|6y Qa, s, s3)l= ZS(ﬂT(L|6)B1 S, s3>1 (235)
B

where, for each & as in Egs. (2.4) and corresponding
r=6— |4 | — 1, the (r, Xr,) matrix S ™ with complex ele-
ments S 7, is nonsingular. Then

A. J. Bracken and Barry Jessup 1950
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lav a, s, S3) = ZS(BTJI—‘ 1|61 ﬂ) S, S3>’, (2'36)
B
where 7~ ! is the inverse of $'7, and so, from Eq. (2.26),

KOE Sg);_ I|5’ B; S, S3>’
B

=ZEB(5TK)Z[(6_S)(5+S+ 1)]"2
y B

XSS+ 1,7, 8,55)
ie.,

K0|69 a, s, S3>’

=S BZ(6—s)6+s+ 1D1'28,8,5,55),  (2.37)
B
where
B‘L{(L':EZS‘,;YJF”"B‘;),SE,’),. (2.38)
v
In short,
B =gtr+-1gHgn  +—0,1,..,u—1. (2.39)

Since we are only interested in the structure of the represen-
tation [4, + ; 0, u] up to equivalence, we may look for a
canonical form of the matrices B " with respect to transfor-
mations of the form (2.39).

Consider a sequence of {# + 1) complex vector spaces
Y., 7=0,1,..,uofdimensionr,, r,, ..., 7,, respectively. The
matrices B " define a sequence of linear mappings between
the spaces Y, shown diagrammatically thus:

B(O) B(l) B(u— 1)
[o) lo) o s O O
YO Yl Y2 Yu—l Yu
(2.40)

Now consider in abstraction the oriented, connected graph
appearing in that diagram,

Q. O O e O o]

(2.41)

Such a graph, and more generally, any finite, oriented, con-
nected graph, is called a guiver. If with each vertex of the
quiver (2.41) is associated a finite-dimensional vector space,
and with each directed edge a linear mapping in the appro-
priate direction, as in the diagram (2.40), then one has a re-
presentation (Y, B) of the quiver. The direct sum of two such
representations (Y, B ),(Y ', B ')istherepresentation(Y ",B "),
where for each 7,
Y"=Y &Y./
B =B g R
A representation (Y, B) is indecomposable if it cannot be re-
presented as a direct sum of two nontrivial representations.

Two representations (Y, B), (Y', B') are equivalent if there
exist invertible mappings S

(2.42)

SY! —Y, (2.43)
such that
B! =glr+N-1ping(n (2.44)

fort=0,1,...,u — 1.t can be seen that an indecomposable
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[A, +;0,u] representation of %~ defines an indecomposable
representation of the quiver (2.41), and that any indecompos-
able representation of the quiver in which none of the B is
identically zero, defines a [A, + ; O, u] representation of %"
Moreover, equivalent representations of the quiver define
equivalent representations of %", The problem now arises of
classifying the equivalence classes of indecomposable repre-
sentations of the quiver (2.41). The notion of a representa-
tion, and of the indecomposability and equivalence thereof,
can be defined for any quiver. Gabriel® (see also Bernstein ez
al.’) has posed and answered the following question: for
which quivers are there finitely many equivalence classes of
indecomposable representations? He found that a necessary
and sufficient condition is that the graph, when unoriented
(i.e., with the arrows removed from the edges) must coincide
with the Dynkin diagram for one of the simple Lie algebras’
Ay Ay, .y Dyy Dy, ..., E, E,, or Eg. What is more remarkable
is that in every such case there is a one-to-one correspon-
dence between the equivalence classes and the positive (inte-
gral’) roots associated with the corresponding Lie algebra.
In the case at hand, we have the Dynkin diagram of 4,, _ ,,
and the result is that, if the positive root is (r,, 71, ..., 7, ), then
the dimension of Y, is r, in any representation (¥, B ) from
the corresponding class. There are }(u + 1)(z + 2) positive
roots of 4, , |, viz.”

(1,0,0, ..., 0), (0, 1,0, ..., 0), ..., (0,0,0, ..., 1)
(1,1,0,..,0,(0,1,1,0,...,0), ..., (0,0,0, ..., 0, 1, 1)

(1,1,1,.., 1)
(2.45)
But we are only interested in the situation where all B'™ are
nontrivial, as already remarked, so only the last root is of
relevance. (The others correspond to representations
[A, +;1,v] of # with I>0 or v <u.) Accordingly, each of
the spaces Y, is one-dimensional, and

(2.46)

We may now drop the unnecessary label a from the basis
vectors (2.21). Each matrix B ™ reduces to a nonzero con-
stant—and furthermore, since there is just one equivalence
class corresponding to the last of the roots (2.45), we can
without loss of generality take all these constants equal, to x
say. Thus we arrive at the form (2.10) for the action of x, on
the basis vector |4, 5, 55}, and the forms (2.11) for the remain-
ing components are simply obtained from Eq. (2.25). The
dimension d of the representation of %" is now obtained by
adding the dimensions of the irreducible representations
LA +1LIA A +2) . [A 1A ] +u] of sI(2, C), as

d= S (r+ 12| +7+1),

r0=rl='"=ru=1-

(2.47)

yielding the result (2.3). That the product (k,.K,K,) is not

identically zero only if it does not contain more than u fac-
tors, follows at once from the action of «,, as defined by Egs.
(2.10), (2.11}, (2.12), and (2.14). O

{ll. AN ILLUSTRATIVE EXAMPLE
Consider a [0, + ; 0, 1] field. It has five components,
and the sl(2, C) content of the index space representation is
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(0, 0)& 4, 4). (3.1)

The basis vectors |8, s, 5;) of Theorem 2.1 run over |1, 0, 0),
[2,0,0),]2,1,1),]2,1,0),and |2, 1, — 1). Represent them
by column vectors (1 0000)7, (0100 0)7, etc. Let

Egs (R, S€{1,2,3,4,5}) denote the 5 X 5 matrix witha 1 in
the R th row and S th column, and zeros elsewhere. Then
according to Egs. (2.6}2.14), the matrix representations of
the # operators are

S;=Ey; — Es5, T;=Ey—E,,
S, +i5; = (V2)(Ess + E,s),

Sy —iS; = (V2)(Eqs + Esa)s

T\ +iT, = (V' 2|E;s + E)),
T,—-iT,= - (V2UEs; + Ex),

Ko =KV 2E,, k3= —ix(V2)Eq,

K, + ixy = 2ikE,,, &, —ix, = — 2KE;,

A =IiE,, + 2UEy, + Ez3 + Ey + Ess). (3.2)
Now make a unitary transformation

A—-UAU? (3.3)

of each of the %~ operators 4, where
U=E, +E,,—iEs,
+ (1/V2)iEs; — iEss — Eqy — Eys). (3.4)
This corresponds to a change from the su(2)>u(1) basis to a

tensor basis. An arbitrary [0, + ; 0, 1] field then takes the
form

Yix) = (Z(Zl)) (3.5)

where @ is an s1(2, C) scalar field, and 4,, a four-vector field.
The action of the % operators is then found to be

z,w(:;) - i(zw A g, Ap), (3.6a)
4 (/Z; ) = i(?j"), (3.6b)
k, (:v) - x’(g v‘p), K =xv/2. (3.6¢)

Consider an infinitesimal scale transformation
x*=(1+ex* (3.7)

and the corresponding transformation of ¢, as generated by
the operators (1.4c),

¥'(x) = Yix) + ielix*d, + A Jix)
= (1 + ied JY{(1 — €}x),

ie.,
P'(x') = (1 + fed Wix). (3.8)
Then
P'(x')=(1— elp (x), (3.9a)
A,'(x') = (1 — 26, (x), (3.9b)
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s0 @(x) has length dimension ( — 1) and 4, (x) has dimension
( — 2). [Note that the four-vector potential of the electro-
magnetic field has dimension { — 1).] Now consider an infini-
tesimal special conformal transformation

x'*=x*420"x x" — 0"x,x¥ (3.10)
and the corresponding field transformation
Y'lx) = Yx) + i6#Q2ix,x*3, + 2x,4
—ixx,d, +22,,x" + x, Wix)
= (1 +2i0%x,4 + 2i0"%, x" + i0"k,)
X fx* — 20 %x, x* + G¢x,x"),
ie.,
Y'x')=(1+2i0%x,4
+ 2642, x¥ + i0"k, JP(x). {3.11)
Then
P'(x')=(1 —26%x,)p (x), (3.12)
the usual transformation law for a scalar field, while
A, (x)=A4,(x)—40"x,4,(x) —26,x"4,(x)
+2x,0°4,(x) + ix'6, @ (x). (3.13)

Here we see the novel feature of Type Ib fields—under the
action of the conformal group, fields belonging to different
index-space irreducible representations of s}(2, C ) are mixed
together.

Note that the subspace of fields having ¢(x) = 0 is in-
variant under this action. This corresponds to the fact that
although the representation [0, + ; 0, 1] of %" is indecom-
posable, it is not irreducible, and it “‘contains” the indecom-
posable (and irreducible) representation [0, +; 1, 1] as an
invariant subrepresentation. More generally, we can see that
[4, +;0, u] contains [4, + ; 1, «], which contains [, +;2,
ul, etc. Of the representations [4, + ; 0, u}, only those with
u = 0 are irreducible.
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