
MATH3104 Lectures 4-5 (Bracken)

•Drug delivery through the skin.

There is great interest world-wide in developing methods of drug delivery

that don’t involve injections. The nicotine patch is an example.

Unfortunately, the skin is designed to keep things out, not to let them in!

In the following analysis, D is an ‘effective’ diffusion coefficient that is much

smaller – up to 4 orders of magnitude smaller – than for the same drug

diffusing in water. This is to take account of the structure of

the stratum corneum:–
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Figure 1: A representation of the epidermis displaying the cells of the different
layers.
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Figure 3: Representation of the intercellular, transcellular and appendageal
pathways for passive solute permeation through the stratum corneum.
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Figure 2: A simple depiction of the structure of the stratum corneum with
bricks representing corneocytes and mortar representing the intercellular
lipids. Also reflected in the figure is the fact that the corneocytes com-
prise the bulk of the stratum corneum and that the intercellular lipid is the
only continuous domain.
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•The mathematical problem:–

Find c(x, t) for 0 ≤ x ≤ L and t ≥ 0 such that

(3.1) ∂c(x,t)
∂t = D ∂2c(x,t)

∂x2 for 0 < x < L and t > 0 (PDE)

(3.2) c(x, 0) = 0 for 0 < x < L (Initial Condition)

(3.3a) c(0, t) = c0 for t > 0 (Boundary Condition A)

(3.3b) c(L, t) = 0 for t > 0 (Boundary Condition B)
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•Here is one form of the solution:–

c(x, t) = c0(1− x/L)

−2c0
π

{
sin(πx/L)e−π

2Dt/L2
+ 1

2 sin(2πx/L)e−4π2Dt/L2

+1
3 sin(3πx/L)e−9π2Dt/L2

+ . . .
}

(3.4)

Note the pattern.

•This solution, obtained using Fourier series, is quite

surpising if you haven’t seen it before. In the first place, c(x, t) is a

concentration and must be nonnegative everywhere, but the sin functions

are not!
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•Roughly speaking, the meaning of the solution (3.4) is: The more terms

that we take in the series, the better the approximation to the exact solution

of the problem.

•To check that (3.4) does provide a solution, note firstly that each term on

the RHS satisfies the 1-D diffusion PDE (3.1) (see p. 2.20), and hence so

does the whole RHS. Secondly, note that the two BCs (3.3a,b) are also

satisfied. It remains to check that the IC (3.2) is satisfied.

Setting t = 0 in both sides of formula (3.4), we see that this requires

1− x/L = 2
π

{
sin(πx/L) + 1

2 sin(2πx/L) + 1
3 sin(3πx/L) . . .

}
,

which is just as surprising as (3.4).
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•Is it so? See the figures showing the approximations to the LHS given

by the first one, first two and first twelve terms from the RHS.
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•In a similar way, (3.4) defines successive approximations to c(x, t)

at each time t.

• Now note that the bigger is t, the more rapidly the successive terms in

the RHS of (3.4) decrease in value. This form of solution to our problem is

particularly useful at ‘large’ times t� L2/π2D, when taking just a few

terms provides a good approximation to c(x, t).

•Note also that as t→∞, the solution c(x, t)→ c0(1− x/L),

which is a time-independent solution of the PDE. (See again p. 2.20)

It describes the steady-state situation that the system approaches

as t→∞.
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•See the next figure , which shows the graphs of the steady-state

concentration c(x,∞) and the approximation

c(x, t) ≈ c0(1− x/L)− 2c0
π sin(πx/L)e−π

2Dt/L2

at t = 2L2/π2D and t = 3L2/π2D.
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•We are interested in the flux of drug into the circulation inside the skin.

Thus we want J1(L, t). From (3.4) and Fick’s first equation we have

J1(x, t) = −D∂c(x,t)
∂x

= Dc0
L

{
1 + 2 cos(πx/L)e−π

2Dt/L2
+ 2 cos(2πx/L)e−4π2Dt/L2

+ . . .
}

(3.5)

•Note the steady-state value of the flux is Dc0/L, independent of x.

•For large times, a good approximation to J1(x, t) is given by the first

couple of terms in (3.5).
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(a) J(0, t) Vs tD/L2
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(b) J(L, t) Vs tD/L2

Figure 5: Flux at the boundaries versus t for one-dimensional diffusion. (a)
x = 0 and (b) x = L.
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•From (3.5) we have

J1(L, t) = Dc0
L

{
1− 2e−π

2Dt/L2
+ 2e−4π2Dt/L2 − . . .

}
Of greatest interest is Q(t), the amount of drug that has passed into the

circulation up to time t, through cross-sectional area A at x = L:–

Q(t) =
∫ t

0 AJ1(L, τ ) dτ

= ADc0
L

[
τ − 2

(
−L2

π2D

)
e−π

2Dτ/L2
+ 2
(
−L2

4π2D

)
e−4π2Dτ/L2 − . . .

]τ=t

τ=0

= ADc0
L

{
t + 2L2

π2D

(
e−π

2Dt/L2 − 1
4e
−4Dπ2t/L2

+ . . .
)

− 2L2

π2D

(
1− 1

4 + 1
9 − . . .

)}
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•So

Q(t) = ADc0
L

{
t− L2

6D + 2L2

π2D

(
e−π

2Dt/L2 − 1
4e
−4Dπ2t/L2

+ . . .
)}

.

•As time t→∞, we see that Q(t) ≈ ADc0
L

(
t− L2

6D

)
.

•The intercept of this linear function on the t-axis is called the time lag

of the system, tlag = L2

6D. It gives a measure of how long it takes the

nicotine patch to reach its full effectiveness.
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Figure 6: Q(t)/(ALKC0) versus tD/L2 for one-dimensional diffusion, show-
ing tlagD/L2 = 1/6.
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•Remarkably, there is another form for the solution of our problem:–

c(x, t) = c0

(
1− erf(x/

√
4Dt)

−{erf([x− 2L]/
√

4Dt) + erf([x + 2L]/
√

4Dt)}

−{erf([x− 4L]/
√

4Dt) + erf([x + 4L]/
√

4Dt)} − . . .
)

(3.6)

which looks completely different from, but is equivalent to (3.4). Note firstly

that it is a solution of the PDE, because each term on the RHS is a solution.

(See again p. 2.20). It is particularly useful for ‘small’ times t� L2/4D,

when the terms in the series successively make much smaller contributions.
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•The next figure shows the approximation

c(x, t) = c0

(
1− erf(x/

√
4Dt)

)
at times t = L2/256D and t = L2/64D, just after the patch is applied.
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•Using (3.4) or (3.6) with enough terms, we can use the computer to show

the form of c(x, t) at any time:–
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Figure 4: Concentration profiles for one-dimensional diffusion for a number of
times. The curves moving towards the linear, steady-state profile correspond
to times starting with 0.0005L2/D and increments of 0.05L2/D.
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•Let’s move on to diffusion in three dimensions.

We now have a concentration of substance (diffusate) c(x, y, z, t) with diffu-
sion coefficient D, and there is now a flux component J1 in the x-direction,
J2 in the y-direction and J3 in the z-direction, with

J1(x, y, z, t) = −D∂c(x,y,z,t)
∂x

J2(x, y, z, t) = −D∂c(x,y,z,t)
∂y

J3(x, y, z, t) = −D∂c(x,y,z,t)
∂z

replacing Fick’s first equation in 1-D.
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•We can combine these in a nice way using vector notation:

~J(~r, t) = −D~∇(~r, t) (Fick’s first equation in 3-D)

~J = (J1, J2, J3) , ~∇ = ( ∂∂x,
∂
∂y ,

∂
∂z) , ~r = (x, y, z).

~J the flux vector

~∇ the gradient vector operator (‘del’)

~r the position (or coordinate) vector
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•Fick’s second equation becomes

∂c(x,y,z,t)
∂t = −{∂J1(x,y,z,t)

∂x + ∂J2(x,y,z,t)
∂y + ∂J3(x,y,z,t)

∂z }.

Combining Fick’s equations we now get

∂c(x,y,z,t)
∂t = D{∂

2c(x,y,z,t)
∂x2 + ∂2c(x,y,z,t)

∂y2 + ∂2c(x,y,z,t)
∂z2 }

— the 3-D diffusion equation.

This is often written as ∂c(~r,t)
∂t = D∇2c(~r, t)

where ∇2 is the Laplacian operator.
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