-Consider again

$$
P(m, N)=\left(\frac{1}{2}\right)^{N} \frac{N!}{\left(\frac{N+m}{2}\right)!\left(\frac{N-m}{2}\right)!} .
$$

Using Stirling's approximation for K ! when K is large, we can show that when N and $|m|$ are large, with m^{2} / N not too large, then

$$
P(m, N) \approx \sqrt{\frac{2}{\pi N}} e^{-m^{2} / 2 N}
$$

This is a good approximation even for quite small values of $|m|$ and N :-

$$
\begin{array}{cccc}
(m, N) & \begin{array}{lll}
P(m, N) & \begin{array}{c}
\text { Relative } \\
\text { Error }
\end{array} \\
(\pm 2,10) & 0.2051 & 0.2066
\end{array} & 0.73 \% \\
(\pm 5,27) & 0.09714 & 0.09668 & 0.5 \% \\
(\pm 200,10000) & 0.0010799 & 0.0010798 & 0.01 \%
\end{array}
$$

31 realizations

MATH3104 Lecture 2-3 (Bracken)

-We had

$$
\left.P(m, N)=\left(\frac{1}{2}\right)^{N} \frac{N!}{\left(\frac{N+m}{2}\right)!\left(\frac{N-m}{2}\right)!}\right) \approx \sqrt{\frac{2}{\pi N}} e^{-m^{2} / 2 N}
$$

as $N \rightarrow \infty$ and $|m| \rightarrow \infty$ with m^{2} / N fixed and finite.
-We now set $x=m \delta$ and $t=N \tau$, and let $\delta \rightarrow 0$ and $\tau \rightarrow 0$ while $N \rightarrow \infty$ and $|m| \rightarrow \infty$, in such a way that x and t, as well as m^{2} / N, stay fixed and finite at values of our choosing. Make sure you can see that this is possible!

- Because

$$
m^{2} / N=\left(\frac{x}{\delta}\right)^{2}\left(\frac{\tau}{t}\right)=\frac{\left(x^{2} / t\right)}{\left(\delta^{2} / \tau\right)}
$$

this requires that

$$
\frac{\delta^{2}}{2 \tau} \quad(=D, \text { say })
$$

also remains fixed at some (positive) finite value.

- Now consider Δx such that $\delta \ll \Delta x \ll|x|$.

What is the probability $P(x, t) \Delta x$ that the particle is in $(x, x+\Delta x)$ at time t ?

Ans:

$$
P(x, t) \Delta x \approx \underbrace{\frac{\Delta x}{2 \delta}}_{\substack{\text { wo. of } \\ \text { passible } \\ \text { locations } \\ \text { in }(x, x+\Delta x)}} \underbrace{P(m, N)}_{\text {probability }}
$$

Thus we arrive at

$$
\begin{aligned}
P(x, t) \approx \frac{P(m, N)}{2 \delta} \approx & \frac{1}{\sqrt{2 \pi N \delta^{2}}} e^{-m^{2} / 2 N} \\
& =\frac{e^{-x^{2} / 4 D t}}{\sqrt{4 \pi D t}}
\end{aligned}
$$

where $x=m \delta, \quad t=N \tau, \quad D=\delta^{2} / 2 \tau$ as before.
-The formula

$$
P(x, t)=\frac{e^{-x^{2} / 4 D t}}{\sqrt{4 \pi D t}}
$$

is exact in the limit

$$
N \rightarrow \infty, \quad|m| \rightarrow \infty, \quad \delta \rightarrow 0, \quad \tau \rightarrow 0
$$

with

$$
m \delta=x, \quad N \tau=t, \quad \frac{\delta^{2}}{2 \tau}=D, \quad \frac{m^{2}}{N}
$$

all fixed and finite.

At any time we have a Gaussian (or normal) distribution of probability along the X-axis - the graph is a bell-shaped curve:-

-The area under the curve is always 1 (conservation of probability):-

$$
\int_{-\infty}^{\infty} \frac{e^{-x^{2} / 4 D t}}{\sqrt{4 \pi D t}} d x=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^{2}} d y=1
$$

- As $t \rightarrow 0_{+}$, we have $P(x, t) \rightarrow \delta(x)$ (infinite spike). This corresponds to a "bolus injection" of a finite quantity of diffusate at $x=0$ at $t=0$.
- Note that the distribution spreads over a distance L in a time determined by $L \approx \sqrt{2 D t}$, or $t \approx L^{2} / 2 D$. To go twice as far takes four times as long! To go ten times as far takes a hundred times as long, and so on. This is the characteristic behaviour of the random walk that we saw before. (See p. 1.13)
- The constant D is called the diffusion coefficient. The bigger is D, the faster is the diffusion (spreading). Particles with D twice the size, spread in half the time.
-For a big molecule like lysozyme in water, $D \approx 10^{-6} \mathrm{~cm}^{2} / \mathrm{sec}$. To get across a swimming pool of width $L \approx 10 \mathrm{~m} \approx 1000 \mathrm{~cm}$ would take about
$5 \times 10^{11} \mathrm{sec}$, or 15,000 years. (Contrast with p. 1.3)
- But to get across the width of a bacterium, $\approx 10^{-4} \mathrm{~cm}$, takes only 5×10^{-3} sec.

This is why diffusion is such an important transport mechanism on microscopic biological scales.

- Aside: While $P(x, t)$ is a nice smooth function (infinitely differentiable), the path $x(t)$ in the limit is typically continuous but nowhere differentiable. Such a path is said to describe (a realisation of) Brownian motion. (Look again at the figure on p .1 .15)
- Suppose now that there is a very large number \mathcal{N} of particles, all performing 1-D random walks (independently), parallel to the X-axis:-

- about $\frac{1}{2}$ go L, and about $\frac{1}{2} g_{0} R$, across plane at x, in next time-interval of lengths τ.
- about $\frac{1}{2}$ op R, and about $\frac{1}{2}$ gro L, across plane at x, in next time-interval of lengths τ.
- The net number crossing L to R across a plane of cross-sectional area A at x, in the time interval $[t, t+\tau]$ is

$$
\approx \frac{1}{2} \mathcal{N} P\left(x-\frac{\delta}{2}, t\right) \delta-\frac{1}{2} \mathcal{N} P\left(x+\frac{\delta}{2}, t\right) \delta
$$

The net flux L to R per unit area per unit time, at position x at time t, is therefore

$$
\begin{aligned}
J_{1}(x, t) \approx & -\frac{1}{2} \mathcal{N}\left[P\left(x+\frac{\delta}{2}, t\right)-P\left(x-\frac{\delta}{2}, t\right)\right] \delta / A \tau \\
& =-\frac{\delta^{2}}{2 \tau}\left[\frac{\mathcal{N} P\left(x+\frac{\delta}{2}, t\right)-\mathcal{N} P\left(x-\frac{\delta}{2}, t\right)}{A \delta}\right] \\
& =-D\left[\frac{\mathcal{N} P\left(x+\frac{\delta}{2}, t\right)-\mathcal{N} P\left(x-\frac{\delta}{2}, t\right)}{A \delta}\right]
\end{aligned}
$$

- Now the number of particles per unit volume at x, t is the concentration of diffusate

$$
c(x, t) \approx \frac{\mathcal{N} P(x, t) \delta}{A \delta}
$$

Then we have

$$
J_{1}(x, t) \approx-D\left[\frac{c\left(x+\frac{\delta}{2}, t\right)-c\left(x-\frac{\delta}{2}, t\right)}{\delta}\right]
$$

As $\delta \rightarrow 0$, we get

$$
J_{1}(x, t)=-D \frac{\partial c(x, t)}{\partial x}
$$

- Fick's first equation.

- Aside: partial differentiation:-

Given a function of several (independent) variables

$$
F(x, y, \theta, t, \ldots),
$$

then $\frac{\partial F}{\partial x}$ means: differentiate with respect to x, treating y, θ, t, \ldots like constants.

Similarly $\frac{\partial F}{\partial \theta}$ means: differentiate with respect to θ, treating x, y, t, \ldots like constants. And so on.

$$
\underline{\underline{\text { EX: }}} \quad F(x, y, \theta)=3 x^{2} y \cos (\theta)+e^{6 y}
$$

$$
\begin{gathered}
\Rightarrow \frac{\partial F}{\partial x}=6 x y \cos (\theta), \quad \frac{\partial F}{\partial y}=3 x^{2} \cos (\theta)+6 e^{6 y} \\
\frac{\partial F}{\partial \theta}=-3 x^{2} y \sin (\theta)
\end{gathered}
$$

Then (order of differentiation doesn't matter!)

$$
\frac{\partial^{2} F}{\partial \theta \partial x}=-6 x y \sin (\theta)=\frac{\partial^{2} F}{\partial x \partial \theta}
$$

and

$$
\frac{\partial^{3} F}{\partial \theta \partial x \partial y}=-6 x \sin (\theta), \quad \text { etc. }
$$

- Cuing back to flux of particles, consider the changing concentration in the box of volume A8:-

\# particles in box at time t

$$
\approx c(x, t) A \delta
$$

\# particles in box at time $t+\tau$

$$
\approx c(x, t+\tau) A \delta
$$

Net flux of particks into box

$$
\approx J_{1}(x, t) A \tau-J_{1}(x+\delta, t) A \tau
$$

Therefore (conservation of particles!)

$$
[c(x, t+\tau)-c(x, t)] A \delta \approx\left[J_{1}(x, t)-J_{1}(x+\delta, t)\right] A \tau
$$ or

$$
\frac{c(x, t+\tau)-c(x, \tau)}{\tau} \approx \frac{-\left[J_{1}(x+\delta, t)-J_{1}(x, t)\right]}{\delta}
$$

As $\tau \rightarrow 0, \delta \rightarrow 0$, we get

$$
\frac{\partial c(x, t)}{\partial t}=-\frac{\partial J_{1}(x, t)}{\partial x}
$$

- Fick's second equation.

Subsituting in from Fick's first equation, we get

$$
\begin{aligned}
& \frac{\partial c(x, t)}{\partial t}=-\frac{\partial}{\partial x}\left[-D \frac{\partial c(x, t)}{\partial x}\right] \\
\Rightarrow \quad & \frac{\partial c(x, t)}{\partial t}=D \frac{\partial^{2} c(x, t)}{\partial x^{2}}
\end{aligned}
$$

- 1-dimensional diffusion equation.
-This is a partial differential equation ($\underline{\mathrm{PDE} \text {) with }}$

1 dependent variable

2 independent variables x, t.

The PDE expresses conservation of number of particles during their random walks.

- It is important to see that this PDE must hold whenever we have a very large number of 'random walkers,' no matter how we distribute their starting positions on the X-axis.
- In the special case that we start them all at $x=0$ at $t=0$, we know that

$$
c(x, t)\left(\approx \frac{\mathcal{N} P(x, t)}{A}\right) \approx \frac{\mathcal{N}}{A} \frac{1}{\sqrt{4 \pi D t}} e^{-x^{2} / 4 D t}
$$

It follows that the function

$$
P(x, t)=\frac{1}{\sqrt{4 \pi D t}} e^{-x^{2} / 4 D t}
$$

must satisfy the 1-D diffusion equation:-

Check:

$$
\begin{aligned}
\frac{\partial P(x, t)}{\partial t}= & \frac{1}{\sqrt{4 \pi D}} \frac{\partial}{\partial t}\left\{t^{-\frac{1}{2}} e^{-x^{2} / 4 D t}\right\} \\
= & \frac{1}{\sqrt{4 \pi D}}\left\{-\frac{1}{2} t^{-3 / 2} e^{-x^{2} / 4 D t}\right. \\
& \left.+t^{-\frac{1}{2}}\left(\frac{x^{2}}{4 D t^{2}}\right) e^{-x^{2} / 4 D t}\right\} \\
= & \frac{1}{\sqrt{4 \pi D}} e^{-x^{2} / 4 D t}\left\{-\frac{1}{2} t^{-3 / 2}+\frac{x^{2}}{4 D} t^{-\frac{5}{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial P(x, t)}{\partial x}= & \frac{1}{\sqrt{4 \pi D}}\left\{t^{-1 / 2}\left(\frac{-2 x}{4 D t}\right) e^{-x^{2} / 4 D t}\right\} \\
= & \frac{1}{\sqrt{4 \pi D}}\left\{-\frac{x}{2 D} t^{-\frac{3}{2}} e^{-x^{2} / 4 D t}\right\} \\
\frac{\begin{array}{l}
\end{array} 2 P(x, t)}{\partial x^{2}}= & \frac{1}{\sqrt{4 \pi D}}\left\{-\frac{1}{2 D} t^{-3 / 2} e^{-x^{2} / 4 D t}\right. \\
& \left.-\frac{x}{2 D} t^{-\frac{3}{2}}\left(\frac{-2 x}{4 D t}\right) e^{-x^{2} / 4 D t}\right\} \\
\Rightarrow D \frac{\partial^{2} P(x, t)}{\partial x^{2}}= & \frac{1}{\sqrt{4 \pi D}}\left\{-\frac{1}{2} t^{-3 / 2}+t^{-5 / 2} \frac{x^{2}}{4 D}\right\} e^{-x^{2} / 4 D t} \\
= & \frac{\partial P(x, t)}{\partial t}
\end{aligned}
$$

- Many other simple functions satisfy the 1-D diffusion equation, for example
(1) $c(x, t)=e^{-\alpha^{2} D t} \sin (\alpha x), \quad \alpha=$ const.
(2) $c(x, t)=A x+B, \quad A, B=\mathrm{consts}$.
(3) $c(x, t)=A \operatorname{erf}\left(\frac{x-a}{\sqrt{4 D t}}\right), \quad A, a=$ const.,
where

$$
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-y^{2}} d y
$$

- the error function. See the graphs of $y=\operatorname{erf}(2 z), y=\operatorname{erf}(z)$, and $y=\operatorname{erf}(z / 2)$ in the next figure:-

- A typical mathematical problem in diffusion is to find $c(x, t)$ in some region of interest, for times $t>0$, given some information about the initial state, at $t=0$, and about what is happening at the boundaries of the region. This is called an initial and boundary value problem for the diffusion equation (IVP \& BVP).
- A great many problems of this type have been solved, by various methods. [See for example,
H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids
(Oxford UP, 1959),
and
J. Crank, The Mathematics of Diffusion (Oxford UP, 1975).]

