
MATH3104 Lecture 1 (Bracken)

•Diffusion: random movement of molecules or small particles in a gas or
liquid, due to thermal energy of surrounding molecules.

•Recall: Absolute (or Kelvin) temperature scale.

27oC ≈ 300oK

• Particle in fluid that is in thermal equilibrium at T oK, has average K.E.

associated with motion along each coord. axis equal to 1
2kT

— so 3
2kT in total.

• Here k is Boltzmann’s constant

k ≈ 1.38× 10−16 gm(cm/sec)2/oK
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• When T = 300oK, kT ≈ 4.14× 10−14gm(cm/sec)2 (ergs).

— a very small energy on human scales: a 70kg human walking at 5kph has
a K.E.

1
2mv

2 ≈ 7× 108ergs

•However, consider a molecule of the enzyme/protein lysozyme, in water
at 300oK. (Lysozyme is found in egg-white, tears, . . . )

•Mass? Molecular weight ≈ 14, 000gm

= mass of NA molecules, where NA = Avogadro Number ≈ 6× 1023

2



So now

m ≈ 14000

6× 1023
≈ 2.3× 10−20gm

•Speed? 1
2mv

2
x ≈ 1

2kT

⇒ vx ≈
√
kT

m
≈
√

4.14× 10−14

2.3× 10−20
≈ 1.3× 103cm/sec (≈ 45kph)

— would cross swimming pool in about 1sec.
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•Each water molecule has a similar average K.E. along each coordinate
axis. But now

MW = 18gm, so m ≈ (18)/(6× 1023) ≈ 3× 10−23gm

⇒ vx about
√

14000
18 ≈ 30 times greater.

— would cross pool in about 1/30sec.

•Of course, this is not what happens. Molecules collide repeatedly and
get redirected. The lysozyme molecule in water is forced to conduct a
random walk.

•A small cloud of such particles will wander about and spread — this is
diffusion.
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•Let’s consider a simple model of this process:

The one-dimensional random walk

A particle (‘the walker’) starts at x = 0 at time t = 0. After each interval
of time τ , it receives a kick and moves one step of length δ to L or R along
the X-axis, each with probability 1/2.

(Toss a coin at each stage!)
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After N steps (t = Nτ ), particle could be at any of

x = Nδ , x = (N − 2)δ , . . . x = −(N − 2)δ , x = −Nδ

i.e. particle is at

x = mδ , m ∈ {N, N − 2, · · · − (N − 2), −N}

For a given m, this requires a sequence of steps of which r are to the RIGHT
and l are to the LEFT, with

r − l = m.

Since
r + l = N ,

it follows that

r =
N + m

2
, l =

N −m
2

.
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•The probability of any one sequence of N steps is (1/2)N .

So, probability that x = mδ after N steps is

P (m,N) =
(

1
2

)N
[ No. of sequences of length N with r = (N + m)/2]

=
(

1
2

)N
[ No. of ways of getting r Heads in N coin tosses]

=
(

1
2

)N
CN
r ,

where CN
r = N !

r!(N−r)! (= N choose r) .

So we have

P (m,N) =
(

1
2

)N N !

r!(N − r)!
=
(

1
2

)N N !

(N+m
2 )!(N−m2 )!

.
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EX: N = 3 , m = −1 (⇒ r = 1 , l = 2)

P (−1, 3) =
(

1
2

)3 3!

1! 2!
=
(

1
2

)3
3 = 3

8

— as on page 1.6
******************************

Note that we must have
N∑

m=−N

′
P (m,N) =

N∑
m=−N

′ (1
2

)N N !

(N+m
2 )!(N−m2 )!

= 1 ,

as in the example on p. 1.6. Can you see how to prove it in the general
case? (Binomial Theorem!)

(Here
∑ ′

means sum over m = −N, −(N − 2), . . . , N − 2, N .)
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•Where is the particle on average after N steps?

〈x〉 =

N∑
m=−N

′
P (m,N)mδ = 0

because P (−m,N) = P (m,N)

— particle is just as likely to go L or R at each step — on average it gets
nowhere!

More interesting is the mean-square displacement of the particle from
its mean position:–

〈(x− 〈x〉)2〉 = 〈x2 − 2〈x〉x + 〈x〉2〉
= 〈x2〉 − 2〈x〉〈x〉 + 〈x〉2

= 〈x2〉 − 〈x〉2. This reduces to 〈x2〉 here, because 〈x〉 = 0.
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•The root-mean-square displacement
√
〈(x− 〈x〉)2〉 is a convenient

measure of how far we expect the particle to be from its mean position.

We have
√
〈(x− 〈x〉)2〉 =

√
〈x2〉 =

√
N δ after N steps.

This is an important and characteristic feature of the random walk!

After 100 steps, each of length δ, we expect the particle to be about 10δ
from its starting point.

After 10, 000 steps, we expect it to be about 100δ away, and so on.

Note that we are talking about average behaviour. No two realisations
of a random walk will look the same in general: see the following figures:–
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•Consider again

P (m,N) =
(

1
2

)N N !

(N+m
2 )!(N−m2 )!

.

Using Stirling’s approximation for K! when K is large, we can show

that when N and |m| are large, with m2/N not too large, then

P (m,N) ≈
√

2

πN
e−m

2/2N .

This is a good approximation even for quite small values of |m| and N :–
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•What about random walks in two and three dimensions?

Again we find that the mean displacement after N steps is zero, and the
rooot-mean-square displacement is proportional to N .

See the next two figures, showing realisations of a 2-D random walk with
N = 100 and N = 1000, respectively.

[We have assumed that after each time interval of length τ , the particle steps
a distance δ in an arbitrary direction, making an angle with the X-axis that
is uniformly distributed over [0, 2π).]
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Reading: H.C. Berg, Random Walks in Biology, Chapter 1.
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