MATH3104 Lecture 1 (Bracken)

-Diffusion: random movement of molecules or small particles in a gas or liquid, due to thermal energy of surrounding molecules.
-Recall: Absolute (or Kelvin) temperature scale.

$$
27^{\circ} \mathrm{C} \approx 300^{\circ} \mathrm{K}
$$

- Particle in fluid that is in thermal equilibrium at $T^{0} K$, has average K.E. associated with motion along each coord. axis equal to $\frac{1}{2} k T$
- so $\frac{3}{2} k T$ in total.
- Here k is Boltzmann's constant

$$
k \approx 1.38 \times 10^{-16} \quad \mathrm{gm}(\mathrm{~cm} / \mathrm{sec})^{2} /{ }^{\circ} \mathrm{K}
$$

- When $T=300^{\circ} K, \quad k T \approx 4.14 \times 10^{-14} \mathrm{gm}(\mathrm{cm} / \mathrm{sec})^{2} \quad(\mathrm{ergs})$.
- a very small energy on human scales: a 70 kg human walking at 5 kph has a K.E.

$$
\frac{1}{2} m v^{2} \approx 7 \times 10^{8} \mathrm{ergs}
$$

- However, consider a molecule of the enzyme/protein lysozyme, in water at $300^{\circ} \mathrm{K}$. (Lysozyme is found in egg-white, tears, ...)
-Mass? Molecular weight $\approx 14,000 \mathrm{gm}$
$=$ mass of N_{A} molecules, where $N_{A}=\underline{\text { Avogadro Number } \approx 6 \times 10^{23}}$

So now

$$
m \approx \frac{14000}{6 \times 10^{23}} \approx 2.3 \times 10^{-20} \mathrm{gm}
$$

-Speed? $\quad \frac{1}{2} m v_{x}^{2} \approx \frac{1}{2} k T$

$$
\Rightarrow v_{x} \approx \sqrt{\frac{k T}{m}} \approx \sqrt{\frac{4.14 \times 10^{-14}}{2.3 \times 10^{-20}}} \approx 1.3 \times 10^{3} \mathrm{~cm} / \mathrm{sec} \quad(\approx 45 \mathrm{kph})
$$

- would cross swimming pool in about 1 sec.
- Each water molecule has a similar average K.E. along each coordinate axis. But now
$M W=18 \mathrm{gm}$, so $m \approx(18) /\left(6 \times 10^{23}\right) \approx 3 \times 10^{-23} \mathrm{gm}$
$\Rightarrow v_{x}$ about $\sqrt{\frac{14000}{18}} \approx 30$ times greater.
- would cross pool in about $1 / 30$ sec.
- Of course, this is not what happens. Molecules collide repeatedly and get redirected. The lysozyme molecule in water is forced to conduct a random walk.
- A small cloud of such particles will wander about and spread - this is diffusion.
-Let's consider a simple model of this process:

The one-dimensional random walk

A particle ('the walker') starts at $x=0$ at time $t=0$. After each interval of time τ, it receives a kick and moves one step of length δ to L or R along the X-axis, each with probability $1 / 2$.
(Toss a coin at each stage!)
e.g. after 3 steps (at $t=3 \tau$), particle could be at

- See the pattern:-

$\frac{1}{2}$ - $\frac{1}{2}$ -

$$
\frac{1}{8} \cdot \frac{3}{8}
$$

$$
\frac{1}{8}
$$

$$
\begin{aligned}
& t=0 \\
& t=\tau \\
& t=2 \tau \\
& t=3 \tau \\
& t=4 \tau
\end{aligned}
$$

$$
\frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{4} \cdot \quad t=2 \tau
$$

Pascal Triangle

$$
\frac{3}{8}=\frac{1}{2}\left(\frac{1}{2}+\frac{1}{4}\right) \text { etc. }
$$

After N steps ($t=N \tau$), particle could be at any of

$$
x=N \delta, \quad x=(N-2) \delta, \quad \ldots \quad x=-(N-2) \delta, \quad x=-N \delta
$$

i.e. particle is at

$$
x=m \delta, \quad m \in\{N, N-2, \cdots-(N-2),-N\}
$$

For a given m, this requires a sequence of steps of which r are to the RIGHT and l are to the LEFT, with

$$
r-l=m .
$$

Since

$$
r+l=N
$$

it follows that

$$
r=\frac{N+m}{2}, \quad l=\frac{N-m}{2} .
$$

-The probability of any one sequence of N steps is $(1 / 2)^{N}$.

So, probability that $x=m \delta$ after N steps is
$P(m, N)=\left(\frac{1}{2}\right)^{N}$ [No. of sequences of length N with $r=(N+m) / 2$]

$$
\begin{aligned}
& =\left(\frac{1}{2}\right)^{N} \text { [No. of ways of getting } r \text { Heads in } N \text { coin tosses] } \\
& =\left(\frac{1}{2}\right)^{N} C_{r}^{N},
\end{aligned}
$$

where $C_{r}^{N}=\frac{N!}{r!(N-r)!} \quad(=N \quad$ choose $r)$.

So we have

$$
P(m, N)=\left(\frac{1}{2}\right)^{N} \frac{N!}{r!(N-r)!}=\left(\frac{1}{2}\right)^{N} \frac{N!}{\left(\frac{N+m}{2}\right)!\left(\frac{N-m}{2}\right)!}
$$

$$
\underline{\underline{\text { EX: }} \quad} \quad N=3, \quad m=-1 \quad(\Rightarrow r=1, \quad l=2)
$$

$$
P(-1,3)=\left(\frac{1}{2}\right)^{3} \frac{3!}{1!2!}=\left(\frac{1}{2}\right)^{3} 3=\frac{3}{8}
$$

— as on page 1.6
************************** * * * * * *

Note that we must have

$$
\sum_{m=-N}^{N} \prime^{\prime} P(m, N)=\sum_{m=-N}^{N} \prime\left(\frac{1}{2}\right)^{N} \frac{N!}{\left(\frac{N+m}{2}\right)!\left(\frac{N-m}{2}\right)!}=1
$$

as in the example on p. 1.6. Can you see how to prove it in the general case? (Binomial Theorem!)
(Here \sum^{\prime} means sum over $\left.m=-N,-(N-2), \ldots, N-2, N.\right)$
-Where is the particle on average after N steps?

$$
\langle x\rangle=\sum_{m=-N}^{N}{ }^{\prime} P(m, N) m \delta=0
$$

because $P(-m, N)=P(m, N)$
— particle is just as likely to go L or R at each step - on average it gets nowhere!

More interesting is the mean-square displacement of the particle from its mean position:-

$$
\begin{aligned}
& \left\langle(x-\langle x\rangle)^{2}\right\rangle=\left\langle x^{2}-2\langle x\rangle x+\langle x\rangle^{2}\right\rangle \\
& =\left\langle x^{2}\right\rangle-2\langle x\rangle\langle x\rangle+\langle x\rangle^{2} \\
& =\left\langle x^{2}\right\rangle-\langle x\rangle^{2} . \text { This reduces to }\left\langle x^{2}\right\rangle \text { here, because }\langle x\rangle=0 .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \left\langle x^{2}\right\rangle \\
& \begin{array}{cc}
(1)(0)^{2}=0 & \text { No. of steps } \\
\begin{array}{cc}
\left(\frac{1}{2}\right)(-\delta)^{2}+\left(\frac{1}{2}\right)(\delta)^{2}=\delta^{2} & 0 \\
\hline\left(\frac{1}{4}\right)(-2 \delta)^{2}+\left(\frac{1}{2}\right)(0)^{2}+\frac{1}{4}(2 \delta)^{2} & 1 \\
= & 2 \delta^{2}
\end{array} \\
\begin{array}{rl}
\left(\frac{1}{8}\right)(-3 \delta)^{2}+\left(\frac{3}{8}\right)(-\delta)^{2}+\left(\frac{3}{8}\right)(\delta)^{2}+\left(\frac{1}{8}\right)(3 \delta)^{2} & 2 \\
= & 3 \delta^{2}
\end{array}
\end{array}
\end{aligned}
$$

The pattern is clear: after N steps,

$$
\left\langle x^{2}\right\rangle=N \delta^{2}
$$

ie. $\sum_{m=-N}^{N} \prime P(m, N)(m \delta)^{2}=N \delta^{2}$ - but can you prove it?
-The root-mean-square displacement $\sqrt{\left\langle(x-\langle x\rangle)^{2}\right\rangle}$ is a convenient measure of how far we expect the particle to be from its mean position.

We have $\sqrt{\left\langle(x-\langle x\rangle)^{2}\right\rangle}=\sqrt{\left\langle x^{2}\right\rangle}=\sqrt{N} \delta$ after N steps.

This is an important and characteristic feature of the random walk!

After 100 steps, each of length δ, we expect the particle to be about 10δ from its starting point.
After 10, 000 steps, we expect it to be about 100δ away, and so on.

Note that we are talking about average behaviour. No two realisations of a random walk will look the same in general: see the following figures:-

-Consider again

$$
P(m, N)=\left(\frac{1}{2}\right)^{N} \frac{N!}{\left(\frac{N+m}{2}\right)!\left(\frac{N-m}{2}\right)!} .
$$

Using Stirling's approximation for K ! when K is large, we can show that when N and $|m|$ are large, with m^{2} / N not too large, then

$$
P(m, N) \approx \sqrt{\frac{2}{\pi N}} e^{-m^{2} / 2 N}
$$

This is a good approximation even for quite small values of $|m|$ and N :-

$$
\begin{array}{cccc}
(m, N) & \begin{array}{lll}
P(m, N) & \begin{array}{c}
\text { Relative } \\
\text { Error }
\end{array} \\
(\pm 2,10) & 0.2051 & 0.2066
\end{array} & 0.73 \% \\
(\pm 5,27) & 0.09714 & 0.09668 & 0.5 \% \\
(\pm 200,10000) & 0.0010799 & 0.0010798 & 0.01 \%
\end{array}
$$

31 realizations

-What about random walks in two and three dimensions?

Again we find that the mean displacement after N steps is zero, and the rooot-mean-square displacement is proportional to N.

See the next two figures, showing realisations of a 2-D random walk with $N=100$ and $N=1000$, respectively.
[We have assumed that after each time interval of length τ, the particle steps a distance δ in an arbitrary direction, making an angle with the X-axis that is uniformly distributed over $[0,2 \pi)$.]

Reading: H.C. Berg, Random Walks in Biology, Chapter 1.

