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Abstract

Recent success in the formulation of Quantum Random Walké, has motivated consideration
of a quantum walk partially influenced by some classically random parameter. In this the-
sis, a classical random walk and a quantum random walk é,re firstly constructed and their
contrasting properties investigated. Such analysis is fundamental to the creation of a hybrid
process of the two walks. Numerical data indicates that the introduction of some classical
ra.ndoﬁmess into a quantum random walk will produce classical-like results. This suggests

a form of quantum Brownian Motion. Provided the number of iterations is large enough,

this phenomenon appears to occur regardless of the ‘degree of randomness’ applied to the

quantum system. Such numerical findings prompt the need for further analytic development
and practical exploration in this field. -
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Chapter 4

‘Random’ Quantum Walk

Previous work has been done by Professor Bracken on exploring a hybrid of the classical and
quantum random walks. His research has examined the influence that random behaviour

has on the comparative processes: That is, how the addition of classical randomness effects

the quantum system.

For the classical walk we began with a point at the origin. At each iteration iﬁ the walk
we imagined that the point was ‘rotated’ either left or right randomly and then translated
one step in that direction. For our ‘pure’ quantum walk, however, we began with a point at
the origin, which moved in a superposition of left and right directions. At each iteration we
rotated the system by appling a fixed rotation operator, and followed this with a suitable
translation. The most effective way to produce a hybrid of these two process as required,

then, is clearly to insinuate a degree of classical randomness into the quantum rotation op-

erator.

The processes involved in the ‘Random’ Quantum Walk are the same as those for the ‘pure’
quantum walk, save the addition of the classically random element into the rotation oper-

ator, R. This chapter will numerically and analytically investigate the progression of the
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‘random’ quantum walk and its resultant properties, in comparison to the Classical and

‘pure’ quantum walks.

4.1  Quantum Walk Formalism

A “wall’ requires a series of rotations and translation. A quantum walk achieves this through
application of operators that act on the system. At each iteration, an operator V, acts on

the position distribution to achieve a quantum walk; that is, rotations and translations.
V = (TW 4+ TENR,

where T are the translation operators and R is the rotation operator.

In the purely quantum case, the rotation and translation are effected by a fixed operator.

That is, R can be arbitrarily chosen such that a suitable fixed rotation matrix is formed.

For example,

R= exp(i-%oz) = —\j_i(I + 203)
1 1 1
R=—
V2 -1 1

as previously given.
See Appendix (1) for a definition of the Pauli matrices 01,03, 03.

The translation of the resulting position vector is achieved accordingly.

d.1
T = exp(?Aé—:;) -2—(12 + 03)

The ‘random’ quantum walk is formulated similarly, but with a classically random element

insinuated into the ‘pure’ rotation operator R, as previously stated.
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For example, the rotation matrix could become

1 (1 Tn

Ry, = —
V2 —-r, 1

where r,, is randomly assigned +1 at each iteration independently, with equal probability.

These two alternative matrices act in opposing fashions on the position vector. Thus such a
choice of rotation operator is more analogous to the classical walk than its ‘pure’ quantum
counterpart, making it a relevant hybrid of the classical and quantum walks. As will be

investigated in the following chapter, however, the choice of ‘random’ rotation operator is

largely arbitrary.

Therefore, the walk progression operator,V, for the random quantum system is,

V= (TH+ TR,

now with
Ro = exp(irar0z) = —=(I + iracs)
= €x n702) = ——= n
expler 402 \/5 rn02
R = 1 (1 m
\/5 —r, 1
So that,
( 1
12 ' rn =41
-1 1
R, =<
1 -1
, 12 rp=—1
1 1
\
as stated above.
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4.2 Properties of the ‘Random’ Quantlim Walk

4.2.1 Probability

The position matrix, which is acted on by the walk progression operator, V, does not measure
the exact position of the point on a line, but rather a superposition of possible and probable
states in which it could exist. The probability distribution after n iterations/steps, then, is
determined as previously defined:
m_ | "
v =

Uk
- Probability, pr= |'u,;,|2 -+ Ivklz

The appropriate probability measures can be plotted against their placement in the vector,

to form an a,ppfoximate version of a quantum probability density function.

Now recall that the classical probability distribution is that of a Gaussian, whereas the

purely quantum case displays a graph of opposing form.

The new case considered here is posed in the quantum regime but can be compared to
the classical in its use of random rotation. After n=100 iterations the pdf of the system has

the following form, averaged over 100 repetitions.

Averaga Probability Graphs: Q {0) vs Classicat (DR

Figure 11: Classical versus Random Quantum pdfs
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It can be posed that the resulting ‘random’ quantum pdf forms a bell-like shape, similar

to that of the classical random walk. However, we must also investigate if it progresses as

the classical walk does, before any conclusions can be made. Observe the evolution of the

‘random’ quantum walk pdf as the final time iteration is increased.

0.1 T

Random Quantum (o) and Classical (~) pdfs: n=100

Pdfs
e
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Figure 12: Classical versus Random Quantum pdfs

It does appear that the ‘random’ quantum walk pdf spreads out as the final time iteration

1s increased, similarly to the classical random walk. Does this suggest the occurrence of a°

form of quantum Brownian Motion? Let us investigate this phenomenon further with the

expectation values and variance.

4.2.2 Expectation

In the classical random walk it is possible to graph the exact position of the point at any

time. In this way we observe a realisation of Brownian Motion. Such realisations are un-

observable, however, with the quantum analogy, since we are unable to determine a precise

position for any point at any given time in the quantum regime. It is possible, though, to

27




analyse instead, the quantum expectation value of the point after each iteration and compare
this to the classical results.

The discrete quantum expectation value was calculated as follows:

where K, is the discrete position random variable, p is the probability of the point being

in position k, after n iterations.

Discrete expectation values can then be plotted against the iteration number in order to
give a graph of the changing expectation value of the point’s position. See figure 13 for the

expectation values of a ‘random’ quantum walk with initial position vector, p© = (1 0)T.

Average Expaciation Vaiue aher sach Heration
T T T T v

Figure 13: ‘Random’ Quantum Expectation Values

Classically we expect that the expectation value of position will be E(X,) = 0. In the
‘random’ quantum walk expectation graph we observe that the expected position of the
particle does oscillates about zero. It can be assumed that as the number of repetitions is
increased for greater accuracy, the discrepancy will become infinitesimally small, such that
E(K,) — 0. In the ‘Pure’ quantum walk, with initial state »© = (1 0)T, the expectation
value appeared to be linearly increasing with time. Hence the ‘random’ quantum walk

expectation values appear to mirror the classical rather than the ‘pure’ quantum results

more closely.
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4.2.3 Variance

Let us also investigate the mean square deviation of the position from the mean. The

quantum variance was calculated as follows:
Var(K, = k) = E(K,)* — (EK,)?

In the classical regime, the expectation value E(X,) is equal to zero. Therefore classically,

Var(X,) = E(X?) = n, assuming that each iteration step is one unit.

Averaging over a sufficiently large number of iterations, the ‘random’ -qua,ntum variance

closely resembles the linearly increasing classical variance graph (minus the relatively small

(EK,)? values).

Average Mean Square Deviation ach Neration
T T T T T T

3 8

4

Awumw‘m
8
T

Figure 14: ‘Random’ Quantum Variance with () = (1 0)7

It does appear that the probability distribution, expectation and variance of the ‘random’
quantum walk resemble the classical results more closely than those of the ‘pure’ quantum
walk. In order to support these numerical findings, a more analytic appreciation of the ‘ran-

dom’ quantum system at any time can be determined by examination of the density matrix.
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4.3 Probability Density Matrix

The quantum density matrix can perhaps be considered as the quantum analogue of the

classical transition matrix; where
Pu(i,7) =P(Xn = 71X = 1)

One property of the classical transition matrix is that the eigenvector corresponding to
7 = 7P, is a statlonary or limiting distribution. So that 7 indicates the steady state of the

system, independent of the initial state.

In the ‘pure’ quantum case, ‘unitarity’ prevents the walk from reaching a steady state. How-
ever, a 1im1t1ng distribution that depends on the initial state can be found, for a continuous
quantum walk, as given by Childs et al. [4]. This involves expansion over the energy eigen-

states of the system to form an analytic probability distribution for the ‘pure’ quantum walk.

Although the limiting distribution is not so easily calculated for the ‘randonri’ quantum \
walk, the quantum density operator can still divulge useful information. The eigenvalues of
the quantum density matrix can be interpreted as the probability of the system being in its
corresponding eigenstate. This is'an indication of the probable form of the wave function at

any time, n.

Quantum mechanically, the density operator is defined as a unitary matrix;

o) = ) )

Given an initial position vector (), then, it is possible to construct the density matrix for
any iteration. As previously shown, cach iteration of the quantum walk is performed by the

unitary operator V. Such that,
H) = Vaptn—)
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correspondingly (™t = y(a-Dty -1

Now since p(® = ®yp@t o p®) = Vype-tyln-Dty-1  _ Vpr-ty-1

In the 'Random’ Quantum case, the walk progression operator includes a classically random
element, r, = +1, with equal probability. We must consider the combined effect of the two
unitary operators, V., each with fifty percent probability of being applied at each iteration,

independently. Therefore the density matrix for the "Random’ quantum walk becomes,

1 1
p(n) — §V+p(n—1)V+—-1 + ’é‘V—P(ﬂ_I)V_—l

The initial density matrix po is calculated from the assigned initial state.

| p(O) - l-¢(0)><¢(0)| = ¢(0)¢(0)‘r

Thus if the initial spin state was chosen as $(®) = (u v )7, the density matrices, its eigen-

vectors and eigenvalues can be determined, as found in Appendix 3 for n=0,1,2,3.

Assigning |ul®* + [v]*> = 1 and @ = @ — Du, it is determined that the general form of

the eigenvalues, J; is;

&:%iiw
where b; are constants, dependent on the initial conditions and the corresponding eigenstates.
The eigenstates for all @ # 0, consist of two non-zero components; 1 and +:. And for all
a = 0, that is u and v are real, the eigenstates’ only non-zero component is 1. The ‘placement
of these components within the vectors and the size of their corresponding eigenvalues, is an

indication of the probable position of the quantum point.

For example if the initial spin state was chosen as in the positive Z dimension;

1 1 1/ 10

'(,b(o) — => ,0(0) —
V2 \ o 0 0

8|
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The eigenvalues of p™ for n=0,1,2,3 are as follows:

n= 1
-1 1 1
" ; 0 2
n=2 1 9 o 1 1 o 1
4 4 4 4
n=3 1 1 1 11 1
,8008_4004800 2

Figure 15: Eigenvalues of density matrix, o = 0

g; This formation, except for n=0, is the same for all real valued u and v. It is clear that this
eigenvalue distribution will approach that of the the classical discrete probability distribu-

tion, as n becomes large. The density eigenvalues indicate the production of a bell-shaped

continuous probability curve, somewhat similar to the classical random walk pdf. However,
the progression of this curve in time is not immediately clear. It is therefore beneficial to

investigate the entropy of the system, as will be further explained.

4.4 Entropy- Disinformation

Another interesting value which can be determined by investigation of the density matrix,

is the Entropy, H, of the system. That is, the loss of information the system accrues after n

iterations.

H = —trace(plog(p))

=> H=-) Xlog(X)

where \; are the eigenvalues of p.

The entropy versus the number of iterations is as follows.
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Entropy/Disorder versus lteration number
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Figure 16: Entropy versus time

The graph above displays only 20 iterations, yet this is sufficient to see a definite relation

between the entropy and time, of the system at hand.

It appears that as time progresses, the entropy or the loss of information is increasing.
This corresponds to the linearly increasing variance graph and the change of the quantum
pdfs with time, as produced earlier. As the number of iterations is increased, the pdf graph
appears to spread out. This increase in ‘spread’ indicates a growing uncertainty of “where”
the point actually is. That is, as the iterations increase so does the loss of information,

entropy.

Therefore, to say that the disorder/entropy is rising, suggests that as the number of steps
in the quantum random walk increases, the ‘random’ quantum pdf should exhibit linearly
increasing variance. Such evidence supports the behaviour of the ‘random’ quantum walk

observed numerically.

4.5 Is Quantum Brownian Motion found?

The numerically observed pdfs, expectation and variance graphs of the ‘random’ quantum

walk indicate the development of a bell-shaped curve that spreads out over time, closely
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resembling the classical Gaussian. The analytic examination of the density matrix and en-
tropy, supports these results; the ‘random’ quantum walk appears to behave similarly to the

classical random walk, rather than the ‘pure’ quantum walk.

All results combined, there does appear to be considerable evidence that the introduction
of a random element into the ‘pure’ quantum walk on a line produces classical-like results.
While this suggests the existence of quantum Brownian Motion for this particular case of

rotation operator, further numerical and analytical investigation is necessary.
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Chapter 5

General Hybrid Walks

In the construction of a ‘random’ quantum walk, the classically random element is insinu-
ated into the rotation operator. The choice of rotation operator, is arbitrary, provided it is a
unitary (2X2) matrix. The rotation matrix of the previous chapter was classically analogous,

as it had two simple opposing rotation matrices, however, similar results should arise from

other suitable rotation operators.

If a slightly differing operator is inserted into the system, do we observe the same results?

How far from the purely quantum case must we go in order to see the effects of the classical

randomness in the system?

5.1 Asymmetrical Hybrid Walk .

The most practical initial approach to this question is to examine hybrid operators which

can vary the randomness between the purely quantum and random quantum case already

observed.

With the ‘random’ quantum case just described, the operators utilised were;

_ 1 .
an = \/§(I+ 1Tp03)

1 Tn

1
Rn_7§ —rn 1
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where r, = +1 or r, = —1 is randomly assigned with equal probability at each iteration.

The ‘pure’ quantum case can be similarly represented and constructed by setting
R,= —

where r, = +1 or r, = +1 for every i’cel_'ation.
That is, the ‘pure’ quantum case is represented in the ‘random’ quantum regime by allowing

r, to take the value of +1 only. Thus the two cases can be formed through the same com-

putational processes.

Let us symbolise the probable rotation operators as;

R=— , <==> 1

L <¥—> 4
V2 \ 11

Thus we can conceptualise;

rp = +1
Pure Quantum rotation operator R, = T
T rp=-1
' e = +1
Random Quantum rotation operator R, = T
} rp=-1

It is possible, then, to construct a hybrid operator that can gauge the results as we move

from the ‘pure’ quantum to the ‘random’ quantum case.

In order to produce a system which can represent a hybrid process between these two, it is
necessary to construct an asymmetric rotation operator. That is, the first possible rotation

matrix is fixed as 1 and the second possible rotation matrix 1s variable between 1 and |.
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5.1.1 Introduction of a new variable ¢

Let us introduce a new parameter €, which is assigned a value that is fixed for all iterations.

This parameter determines the form of the second possible rotation matrix, such that;

%(I + ’L‘0'2) n = +1
Bn = el (I 4i(1 —€)os) Tp=—1
\/IT(CT)"’ 2 n

) 1 -1
Vi 1 1
, 1 —1+e€
e — 1 rp=-1
\/1",(6—‘1)2 1+ —¢ 1 .

4
\
Such that if e = 0 the system resembles the ‘pure’ quantum case and if € = 2 we find the

‘random’ quantum case. For values of ¢, 0 < € < 2 we can examine the hybrid cases which

occur between these two.

5.1.2 Asymmetric Hybrid pdf

Let us examine the probability density functions of this asymmetric hybrid walk, as the

degree of randomness is increased.
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Hybrid (o) and Classical (-) Pdfs, epsilon= .01
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Figure 17: Asymmetric Hybrid pdf, n=200

We see a gradual change from a two-peaked quantum pdf to the Gaussian-like shape of
the ‘random’ quantum pdf, as the degree-of-randomness € is increased from zero to two.
More investigation is necessary, perhaps for a more symmetrical application of the degree-

of-randomness parameter, €.

5.2 Symmetric Hybrid Walks

In order to investigate this apparent ‘classicalisation’ of the quantum system from any
amount of randomisation, we should perhaps form a more symmetrical alternating oper-

ator. For example,

1
R, = (I-I-'I;Uz)(I-{—Z‘E?‘nO'k)\/i\/—TI_—?

where if k=2 we have commuting factors and if k=1 we have non-commuting factors.
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For the commuting case, we can write

=]
S
f

1

\/EU 1+e§

;;27 1-+-¢s§

For the non-commuting case, we can write

Unlike the previous hybrid, these operators cannot be clearly related to the ‘random’ quan-

tum walk rotation operators.

72;/- 1-{-155

\/57 1+e5

1+ €
-1 4 z¢

1-—1ze¢

-1 —ze

5.2.1 Symmetric Hybrid pdfs

Let us examine the pdfs obtained from application of these symmetric hybrid operators, for

different values of e.
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Commuting Hybrid (o) and Classical (-} Pdfs, epsilon= .01
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Figure 18: Non-Commuting Symmetric Hybrid Pdfs, n=200

Non-Commuting Hybrid (o} .and Classical (-) Pdfs, epsilon=.01
0.1 T T

1 1 1 1 i

0

Non-Commuting Hybrid (o) and Classical (-) Pdfs, epsilon=.1
0.1 T T

T T T T T

Pdfs
g
o
(%]

T

-200 -1 -100 -50 0 50 100 )
Non-Commuting Hybrid (o) and Classica! (-) Pdfs, epsilon=1

¥ H 1 1 1 T

Paosition

Figure 19: Commuting Symmetric Hybrid Pdfs, n=200
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The gradual change from the quantum twd—peaked pdf at € = 0 to a Gaussian-like shape as

e > 1 appears to occur for the symmetric hybrid walks also.

First to note is that for values of € > 1, the pdf observed appears to form centrally peaked
graph. This may indicate that any symmetric operator, with a random parameter dominant
enough, gives a bell-shaped pdf. In order to determine if this formation is similar to the
classical pdf, it is necessary to discover if the bell-like shape tends to spread out as the

iterations are increased.

Non-Commuting Hybrid (o) and Classical (-} Pdfs, n=100
0.08 T T T T s T T T T

ThyTEs e meaaan e n ey

-100 - -80 -4  -20 0 20 40 0 80 100

Non-Commuting Hybrid (o) and Classical () Pdfs, n=200
0-08 1 1 i i 1 1 ] 1 ]
0.08 J

40 20 0 20 40 60 80 100
Non-Commuting Hybrid (o) and Classical (~) Pdfs, n=500

Position

Figure 20: Non-Commuting Symmetric Hybrid Pdfs, € =2

It does appear that for € = 2 (in the non-commuting symmetric hybrid walk), as n is in-
creased, the bell-shaped pdf does spread out as expected. Hence, the hybrid walk pdf may
approximate a Gaussian. This supports the hypothesis that any rotation operator with a
sufficient degree of randomness will exhibit classical random walk behaviour. The numerical

results given here, however, are insufficient for any conclusions to be made. More numerical
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and analytic examination, perhaps of a general density matrix, is necessary.

Secondly, the results produced above lead to the question; for what values of € is this classical-

d? What degree of randomness is necessary in ord
hrough observation of

like behaviour observe er for the quantum

to tend towards the classical? The answer to this question is gained t

the process over increasing time iterations.

Let us examine the transformation in time of the hybrid walk pdf, With e=".1

Commuting Hybrid (o) and Classical (-) Pdfs, n=40
0.2 T T T T

1

5 -O-06)

5 1 i1 1 S
~40 -30 -20 -10 0 10 20 40
Commuting Hybrid (o) and Classical (~) Pdfs , n=200
0-06 ] 1 1 ) 1
0.04
8
o

200 -150 -100 50 0
Commuting Hybrid (o) and Classical (-) Pdfs, n=2000
]

0.03 T T T T T

T

=200 0
Position

o0 "800 -600 400

Figure 21: Commuting Symmetric Hybrid Pdfs, e=.1

For smaller values of n, the pdf of the hybrid walk with € = .1 resembles a sligthly altered

As the iteration number is increased, however,
m a Gaussian-like pdf

two-peaked quantum pdf. the peaks appear
to merge into a centrally positioned single peak, and eventually for

that continues to ‘spread-out’.
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Such results as these suggest that an operator with any degree of randomness, regardless
how insignificant seeming, will produced classical-like probability behaviour for a sufficiently

large number of iterations.

These results appears to imply a relationship between the degree-of-randomness, €, and the
iteration time, n. Examination of this relationship can be achieved through observation of
the expectation and variance of the hybrid walk in time, for different values of e. Through
this, it may be possible to numerically determine an approximate transition period, from the

quantum to the classical-like results.

5.2.2 Relationship between ‘Degree-of-Randomness’ and Time

In order to gauge the combined effects of n and € on the form of the pdf, examination of the

expectation values and variance were made.

For the ‘pure’ quantum walk previously investigated ((®) = (1 0)T) we observed a steadily
Increasing expectation value, where as the classical and ‘random’ quantum walks revealed
a expectation value of approximately zero. Thus the resulting hybrid expectation graph
will gradually change from a linearly increasing curve to flatten out. The period in which
this occurs will correspond to the ‘symmetrising’ of the pdf, and thus the beginning of the

transition from the quantum to the classical-like results.
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Figure 22: Non-Commuting Symmetric Hybrid Expectation Value

Similarly, the variance can be observed as the change from a (quantum) parabola to 2

(classical) linearly increasing line.

x1¢* Hybrd Quantuem Variance for diorent epolon, pi=(1,0)
¢=0-00
sk
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2 =010
1k
£=0-20
% % 10 10 20 Im‘z‘osgmsuo 360 400 450 500 Esl-oo

Figure 23: Non-Commuting Symmetric Hybrid Variance

An estimate of the ‘cross-over’ period can be approximately calculated through numerical

investigation of graphs such as these. The apparent transition from quantum to classical

44




i

is not instantaneous, but will occur graduaily. However, as n becomes large, the resultant
graphs will indicate an approximate initial ‘cross-over’ time, in relation to the other values
of €. Following is a graph that relates the degree-of-randomness, ¢, to the approximate initial

transition time.

Initial transition time from Quantum to Classical for different epsilon
T T T T T T T

250

g

initial transition time

g

T T
0.4 05 0.8 07 0.8 0.8
epslion, degree-of-randomness

0

0 0’.1 012 0‘.3
Figure 24: Transition time from Quantum to Classical, for different e

The graphs appear to demonstrate a decreasing non-linear curve. As the degree-of-randomness
is increased, the time before the quantum results begin to exhibit classical-like behaviour
decreases. This relationship is intuitive: A hybrid quantum system will tend to exhibit clas-

sical results more readily, as the classical element becomes more influential in the process.

The numerical evidence observed here appears to support the hypothesis that the addition of
any degree of classical randomness into a quantum random walk, will produce classical-like

results, for sufficiently large time iterations.
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Chapter 7

Conclusion

Numerical evideﬁce presented in this thesis appears to support the hypothesis that a quantum
walk with any degree of classical randomness adopted into the rotation operator, will exhibit
classical random walk behaviour, over a sufficiently large time. The numerical evidence given
here, however, is insufficient for any comprehensive conclusions to be made. This field of
study has many exciting applications, thus an extensive analytic and practical investigation

of the hybrid random walk would be enlightening and advantageous.
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