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An earlier model of hepatic elimination with functionally identical 
sinusoids is extended by introducing statistical distributions of enzyme 
contents per sinusoid and of blood flow per sinusoid, these being either 
uncorrelated or closely correlated. The steady-state theory of the resulting 
distributed model is developed, including methods of determining experi- 
mentally the coefficients of variation of the distributions. Such deter- 
minations are made on an illustrative experimental example. Quantitative 
predictions of expected effects of changes in blood flow are given, including 
one for which the undistributed model predicts a null effect. Shapes of the 
postulated distributions are discussed only in relation to observable 
effects. Effects of the distributions are compared with maximum possible 
effects of incomplete equilibration of substrate within each sinusoidal 
cross-section, and methods for distinguishing these effects from each other 
are outlined. 

1. J.ntroduction 

When hepatic enzymes eliminate substrates dissolved in the blood, the liver 
acts as a set of many similar and independent elements arranged in parallel. 
Each element consists of an anatomically defined passage (called sinusoid) 
perfused with blood carrying the substrates, and lined with liver cells 
(hepatocytes) containing the enzymes. 

An experimentally supported model of such elimination has been 
developed (Bass, Keiding, Winkler & Tygstrup, 1976, denoted BKWT 
in what follows) for a class of substrates (such as galactose or ethanol) 
which are eliminated in each liver cell by a Michaelis-Menten process, 
without the overall elimination rate of the intact liver being limited by any 
diffusion step. In that model each element has a maximum elimination rate 
V ma,: observed at saturation; the latter is controlled by the Michaelis con- 
stant K (we shorten the more usual notation K,). Unidirectional blood 
flow through the element will be denoted by jI The relation between the 
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substrate concentration Ci at the inlet (influxfci) and c, at the outlet (out- 
fluxfc,) which characterizes steady-state elimination, is determined in each 
element entirely by the two quantities v,,,,,/f and K: 

Ci - Co +K In (CJC,) = V,,,/f (1) 

The steady elimination rate v in each element is given by the difference 
between the influx and the outflux of substrate: 

V =f(Ci-Co). (2) 
Liver anatomy ensures that Ci is common to all elements. Outfluxes from 
all elements are mixed well before they can reach a liver vein catheter. 

If u,,/f and K were the same pair of numbers in each element, the common 
Ci would result in a common c,. On this assumption, simple addition of 
elements in parallel gives an approximate picture of steady-state liver 
elimination [BKWT] which we shall call the undistributed model. 
Observations support that assumption to the extent that coefficients of 
variation of u,,Jf and of K for elements constituting an actual human or 
pig liver may be expected to be small [BKWT especially Appendix A]. 

The Michaelis constant K is a specific chemical constant relating to each 
molecular enzyme-substrate interaction, and is therefore likely to be 
identical in each element (see also section 4). By contrast, v,,, and f are 
additive macroscopic quantities determined in each element by the number 
and configuration of its constituent cells, in a manner which is unlikely to 
render v,,,,, and f exactly proportional to each other. In the present paper 
we therefore assume that v,,,, f and v,,,,,lf may be distributed over the 
elements constituting each liver. From the earlier work [BKWT] we 
adopt the steady-state theory of the single element based on equations (1) 
and (2), and the conclusion that the distributions are narrow in a sense 
specified below. On these assumptions we develop the distributed model of 
steady elimination, we deduce observable consequences permitting the 
estimation of the widths of the distributions, and make these estimates for 
actual experimental examples used earlier [BKWT]. We also make 
quantitative predictions of the effects of changes in blood flow, and in 
particular present one effect in a form for which the undistributed model 
predicts a null effect. 

In some actual livers, especially in cirrhosis, there probably exist passages 
for blood flow which are in parallel to the normal elements but not lined 
with hepatocytes containing enzymes. Such passages are known as intra- 
hepatic shunts (Prinzmetal et al., 1948; Popper,Elias & Petty, 1952) and are 
harmful because they permit free passage of toxic substances from the intes- 
tines. If these shunts were included in the distributed model as a subset of 
elements with u,, close to zero, then the set of all elements would have a 
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two-peaked distribution of v,,- values with a large coefficient of overall 
variation, contrary to our assumption. We show briefly in section 4 how 
effects of shunts, where they exist, can be determined and subtracted out, 
leaving an effective shunt-free liver satisfying the assumptions of the 
distributed model. A systematic experimental study of the distributed 
model will be given elsewhere, with emphasis on the detection and deter- 
mination of intrahepatic shunts and on clinical interpretations of the 
distributions. 

The number of elements represents the fineness of the division of blood 
flow through the liver. The blood volume of a human or pig liver is of the 
order of 250 cm3, the length of sinusoids in the flow direction is about O-1 cm 
and their smallest width is about 10m3 cm (see Winkler et al., 1974, for these 
and following estimates). The number of elements is overestimated if we 
assume that the greatest width of sinusoids is also 10V3 cm, so that the 
number of elements would be about 250/[(10-‘) (10-3)2] = 2.5x 109. In 
reality the sinusoids are more alike to pairs of folded parallel cell plates 
distant 10m3 cm, not as wide as they are long. Thus the number of elements 
is more than 250/[10-1)2(10-3)J = 2*5x 10’. These large numbers ensure 
the possibility of approximately continuous distributions of properties of the 
elements. Moreover, the large numbers arise from anatomical magnitudes 
that have important functional aspects. The evident requirement of the free 
passage of blood cells through the liver is satisfied by the smallest width of 
the sinusoids. On the other hand, the transverse diffusion time of substrates 
in the sinusoids is as short as is consistent with the free passage of blood 
cellos: for typical substrate diffusion coefficients of the order 10m5 cm2 s-l, 
the transverse diffusion time is about (1O-3)2/1O-s = 10-l s, which is 
about a hundred times shorter than the shortest time of transit of fluid 
elements through the liver (Goresky, Bach 8z Nadeau, 1973). This time 
factor ensures that substrates do not readily escape the influence of enzymes 
at the walls, whereby an intrahepatic shunt would be simulated. In reality, 
the transverse equilibration time is reduced by convective mixing in bolus 
flow (Prothero & Burton, 1961), appreciably so for substrates with diffusion 
coeficients smaller than those of ethanol and galactose, i.e. for Peclet 
numbers appreciably above unity in each bolus (Aroesty & Gross, 1970). 
Hence lo- ’ s must be regarded as an upper limit for the transverse equili- 
bration time. The corresponding maximum possible effects of incomplete 
transversal equilibration of arbitrary substrates will be discussed further in 
Appendix C. 

We develop the distributed model for two anatomically distinct cases: 
(9 %, and f are each distributed narrowly, and the two distributions are 

independent (uncorrelated). This case may be envisaged as the perturbation 
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of the undistributed liver by small random deviations in the construction 
of the elements. 

(ii> *,, and f may each be distributed widely, but they are nearly pro- 
portional: v,,/f is distributed narrowly. Moreover, the distribution of 
v,,/f is independent of (uncorrelated with) the distribution of J This case 
may be realized approximately in local necrosis, where failing blood supply 
reduces the number of enzymatically active hepatocytes and where, moreover, 
the resulting proportionality of v,,, and f is perturbed randomly by the 
variability of this necrotic process. 

The analysis proceeds by successive approximations on the assumption 
that to successive moments of narrow distribution functions there corre- 
spond successively smaller contributions to the values of observable quan- 
tities. For clarity of presentation we first develop in section 2 the special case 
of (i) where v,,, has a narrow distribution and f is undistributed. This is 
done by deviating from an initially undistributed liver by envisaging transfers 
of enzyme between elements, whereby a discrete distribution of v,,, with 
some mean Cm,, and variance a2 is generated. In the lowest order of approxi- 
mation we find that large transfers between few elements produce the same 
effects on observable quantities as small transfers between a large number 
of elements, provided V,,, and a2 are the same in each case. Furthermore, 
the effects are the same as those due to a continuous distribution of v,,, 
with the same mean and variance, as we show in Appendix A where the 
theory is developed in the lowest order of approximation for continuous 
distributions in both the cases (i) and (ii). Results of higher orders of 
approximation are discussed in section 3, where we show how symmetric 
and asymmetric discrete distributions resulting from enzyme transfers 
generalize the effects of a narrow normal distribution of the same mean and 
variance. Full higher-order calculations will be given elsewhere (Robinson, 
Ph.D. Thesis). 

While in sections 2 and 4 the principal observable effects are derived by 
elementary means applied to limiting regimes of elimination, all regimes and 
all ranges of the relevant parameters are dealt with in the lowest order of 
approximation in Appendix B. The Discussion (section 4) includes methods 
of determining the coefficient of variation (~/i&~ of a distribution by varying 
the inflow concentration ci, illustrated by an experimental example, as well 
as predictions of the effects of changes in blood flow. 

Distributions of sinusoidal flows f must be distinguished from distribu- 
tions of transit times observed by means of dilution curves of radioactive 
tracers (Goresky et al., 1973). In the simplest case of convective transport of 
labelled cells through a sinusoid of volume v, the transit time t is given by 
t = v/f. Now, the sinusoidal volumes are likely to have a distribution of 
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their own in any one liver. Thus, even the undistributed model of elimina- 
tion [BKWT] would be consistent with the observed distributions of 
t if the latter were due entirely to distributions of u (e.g. to distributions of 
lengths of tubes with identicalf-values). In the distributed model,f-distribu- 
tions would be equal to the distributions of (inverse) t only if the sinusoidal 
volumes were undistributed. More generally, relations between distributions 
of i! and f are not known because the distributions of u are not known. 

2. Discrete Distributions 

We consider first a model liver consisting of N elements with u,, distri- 
buted narrowly about the mean Emax with variance a2 and coefficient of 
variation E = cr/i&,,; f and K are undistributed. We start from an undistri- 
buted liver which has the same values of N and K, the same total hepatic 
flow F and the same maximum elimination rate V,, of the whole liver 
(urn;, = Km./N f = F/N), so that the two livers are macroscopically corre- 
sponding to each other in that they have the same macroscopic parameters. 
We envisage transfers of units of enzyme equivalent to 6v,, each, from a 
fraction oz/2 of the N elements to a fraction u/2 of other elements, leaving 
the fraction 1 - a of elements unchanged. In this process the mean i&,,, 
remains equal to the v,,, of the unaffected elements, V,, is unchanged, 
and a symmetric discrete distribution of D,,,,~ is obtained with 

a2 = (%m - i&J2 = u(&&)’ 
E2 = a(6umx/i&)2, 0 5 a I 1. > 

(3) 

The effect of the transfers will be to generate a distribution of outflow con- 
centrations c, with a mean i;, (detected by a liver vein catheter). Because of 
the non-linear dependence of c, on v,,, EO is different from the outflow 
con.centration belonging to elements with the mean Cmax, denoted by 
c&i,,,). The latter is the same as the c, of the corresponding undistributed 
liver before the transfers. In this section we calculate the observable EO by 
elementary means in the two limiting regimes [BKWT] of very high and 
very low inflow concentrations Ci. 

(A) THE HOMOGENEOUS REGIME 

When ci is so high that all enzyme molecules are close to saturation by 
substrate, the overall elimination rate must be independent of blood flow 
and of any structural arrangements. Since elimination is responsible for the 
difference between the influx and outflux of substrate for the whole liver, 
F(ci - C,) approaches V,,,, giving the same C, and c, (i&J regardless of 
transfers. 
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(B) THE CLEARANCE REGIME 

At the other extreme of sufficiently low ci, equations (1) and (2) imply 
[as shown in BKWT] that the outflow concentration c, from each element 
is related to the common Ci by: 

co = ci exp (- ~max/fIo, (4) 

which characterizes the clearance regime of elimination. After the transfers, 

- i?, = (1 - c+,(i&,) ++xc~ exp 
( 

- _v,ax f+K6vmax) + &q exp (- “““x~~vmax) 

or, using equation (4) again and re-arranging, 

i;, = co(i&,ax){l +a[cosh (Sv,,/frc)- 11). (5) 

Thus for any finite au,, we have E, > c, (z&,~): transfers always increase 
C, at given Ci, that is, a distributed liver eliminates at a lower rate than an 
undistributed liver with the same macroscopic parameters. This is because 
deviations from equal division of substrate amongst the available enzyme 
molecules reduce the rate of a Michaelis-Menten process. This was shown 
[BKWT] for unequal divisions along sinusoids, but it holds equally for 
inequalities of division amongst elements with common ci. 

For transfers which are small in the sense: 

hll,X 4fK (6) 

we expand equation (5) using the series cash X = 1 + x2/2 + x4/24 + . . . . 
We now retain only the quadratic term &(~v,,,,/~II)~ which is, from 
equation (3), +s2(i&,/jIQ2 : 

z. = c,(i&J(l ++r2E2), (7) 
where we have set: 

r = Ldf~) = ~m/,,xI(W. (8) 

To this order of accuracy, a and &I,,,,, appear only in the combination .s2 
so that it is immaterial whether we envisage many small transfers or few larger 
ones [consistent with inequality (6)], provided a2 is the same in each case. 
This property does not hold to higher orders of approximation (section 3). 
For the distributed liver in the clearance regime B, Emax and c, (V,,,) are 
connected by a relation of the form of equation (4), and c,(i&,,,) is connected 
with the observable ZO through equation (7). Re-arranging equation (4) and 
using equations (7) and (8), 

r = In ci - In C,(i&,) = In Ci - In E, + In (1 +&r’&‘). 
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Expanding the last term and again retaining the quadratic &‘-term, we obtain : 

r( 1 - +r2) = In ci - In ZO,, (9) 

which differs from the limiting clearance equation (4) of the corre- 
sponding undistributed liver by the replacement of c, with Z,,, and of r with 
r(1 - frs’) which we denote by r,. In macroscopic terms, the latter replace- 
ment means that V,,, is replaced in the clearance regime B by Via, = FKr,, 

tax = ~nE.,Cl - 4mLV,,x/~~H < KIax. (10) 
The observable difference between the undistributed and distributed 

models are brought out most clearly by using the concise formulation of 
the former given in BKWT: writing equations (1) and (2) for the 
overall liver quantities F and the total elimination rate V, and eliminating F 
from the two equations, we find that the Michaelis-Menten relation holds 
for V and the logarithmic average e of the inflow and outflow concentra- 
tions: V = V,,t/(fi+K), or: 

l/V = l/~~‘,,,+(KlI/,,)(l/~), (11) 

yielding a Lineweaver-Burk (L-B for short) straight line for the plot of the 
inverse quantities l/V, l/e, with the slope K/l&‘,,,. According to the above 
results for the corresponding distributed model, equation (11) holds in the 
limiting regime A after the transfers if the undistributed outflow 
concentration c, is replaced by the mean S,: V = F(Ci-~~,), and 

Ci-Eo 
t=------ 

In (Ci/~,) ’ 
Ci > t > Z, (12). 

In the opposite limit of regime B, we have V = V,,aX?/lu from equations 
B), (10) and (12), so that d(l/V)/d(l/Q = K/Vzg,. The generalization of 
equations (9) and (11) valid for all inflow concentrations will be given in 
Appendices A and B, but the principal effect is now apparent (Fig. 1): 
equation (11) remains valid at low l/e as the equation of the tangent at l/e 
= 0 to a curved L.-B. plot, which has an asymptote at high l/e having the 
steeper slope K/V,“,,. The increase As of slope from the initial tangent to 
the asymptote is thus K/V#a,-K/Vm,,. Using equation (10) and retaining 
terms of order a’, 

As = E~/~F. (13) 

The simplicity of this result contrasts with the more complicated analysis 
of the intersection of the initial tangent and asymptote (Appendix B). It is 
remarkable that the result (13) remains valid (in the lowest order of 
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K/c” 

FIG. 1. Inverse elimination rate plotted against inverse logarithmic average of inlet 
and outlet concentrations of substrate (normalized) for three ranges of r = V,,,/FK. 
(a) r > 1.25. (b) 0.405 < r < l-25; the plot intersects its asymptote, in contrast with 
(a) and (c). (c) r < O-405. The distributions are adjusted so that rc2 is the same for each 
curve (the three asymptotes are parallel). 

approximation) for each of the cases (i) and (ii) described in the Introduction 
when’ continuous distributions are adopted, provided that in case (i) sz is 
interpreted as the sum of the squares of the coefficients of variation of v,,, 
andf, and in case (ii) as the square of the coefficient of variation of v,,/’ 
This we show in Appendix B. Equation (13) furnishes a quantitative and quali- 
tative distinction between the distributed and undistributed models, as well 
as a means of estimating a2 from experiments (section 4). 

3. Higher Order Effects 

When the series developments of the preceding section are carried to the 
next higher order in E, equation (7) becomes: 

& = C,(ii,,,)[l +tr2E2(1 +r2E2/12a)]. (14) 
The additional term is of order a4 and increases & further as compared with 
c&&J, that is, it reduces elimination further as compared with a correspond- 
ing undistributed liver. The additional reduction of elimination at any fixed 
E is increased by reducing CI, that is, by attaining that E with fewer (larger) 
transfers. Thus the influence of a and &,,,, is no longer confined to the 
combination c&,&, which determines z2 according to equation (3). We note 
that inequality (6) presupposed by equation (14) ensures that the 
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additional term remains small: r’s’/u is the same as (6 v,,.,,/‘K)” according 
to equations (3) and (8). 

Extending the calculation of AS in equation (13) to the next higher order 
on the basis of equations (14) we obtain: 

. 

The sign of the last term depends on the value of IX, so that the qualitative 
effect of the .s4-terms on the slope-change As depends, for any given E, on 
the values of a and r. 

In Appendix A, series developments are made in terms of moments defined 
for narrow continuous distributions. For normal (Gaussian) distributions, 
developments to order s4 yield equation (14) and equation (15) with 
a q = l/3, so that the last term in equation (15) vanishes. The non-Gaussian 
character of that last term may be elucidated as follows. The transfer-generated 
distribution is symmetric about fi,,,, with odd moments vanishing and the 
second moment defining s2 according to equation (3). The fourth moment is : 

using equation (3). On the other hand, for a normal distribution the fourth 
moment is : 

&n yr (u,,,-i&J4 exp [-i (~max-“m’X)2] do,,, = 3a4. 
m o- 

Only positive values of urnax are meaningful: the formal value of the lower 
integration sign signifies that we are considering distributions which are 
narrow in the sense (i&/~)~ = s-’ a 1 so that the integrand is vanishingly 
small at v max S 0 (see the discussion of shunts in sections 1 and 4). The two 
fourth moments coincide for a = l/3. Thus transfers lead to more general 
elimination effects than normal distributions, since in the higher orders 
the former have the additional degree of freedom CL This is to be preferred, 
since normal distributions make reference to the meaningless negative values 
of %ax whenever e-1/2ez is not negligibly small compared with unity. 

When CI = l/3, the s4-term in equation (15) always increases the slope- 
change As as compared with equation (13). When some As is obtained 
from experiments (section 4), the E calculated from equation (15) for a normal 
distribution (a = l/3) is therefore always smaller than that calculated from 
the lower approximation in equation (13) the reduction depending on the 
value of r. An example of such a reduction for pig liver 28173 is given in 
section 4. 
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Normal or, more generally, symmetric narrow distributions are likely in 
normal livers on probabilistic grounds. In local necrosis (section l), out- 
right losses of &J,, in some fraction of elements are likely, corresponding 
to loss of enzymatic activity and resulting in asymmetric distributions 
of %a,. Such effects appear in correction terms of order a3, as we now 
outline. 

We begin by envisaging a new set of transfers, again starting from a 
macroscopically corresponding undistributed liver. Let do,,,, be removed 
from each of the fraction j? of the N elements and distributed equally amongst 
the remaining (1 -/?)iV elements, each of which thus gains /I&,,,/(1 -b). 
The mean ij,,, of the resulting distribution remains equal to the v,,, of the 
original elements, while : 

The resulting distribution may alternatively be interpreted as a necrotic 
modification of an initially undistributed liver with vkaX = v,,,, + jISu,,/( I- fi) 
per element, which has lost enzyme equivalent to &,,,/(l -/I) from 
each of a fraction /I of its elements. Calculations analogous to those above, 
carried to order .s3, yield: 

E. = c,(S,,,)[l +$r2s2(1 +&m>I) 
1. (17) 

The s2-term is unchanged, as expected. The parameter y vanishes at 
/I = 4 when the distribution is symmetric. At any fixed E, the s3-term increases 
(reduces) FO further for p < 3 (/I > +). Carrying the calculation of As also 
to order s3, we find 

AS = $ (1 +&v-s), (18) 

with y as in equation (17). Again, the sign of the contribution of the 
a3-term to As depends on the choice fi 5 3. 

More detailed consideration of non-Gaussian and non-symmetric 
distributions will be given elsewhere, with emphasis on their connection with 
different types of liver damage. In addition to experimental accuracy, the 
systematic detection of such higher-order terms would require a sufficiently 
accurate allowance for the diffusional effects outlined in Appendix C. 
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4. Discussion 

The simplest extensions of the undistributed model by equation (7) and (13) 
arise from the plausible assumption that the relevant properties of the lo’-lo9 
liver elements have a non-zero coefficient of variation E; their accuracy 
depends on s2 being small. Only in terms involving s3 and .s4 do particular 
features of the distributions appear. We now return to the observable 
features of the &‘-term which is universal in the above sense and which is 
readily detectable experimentally, as will be shown below. 

.We note first that the distributed model not only introduces quantities 
foreign to the undistributed model, but it also modifies the analysis of 
data determining quantities common to both models, notably K. When 
V Itha~ and K are determined from data plotted on the L-B plot of l/P 
against l/e (Fig. l), the customary analysis from the slope and intercept of 
the plot (or its computational equivalent) remains correct only for the 
initial tangent of the plot (section 2), where the slope of the plot is the least. 
The statistical fitting of a best straight line to all data-points according to the 
undistributed model therefore always overestimates K by an amount which 
increases with E, and with the degree of clustering of data-points in the inter- 
mediate region of l/t where the slope goes through a maximum whenever 
r is greater than In (3/2) w  0.405 (Appendix B). It is probably for these 
reasons that while K is assumed to be undistributed throughout each liver 
in both the undistributed and distributed models, application of the former 
to data from a series of isolated perfused pig livers (Keiding et al., 
1976, with all values of r exceeding unity) yielded a variation of K’s 
amongst the livers by a factor of 2.5. Such a variation would seem 
to contradict the common biochemical significance of the observed K’s 
(n,amely, K,,, of the phosphorylation of galactose by galactokinase), 
but the possibility of a variation in the partition coefficient of the 
substrate between the blood and the hepatocyte should be remembered 
[BKWT]. 

Experiments in which ci is varied on each liver from the homogeneous 
regime A to the clearance regime B (section 2) furnish data from which e2 
can be determined by two separate methods. 

(1) The most direct method proceeds without the use of P,,, but it cannot 
be used for large values of Y = V’,,,/FK. We recall from BKWT that 
when equations (1) and (2) are written for the undistributed liver as a whole 
(with V and F replacing v andf), elimination of c, from the two equations 
yields an L-B-type plot of l/V against l/ci (Fig. 2). The initial tangent 
at l/ci = 0 again describes the homogeneous regime A (Michaelis-Menten 
relation for Vand cr), while the asymptote at high I/ci describing the clearance 
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l/ci = F(l-e-‘)(1/T/)-e-‘/K. (19) 

Thus the intercept of the initial tangent with the horizontal axis is ?% = l/K - 
and the intercept of the asymptote is OA = e-‘/K (Fig. 2). Hence the ratio -- 
OAIOB = e-’ determines r, which should be equal in the undistributed 
model to the V,,/FK determined from the slope of the initial tangent, 
K/ K,am and from an independent measurement of the hepatic flow F. 

A 0 

I/c, 

FIG. 2. Inverse elimination rate plotted against inverse inlet concentration of sub- 
strate, with asymptote and initial tangent. G/G permits an estimate of the coefficient 
of variation of the distribution. 

Now, the same data determining the same limiting straight lines are 
used in the distributed model with a modified interpretation: the initial 
tangent and the the flow determine the correct value of r as before, but -- 
OA/OB must be interpreted as e-‘B with rB = V&,/FK, where the smaller 
V,“,, < V,,, is given by equation (10) according to the description of the 
clearance regime in the distributed model. Thus the slope of the asymptote 
predicted by the distributed model, [F(l -e-)‘B)]-‘, is larger than that 
given by equation (19) for the macroscopically corresponding undistributed 
liver. This is because distributions reduce V at any given ci everywhere 
outside the homogeneous regime. The knowledge of r and rs from a plot 
such as Fig. 2 now permits an estimate of E*: inverting equation (lo), 

e* = 2(r - rB)/r2. (20) 
For example, in pig liver 28/73 (BKWT) the initial tangent gave V,,, = 0.75 

mmol/min and K = l/G = 0.17 mmol/l; the asymptote gave z = 0.33 
l/mmol, and the slope 0.82 min/l. The independently measured blood flow 
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was l-46 l/min. We note &st that both the undistributed and distributed -- 
models predict the slope of the asymptote to be [I;(1 - OA/OB)]-’ and hence 
F q = [O*82(1-O-O56)]-1 = l-29 l/min. Both models therefore suggest 
that the directly measured total hepatic flow included a component of 0.17 
1 mine1 or 11.6 y0 shunted past the enzymatically active sinusoids, while 
only the remaining 88.4 % of hepatic flow was functional in relation to enzy- 
matic elimination expressed in the observables of the models. Adopting this 
interpretation, we find the functional value of VJFK = 3.42. Then, with -- 
rs = -In (OB/OA) = 2.88, equation (20) yields &2 = O-092 (E = 0.30). 
It is to be noted that the above shunt estimation depends on the narrowness 
but not on the symmetry of the distribution of non-zero values of u,,,. 

When the value of r is too large for z to be distinguishable from zero 
in practice, the method fails. This is the case for healthy human livers 
eliminatinggalactose. For example,patient O.K. equation [(BKWT), Appendix 
A] had r = 9.75 and K = 0.16 mmol l-l, so that z = ewr/K predicted 
by the undistributed model is less than 0.0004 l/mmol, and the prediction 
of the distributed model with r replaced with r, (E’ w  O-02 for O.K.) is of 
the same order. In fact, the difference between points A and 0 on the plot 
is Sound to be obscured by experimental errors in this and similar cases, for 
wh.ich we turn to the second method of estimating Ed. 

(2) Using the L-B plot of l/V against I/L?, we obtain E’ from the deviation 
of the plot of the data from the straight line (initial tangent) predicted by 
the undistributed model. A rough estimate is readily available from the 
slope-change in equation (13), and more accurate methods of determining 
from the whole curve (which is analyzed in Appendix B) can be used when 
more data-points are available than in the present example 28/73 
(experimental work in progress). The method is practicable for all values 
of r. The shunt correction performed for method (1) above is needed here 
for an additional reason, arising from the use of 2, through equation (12); 
if intrahepatic shunts are present, the liver vein catheter detects a mixture 
of E,, and of ci arriving with the shunted flow. The reconstruction of Z0 from 
measurements requires therefore a prior estimate of the percentage shunt. 

‘We illustrate the method by the example of pig liver 28/73 (Fig. 3). The 
initial tangent of the plot is again determined by the intercepts - l/K and 
l/V,,,,, given above and in BKWT; its intersection with the asymptote 
is given by equation (B8) of Appendix B. With the above value of r = 3.42, 
the co-ordinates of the intersection are (-4.52 1 mmol-I, 0.31 min mmol-I). 
Th.e values of E of the points in the graph are obtained from the measured 
values V, ci (given in BKWT) by calculating C, = Ci- V/F from 
equation (Bl) below, using the functional value F = l-29 1 min-‘. Then 2 
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l/C l mm&’ 

FIG. 3. Pig liver 28/73. (a) The plot of type (a) of Fig. 1. (not normalized), with 
experimental points (e” N” 0.07), (b) Predicted transformation of plot (a) resulting from 
the reduction of hepatic blood flow to one third of the value in (a). The circle marks 
the intersection of the initial tangent with the asymptote before the flow reduction. 

is calculated from equation (12) for each point. We suppose that the point 
at the largest l/e lies on the asymptote. The co-ordinates of that point, 
(19.18 1 mmol-‘, 6.33 mm mmol-I), and the intersection of the asymptote 
with the initial tangent, determine the asymptote. The slope of the resulting 
asymptote is O-254 min 1 -l, while the slope of the initial tangent, 

~/Klax = 0.227 is smaller by As = O-027. Hence, from equation (13), 
sz = 0.07 (E = O-264). The agreement with the result of method (1) is fair 
considering the roughness of the estimates. 

We illustrate also the effect of the Gaussian s4-correction (section 3) by 
the same example. With the above As and r used in equation (15) with 
a = l/3, &2 becomes O-063. 

A different class of experiments by which the distributed model may be 
distinguished from the undistributed one, and E be determined, is obtained 
by varying the hepatic blood flow F. We note first that the value of E of a 
given liver may be expected to be independent of F. This is obvious when E 
is due to a distribution of o,,,. When E is due in part or entirely to the 
distribution of the flow .f per sinusoid (Appendix A), E will still not change 
with changes in F provided that all f’s change by the same factor as F, as is 
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likely at least for moderate changes of flow. Such experiments yield further 
distinct methods of determining ,s2. 

(3) Variation of L;, with Fat fixed ci. Like all effects of distributions, that 
variation vanishes in the homogeneous regime and increases as the clearance 
regime is approached. The calculated effects are complicated in the inter- 
mediate region, and the simpler and maximal effect in the clearance regime 
will. suffice to outline the essentials. Consider equation (9): let an increment 
d( l/F) of inverse flow bring about the increment clr = (I’,,,,/iY)d(l/F) and 
hen.ce, at fixed ci, the relative change of T,: 

dZ&, = - dr(1 - re’). (21) 

Thus, according to the undistributed model, the relative change in 2, would 
be proportional to the negative increment of l/F, that is, E0 falls exponen- 
tially when l/F is increased linearly. This powerful dependence is reduced 
in ,the distributed model by the opposing s2-term in equation (21) which 
increases in magnitude as r increases (F drops). Indications that E,, is less 
sensitive to changes in Fat fixed ci than predicted by the undistributed model, 
i.e. equation (21) with E’ = 0, have been observed (K. Winkler, pers. comm.) 
and will be discussed elsewhere. 

(4) According to the undistributed model, equation (11) and the corre- 
sponding L-B plot are unaffected by a change in the flow F. In particular, at 
any fixed V (obtained experimentally by a steady infusion of substrate), a 
cha.nge in F should change ci and E0 in such a way that 2 given by equation 
(12) remains unchanged. These predicted null-effects are in contrast with 
the following predictions from the distributed model, illustrated in Fig. 3 
for pig liver 28/73 (the sketched flow-change was not actually performed). 

When the flow is changed from Fto F’ (F’ = F/3 in Fig. 3), the new slope- 
change As’ is again given by equation (13) ; hence : 

~~ = 2FAs = 2F’As’. 

The change from hs to Ar’ is brought about entirely by a swing of the 
asymptote, since the initial tangent pertains to the homogeneous regime and 
so remains unaffected by the flow. Thus the slope of the asymptote is changed 
by: 

&2(1/F’- l/F)/2, (22) 

from which s2 may be determined. 
The displacement of the complete curve of the L-B plot, resulting from 

the change in F, follows from equation (B5) below and is illustrated in 
Fig. 3. At any fixed V, sufficiently high values of E are not measurably changed 
by flow changes, while lower values of 2 are increased by a reduction in F 
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(see arrows in Fig. 3). The former case has recently been demonstrated by 
Keiding and Chiarantini (1978) for the elimination of galactose by isolated 
perfused rat livers, the data being consistent with an E of the order of 0.2. 

We are indebted to Dr K. Winkler for permission to discuss preliminary data; 
to him, Professor N. Tygstrup, Dr S. Keiding, Dr J. M. Fitz-Gerald and a referee 
for valuable discussions; and to the Danish Medical Research Council for a grant 
to one of us (L.B.). 
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APPENDIX A 

Continuous Distributions 

We now represent the distributions of v,,,,,, f and v,,/f over the liver 
elements (section 1) by continuous functions. Each element is again governed 
by equation (1) and (2), with a common ci for all elements. 

For comparison with section 2 we develop first the case when only v,,, 
is distributed. Let o(v,,ddv,n, be the fraction of elements with maximum 
elimination rates between v,,,, and v,,,+dv,,,,; o(v,,J is called the distribu- 
tion function and its integral over all v,, is evidently unity. For any quan- 
tity q depending on v,,~, the mean value q is: 

Ci = 1 q(vnxJ~(vm,J &n,,. (Al) 

Expanding q(v& about the mean i&, in a Taylor series and denoting by a 
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prime differentiation with respect to uma,., 

where the q’ term vanished by definition of the mean Y,,,,,, and g2 is the 
variance of the distribution. In integrating term by term to obtain equation 
(A2), which is assumed to be a convergent or asymptotic series, we have 
assumed that certain conditions are satisfied by the functions q and o. A 
discussion of such conditions, and the justification for assuming that they 
hold in the applications below, will be given elsewhere (Robinson, Ph.D. 
Thesis). Here we say only that we assume the distribution w  to be narrow in the 
following sense: for suitably smooth functions q (such as c,, andfc, below), the 
contributions to equation (A2) associated with successive moments of w  are 
successively smaller and such that the series converges at least asymptotically. 
Similar remarks apply to the distributions discussed below. Only the first two 
terms of the series equation (A2) will be retained in this Appendix. 

We consider c, in the role of q, its dependence on u,,, being given 
implicitly by equation (l)?. Differentiating equation (1) with respect to u,,,,~ 
(withrepeateduseofc~=-c,f-‘(c,+K)-’)weobtain~~=Kc,f-~(c,+K)-~. 
Taking c, at Cm,., and recalling the definition of the coefficient of variation, 
8 = c/fi Illa- we substitute in equation (A2): 

643) 

Since the difference between C, and cO(&J is of order s2, the substitution 
of the former for the latter in the last term of equation (A3) affects only 
terms of order s4 in the expansion in equation (A3). Writing also i&,/f = 
V,,,/F, we finally obtain: 

c, = c,(~m,,x)+~&2 SfE 

( > 

2 
K3Zo 

FK (K + z#J3’ 
644) 

We note from equation (A3) that the observable outflow concentration 
Z, is increased by the finite variance of the distribution as compared with 
the: case of all u,, being equal to v,,, (see discussion of equation (5), 
section 2). The clearance regime B is reached for F0 < K, when equation 
(A4) coincides with equation (7) to order s2, and equation (A3) exactly. 

If Qm, is undistributed and f is narrowly distributed with some distribu- 
tion function w(j) with variance p2, equation (A2) holds with f andjreplacing 
V mwx and L,,~ p2 replacing 02, and with q’ denoting dq/df Because of 

1’ Equation (Al) is then an integral equation of the tirst kind for the unknown function 
w(v,,&, with the kernal co given by equation (1). A mathematical treatment of this integ- 
ral equation will be given elsewhere. 
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mixing of blood in the liver vein upstream of a catheter, the observable 
EO is theflow-weighted meanfc,/j, so thatfc, rather than c, now plays the role 
of 4 in equation (Al) and (A2). Regardingfc, asafunctionoffgivenimplicitly 
by equation (l), we calculate the analogue of equation (A4) according to 
equation (A2). The result differs from equation (A4) only in that cO(fimsX) 
is replaced with c,(J), and the meaning of s2 becomes p2/j2. We generalize 
these results to the cases (i) and (ii) described in the Introduction. 

(i) When v,,, and fare distributed narrowly and independently, the distribu- 
tion function is factorized into the product of a function of urnax and a 
function off. Any quantity pertaining to each element, such asfc,, is a func- 
tion of the two independent variables v,,, and f which is given implicitly by 
equation (1). We expand fc, about the point lS,,,,jin a Taylor series in the two 
variables and calculate C, by integrating term by term the double integral 
generalizing equation (Al), and we make use of the definitions of Emax 
and$ The result differs from equation (A4) only in that c, (V,,,) is replaced 
with c, (Q,,,, j) and th e meaning of ~~ becomes: 

E2 = 02/$,,,+p2/j2 (A3 

which gives a concise dimensionless measure of the deviation of the liver 
from uniformity of elements. 

(ii) When v,,/f is distributed narrowly and independently of a non- 
narrow distribution off, the independent variables are v,,,/f and f, and the 
distribution function is factorized into a product of functions of these 
variables. This factorization leads to the result : 

finlax = hldf>~ 646) 

Next we evaluate E,, by expandingfc, in powers of (v,,,/f-- v,,,,,/f), integrating 
term by term and taking advantage of the circumstance that c, depends 
only on vmax/‘according to equation (1). As a result, &, is again analogous 
to equation (A4), except that c&,,~) is replaced with c,(Y,,,,,/’ j’), and .s2 
now denotes the coefficient of variation of the distribution of v,,,,/f. 

Returning to the simplest case when only v,,, is (narrowly) distributed, we 
wish to eliminate the unobserved quantity c,(i&,,,,). We note that equation (1) 
holds in particular for an element having vmaX = crnax and c, = c,(i&,,,,): 

ci - c,(U,,,) +K[ln Ci - In c,(V,,,)] = ij,,,/f = V&JF. (A7) 
Solving equation (A4) for c,(v,,,), substituting in equation (A7) and 
expanding the logarithm to order s2 we obtain: 

Ci-~,+K In (~i/i?,) = (V,,,.F) 1 -+?(V,,,/FK) & 1 ce2 * (Af9 
The reasoning leading to equation (AS) holds equally for all the cases con- 
sidered above, except that .s2 must be given the appropriate interpretation 
given above, and equation (A6) is needed in the case (ii). 



DISTRIBUTED LIVER MODEL 179 

APPENDIX B 

The Logarithmic Average Plot 

We derive and discuss the equation of the complete L-B plot of l/V 
against l/i? for the distributed model, working to order e2 throughout. 

Averaging equation (2) over all elements we obtain C = fci-xO. The 
observable C, is the flow-weighted mean fc,/j (Appendix A). Using this 
definition and multiplying through with the number N of elements, we obtain : 

V = F(Ci - C,). (W 
With In (c&J = (ci- F,)/? from equation (12) and ci- & = V/F from 
equation (Bl), the left-hand side of equation (A8) becomes (V/F) (1 +K/t). 
Multiplying equation (A8) through with F/(VP&,) we obtain: 

032) 

Next we express the & remaining in equation (B2) in terms of V. Since C;, 
occurs only in the coefficient of s2, we may estimate it from the undistributed 
model without introducing an error of order e2 in equation (B2). Eliminating 
ci from equations (1) and (2) and writing v,,,/f = Vma,,,/F and o/f = V/F 
according to the undistributed model, we obtain: 

V/F 
‘0 z e(Vmax-V)/FK- 1’ (B3) 

Setting for brevity: 
V/FK = s, 0 < s 5 r = V’,,,/FK, 034) 

we substitute equation (B3) for Z0 in equation (B2) and obtain the equation 
of the logarithmic average plot: 

.L 1 =- 
s r 

GW 

We consider l/s as a function of K/2. 
The tangent at the initial point I/s = l/r, K/2 = 0 is found to be 

l/s = (l/r)(l +K/t), 046) 
which is also obtained by setting s2 = 0 in equation (B5). The initial tangent 
givenbyequation (B6) is therefore also the full GBplot for the undistributed 
model. The asymptote of equation (B5) at l/s -+ co is found to be: 

-k (1 -$-c’) + 5 = 1. (1 + F). 
r (B7) 
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We note that the slope d(l/s)/d(K/?) in equation (B7) is l/r+&‘/2 to order 
.a’, whereas the slope in equation (B6) is l/r; on returning to the original 
variables, the difference gives the key result [equation (13)]. The intersection 
of the tangent (B6) with the asymptote (B7), useful in the determination of 
sz from data (section 4), has the co-ordinates: 

l/s = 2/(e’- l), K/i? = 2r/(e’- l)- 1. 038) 

It can occur on either side of the l/s-axis (K/e = 0 gives approximately 
r = l-25): compare cases (c) and (b) with case (a), Fig. 1. 

Types of curves satisfying equation (B5) are best classified by examining 
the existence of an intersection of (B5) with its asymptote (B7) in the physio- 
logically meaningful range (B4). Combining equation (B5) with equation 
(B7) we obtain: 

(1+$J=l-& 

or, after some re-arrangement, 

e-s=e~r{l+~[(l-&~+l-&]}~g(r). (B9) 

Having denoted the right-hand side of equation (B9) by g(s), we observe that 
(B5) and (B7) intersect in the relevant interval if and only if 
g(s) and e-’ intersect there. All the features of g(s) used below are readily 
deduced from equation (B9). 

Throughout the interval 0 < s&r, g(s) and ems fall monotonically 
from their common point at s = 0 (point at infinity in terms of l/s); g(s) 
is concave, e-’ is convex (Fig. 4). If therefore at s = 0 the slope of g(s) is 
steeper (more negative) than the slope of e-‘, i.e., 

3e-‘12 > 1 or r < 0.405, 

there is no intersection for positive s (case (c), Fig. 4). If the inequality of 
the initial slopes is reversed, an intersection exists but it may occur at an 
unphysiological value s > r (case (a), Fig. 4). To ensure an intersection at 
s < r, we note that e-’ is reached by e -Sats = r,andbyg(s)ats = (e’-1)/2. 
An intersection at s < r requires therefore: 

(er- 1)/2 < r or r < l-25. 

Altogether, an intersection in the physiologically significant interval 
0 c s 6 r occurs for r satisfying: 

In (3/2) < r < 1.25 @lo) 
(Fig. 4, case (b): compare equation (B8) et seq.). 
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FIG. 4. Classification of the types of plots described in Fig. 1, in terms of the relation 
between g(s) and ema. The labels (a), (b) and (c) refer to ranges of I = V,,./FK given 
in Fig. 1. 

Thus the main features of the plots are determined by the values of 
r = I&/M (Fig. 1): in the case (c) the plot remains above the asymptote 
throughout, and there is no inflexion. The plots are s-shaped in cases (a) and 
(b), the former remaining below the asymptote throughout. Preliminary 
experiments on the elimination of galactose and ethanol by human and pig 
livers yielded plots of type (a) (K. Winkler, private communication of 
data), as expected from the values of r > l-25 in all these cases. Test 
substances resulting in smaller values of r are expected to yield examples 
of plots of types (b) and (c). 

APPENDIX C 

Effects of Transverse Diiusion 

The ratio of the transverse equilibration time z to the transit time T in 
liver sinusoids is small (less than 10T2, as estimated in the Introduction) 
but finite. Having neglected the small quantity r/T up to now, we consider 
its effects on observables c, and V according to the undistributed model. We 
estimate the upper limit of the magnitude and flow-dependence of these 
effects and compare them with effects of distributions. We note that effects 
of finite equilibration time of the hepatocytes (Bass & Bracken, 1977) 
are similar to those of the transverse diffusion time, but more difficult to 
estimate for hepatocytes in situ. 
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In the steady state of the undistributed model BKWT, the longi- 
tudinal flux is Fc; the increment Fdc of that flux across two infinitesimally 
neighbouring sections placed at right angles to the flow at x, x+dx, is 
equal to the elimination by the enzyme placed between the sections. If the 
enzyme density per unit length of sinusoids (each of length L) is constant, 
the maximum elimination rate between the sections is I/,,,dx/L. When 
transverse equilibration of substrate in each cross-section is incomplete, c 
in the flux Fc must be interpreted as the mean concentration over the area of 
the cross-section, while elimination occurs at the concentration existing at 
the walls of the sinusoids, say 2: 

where c > Z and c tends to c” as z/T tends to zero. 
An estimate of the relation between c and c” is obtained by considering 

diffusion in a cross-section moving with the blood: in accord with the meaning 
of z, c tends to the instantaneous c” with the relaxation time z, 

(C2) 

while, denoting with A the sum of cross-sections of all sinusoids, 

(C3) 

describes the motion. Writing c’ = dcJdx, dc/dt = c’(dx/dt) and using 
equation (C3) in (C2), we obtain: 

i: = c +(zF/A)c’. (C4) 
Recalling that TF = AL and substituting from equation (C4) in (Cl ), we obtain : 

Fc’ = - (V,,,/L) 
c +(z/T)Lc’ 

c+(z/T)Lc’+K’ 
t-1 

For a vanishing z/T, the basic relation of BKWT leading to equation 
(1) is recovered. When z/T is small, K 4 c again yields the homogeneous 
regime A of section 2 independent of z/T, while K $ c yields the clearance 
regime B in the form: 

c +(z/lq);)Lc’ 
Fc’ = --Km/L> K , 

or 

F (1 +$$ c’=-(P&/LK)c. 633) 

Integrating from the inlet at x = 0, c = ci to the outlet at x = L, c = c, 
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we obtain the counterpart of equation (4), 

where we have set: 

or, to first order in z/T, 

(C7) 

Comparison of equation (C7) with equation (10) shows that in the clearance 
regime the modification of V,, by transverse diffusion is the same as that 
by the distributed model with .s*/2 = z/T, in the lowest order of both effects. 
In particular, the slope-change As in the logarithmic average plot is therefore 
s/FT, corresponding to the slope-change in equation (13). The full L-B plot 
resulting from the integration of equation (C5) is, of course, different from 
equation (B5), but it connects the limiting regimes A and B in a qualitatively 
similar manner. 

When both E* and t/T are small but finite, they modify the undistributed 
model independently of each other, so that vm,, in equation (C7) becomes 
an apparent I&,, reduced both by distributions and by incomplete transversal 
diffusion, which we call v&x: 

tax = K,, ( 1 - k (&2/2+z/T) 
> 

. 

‘Thus the slope-change in the distributed model becomes 

P) 

.We examine the main features of equation (C9) by which the two contribu- 
tions to AS can be distinguished. 

(a) The diffusional upper limit of the magnitude of z/FT may be estimated 
outright. For example, for galactose in liver 28/73, z/FT & 0*01/1*29 = 
0.0077 min/l while AS z O-027 min/l (section 4). In such cases the main 
contribution is thus due to distributions, but the detection of higher order 
distribution effects (section 3) may be complicated by the diffusion term, 
possibly enhanced by the hepatocyte equilibration time. 

(b) If the term z/FT makes an appreciable contribution to As, then the 
substitution of another substrate with a Iarger diffusion coefficient (shorter 
z) should give a smaller As in the same liver at the same blood flow. In a pre- 
liminary test with both galactose and ethanol in one patient this effect was 
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not observed (K. Winkler, private communication), indicating that the 
second term in equation (C9) was small as compared with the first, in agree- 
ment with earlier results on transverse equilibration of small molecules 
in capillaries (Bassingthwaighte, Knopp & Hazelrig, 1970). However, 
substitution of another substrate with a sufficiently small diffusion coeffi- 
cient may be expected to increase As. 

(c) When blood flow is changed, &‘/2F varies linearly with l/F (section 4), 
while r/FT can change only in so far as the blood volume FT = AL of the 
liver may change with the flow. The two terms in equation (C9) may thcre- 
fore be separated by the study of the slope and the intercept of the plot of 
As against l/F (work in progress). 


