Compact quantum systems: Internal geometry of relativistic systems
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A generalization is presented of the kinematical algebra so(5), shown previously to be relevant for
the description of the internal dynamics {Zitterbewegung) of Dirac’s electron. The algebra

so(n + 2) is proposed for the case of a compact quantum system with n degrees of freedom.
Associated wave equations follow from boosting these compact quantum systems. There exists a
contraction to the kinematical algebra of a system with n degrees of freedom of the usual type, by
which the commutation relations between n coordinate operators Q; and corresponding
momentum operators P;, occurring within the so(n + 2) algebra, go over into the usual canonical
commutation relations. The so(n + 2) algebra is contrasted with the sl(/,n) superalgebra
introduced recently by Palev in a similar context: because so(n + 2) has spinor representations, its
use allows the possibility of interpreting the half-integral spin in terms of the angular momentum
of internal finite quantum systems. Connection is made with the ideas of Weyl on the possible use
in quantum mechanics of ray representation of finite Abelian groups, and so also with other recent

works on finite quantum systems. Possible directions of future research are indicated.

I. INTRODUCTION

Many years ago, Weyl' considered the unitary represen-
tation of the Lie group defined by Heisenberg’s canonical
commutation relations, and noted that it may also be consid-
ered as a ray representation of an infinite Abelian group. He
speculated that unitary ray representations of finite Abelian
groups might also prove important in quantum mechanics.
Indeed, he gave the example of the unitary ray representa-
tion

81— ioy, & —ioy, 83— ios, e— 1

of the four-element Abelian group (Klein four-group), whose
elements satisfy

(81)* = (82) = (g5)” = e (identity),

88 =838 =81, 8381 =818 = 8» (1.1)

8182 = 8281 = &3
in connection with the description of the electron’s spin.
{Here the o, are Pauli matrices.)

Recent interest in “finite quantum systems” has ap-
proached the subject in three essentially different ways.

Santhanam and co-workers* have proceeded directly
from Weyl’s position, writing the unitary ray representatives
of finite Abelian groups in exponential form in order to de-
fine finite-dimensional Hermitian analogs of Heisenberg’s
position and momentum variables, satisfying modified com-
mutation relations. A related approach has been adopted by
Gudder and Naroditsky,? and also by Stovicek and Tolar.*

Palev® has considered a simple dynamical system, the
isotropic harmonic oscillator in » dimensions, and adopted a
noncanonical quantization (in the spirit of Wigner’s® well-
known work, but along different lines) in order to arrive at
noncanonical position and momentum variables with finite-
dimensional representations.
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Our own work’ and continuing interest in this area has
stemmed from the observation that Dirac’s equation for the
electron may be regarded as providing the covariant descrip-
tion of a finite quantum oscillator—the Zitterbewegung. As-
sociated with this equation, in the rest frame of the electron’s
center of mass (or in any fixed frame with definite center of
mass momentum), are internal coordinates Q; and momenta
P.(i = 1,2,3), which satisfy noncanonical commutation rela-
tions and have a finite (four-) dimensional Hermitian repre-
sentation. The kinematical algebra generated by these three
Q’sand P’sunder commutation isisomorphic tothe Liealge-
bra so(5).

The authors mentioned above, together with many oth-
ers (see Jagannathan® and Saavedra and Utreras® for refer-
ences), have speculated on the possible utility of novel kine-
matics in the description of the internal dynamics of real
systems, and in particular, of some relativistic “particles.”
However, the so(5) algebra has the important distinguishing
feature that it is known to be relevant to an important, real
relativistic physical system, because of its association with
Dirac’s equation.”

Therefore, the structure of this particular kinematical
algebra, its relation to the Heisenberg algebra and to Weyl’s
ideas, and its generalization to the case of n degrees of free-
dom (that is, » Q’s and n P’s) are of particular interest. This
interest is heightened by the thought that the heavy leptons i
and 7 may represent excited states of an internal electron
dynamics. Furthermore, we show elsewhere that the cases
n = 2 and n = 4, respectively, arise in the description of the
internal dynamics of the neutrino,'? and of the electron in a
proper time formalism.!!

Il. THE KINEMATICAL ALGEBRA SO(77 + 2)

In the description of the Zitterbewegung of the Dirac
electron in the rest frame of its center of mass,” the three
Hermitian operators Q; appear as the coordinate of the
charge relative to the center of mass. The three Hermitian
operators P; have been introduced as the corresponding rela-
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tive momentum variables. Together they generate the so(35)
kinematical algebra, with commutation relations

[Qi’Qj] ='(i’1 z/ﬁ)sij’ (2.1a)
[P.P,] = (4i#/A2)S,,, (2.1b)
[QiP;] =i#b,; J, (2.1c)
[QisSi ] = (64 Q; — 61, Qi) (2.1d)
[PiSu] = i, P; — 8, Py), (2.1¢€)
[Qi ] = (A 2/R)P,, (2.19)
[Pid ]| = (4ifi/2%)Q;, (2.1g)
[75,] =0, (2.1h)
[Si;sSu] = i64S;1 + 8;18u — 8;18u — 6uSi)- (2.1i)

Here A is a constant with the dimension of length. As has
been emphasized before,’ the appearance of at least one such
constant is inevitable in any finite quantum system incorpor-
ating Hermitian coordinate variables, whose eigenvalues are
necessarily discrete, with dimensions of length. In the appli-
cation of the so(5) algebra to the internal dynamics of the
electron, A equals the Compton wavelength of that particle.
Furthermore, in that application the operators of the algebra
(2.1) can be expressed in terms of the more familiar Dirac
matrices as

Q; = }ida; B, (2.2a)

P, = (#/A)a;, {2.2b)

J= -5 (2.2¢)
while S;; is the usual spin tensor

Sy = —yifila,a;] = €3S (2.2d)

The relevant representation of so(5) is then the four-dimen-
sional spinor representation, in whichJ{= — £} is a trace-
less operator with unit square.

There is an obvious generalization of the algebra (2.1) to
the case of n degrees of freedom: simply allow the indices
there to run over 1,2,...,n instead of 1,2,3. Then the Lie alge-
bra so{n + 2) is obtained. If one defines J p(= — Jp4;
A,B=12,..n+2) by setting J,;=8;/%J,.

=A7'Q,Jips2 =A/2%P,,andJ, ., =4}/, thenthe
J ,p satisfy the so(n + 2) commutation relations in standard
form

[JAB’JCD] = #8,4cIpp + Oppdac — Opcdap — 5ADJBC)i2 3
The fundamental spinor representations of so(r + 2), of di-
mension 27, are of particular interest. [Herep = }(n + 1)if n
isodd, and p = 4n if n is even. In the latter case there are two
inequivalent representations.] The relations of such repre-
sentations to Clifford algebras, and associated anticommu-
tation relations, are well known. Only in these representa-
tions does the operator J, which is traceless in every repre-
sentation, have unit square, so that its eigenvalues are + 1.
Inspection of (2.1c) suggests that one is then, in an intuitive
sense, as close as possible to the canonical commutation rela-
tions

[gip;] = i8], (2.4)
where I is the unit operator. (Note that the commutator of
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any Q; and P; represented by finite matrices must be trace-
less.)

Various dynamics are possible within the framework of
the so(n 4+ 2) algebra, corresponding to various choices of
Hamiltonian operator H in the enveloping algebra of the
particular representation at hand. In the case n = 3, when
the fundamental (Dirac) spinor representation is chosen, the
only true so(3) scalars available (as distinct from pseudosca-
lars) are J(= — B) and I (identity). With H of the form
¢l + d B, where ¢ and d are numbers with dimensions of
energy, the commutation relations (2.1f) and (2.1g), together
with Heisenberg’s equation of motion

o . dA

ihA=[A,H), A= - (2.5)
imply

0, =dAY#)P, P, = —(4d/AYQ,, (2.6)
so that - .

0, = — (4d*/#)Q,, P, = —(4d*/#)P,. (2.7)

Thus harmonic oscillator dynamics is singled out in this
case.” This would not be true for other representations of
s0(5), nor for larger values of n, even in the fundamental
spinor representations.

Nevertheless, because the constants 4 and A are avail-
able, dimensionless creation and annihilation operators can
always be defined, whatever the representation and whatever
the dynamics, as

At = Q./A —iA /2#H)P,,

The 4,7 is Hermitian conjugate to 4;, and relations (2.1)
become

[4:,4;] =0= [Aif’ AjT]’

[4:,4,7) = 6,0 + (2i/A)S,;,

[4,7]= —24,, [4%T]=+ 24,1,
together with (2.1h) and (2.1i) and relations like (2.1d) and

(2.1e), which express the n-vector nature of 4, and 4, .
The relations (2.1) are also equivalent to

[ [Ai’ AJT], Ak] == 2(511Ak + 6jkAi b 6,*14]),
[[4i 4], 4] = 2(— 8,4, + 8,4, — 8,4,%),
[[4:4,7],[4:, 4] ]
= 2(6,1c [AI’ AJT] bl 5’1- [A'-, AkT]
+ 8 [40 4] = 8u[40 4]
[4:,4;,] =0=[4" 4],
in which form they show most clearly how these operators

differ from the ones introduced for a finite quantum oscilla-
tor by Palev.® His operators satisfy

(2.8)
i=1.2,..,n

(2.9)

(2.10)

[{AiT’Aj}’Ak] = —5ikAj +6ijAk!
[{AIT’ Aj}!AkT] = 6jkAiT - 6ijAkT’

({454, (A, 4} = 8, (4,7, 4} — 8.} {41, 4,
(2.11)

{Ai’Aj} =0= {AiT’ AjT}’
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and define the Lie superalgebra sl(/,n). Like so(n + 2), this
has infinitely many inequivalent irreducible Hermitian re-
presentations.

Palev considered his algebra as a dynamical algebra as-
sociated with a particular Hamiltonian

H = [#n/(n ~ 1)1{4,}, 4,}, (2.12)

for an isotropic oscillator. [Here the constant @ is intro-
duced, with dimensions of {time)~', but Palev also needs to
introduce a constant with dimensions of a length in order to
define coordinate and momentum operators.] In contrast,
we view the so{n + 2) algebra as kinematical. It always ad-
mits as a particular dynamics, that associated with the Ha-
miltonian

H=(fiw/2n)[A,}, 4,], {2.13)
which leads to the harmonic oscillator equations

A, = —iwd;,, A'= +iwd?, (2.14)
or equivalently, to Egs. (2.7) with

d = {io. {2.15)

As aiready remarked, this is the only dynamics permitted in
the case of the fundamental spinor representation of so(5)
(n = 3), when it is directly relevant to the description of the
Zitterbewegung of the electron as a finite quantum oscilla-
tor.” No doubt Palev’s algebra (without reference to ) could
also be viewed more widely as a kinematical algebra admit-
ting a variety of representations, and a variety of dynamics in
most representation.

Another important distinction between the so(n + 2)
and sl(/,n) algebras relates to the representations of the so{n)
subalgebra that can appear. This subalgebra is associated in
both cases with the “angular momentum” of the finite quan-
tum system. Since spinor representation of so(n + 2} are al-
lowed (as for the electron), then spinor representations of the
so(n) subalgebra can be accomodated. However, the so(n)
subalgebra of sl(/,n) appears in the chain

so(n) < sl{n) < sl{/,n), (2.16)

and only tensor representations of so(n) appear in the repre-
sentations of sl{n). Thus Palev’s algebra can only describe
finite quantum systems with integral angular momentum or
spin.

We comment at the end about the noncompact versions
of the so(n + 2) algebras.

. RELATIONSHIP TO THE HEISENBERG ALGEBRA
AND TO WEYL’S IDEA

The so{n +2) algebra, which is of dimension
i{n + 1)(n + 2), is generated by the n Q’s and n P’s under
commutation, as Egs. (2.1) show. In contrast, n canonical
Q’sand P’s generate the Heisenberg algebra, which is of the
smaller dimension (2n + 1):
[qn'P.'] =if 6;,-1,

[9.4;1=0=[p,p:], (3.1)

[1,g:]=0=[Lp].
These may be compared with Egs. (2.1a}~(2.1¢), (2.1e), and

(2.1f). However, it is more appropriate to compare the
so(n + 2) algebra with the kinematical Lie algebra k,, , also of
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dimension (n + 1)(n + 2), obtained by extending the Hei-
senberg algebra by the algebra so(n) of rotations; introduce

the In{n —1) so{n) (angular momentum) operators
0= —1; ij=1,2,.,n) satisfying

[qisljk] = iﬁ(sikqj - 5ijqk)’

[Pi»ljk] = iﬁ(aikpj - 5:‘ij), [I!Iij] =0, (3.2)

[Zijolia ] = ih Bucdy + Sl — Sy — Suli),

which may be compared with Egs. (2.1d), (2.1e), (2.1h), and
(2.1i). Any representation of the Heisenberg algebra can be
extended to a representation of k,, by setting

Ly = q;px — qup;- (3-3)
However, there are also representations of k,, in which the
relation (3.3) does not hold. We may always add one or more
“spin terms” to the right-hand side of Eq. (3.3), thus ensuring
in particular that spinor representations of so(n) can occur.

It is noteworthy that, although there is (up to equiv-
alence) only one unitary representation of the (Weyl) group
associated with the Heisenberg Lie algebra, by von Neu-
mann’s theorem, there are evidently infinitely many inequi-
valent unitary representations (with various spin content) of
the group K,, whose Lie algebra is k,, . Corresponding to this
in our case is the fact that there are infinitely many inequiva-
lent unitary representations of the group SO(n + 2).

There is a contraction'? from the algebra so(n + 2) to
k., ; this emphasizes the naturalness of the choice of so(n + 2)
as an appropriate kinematical algebra for finite quantum sys-
tems. To see this without going into details, define

G =€Q; b =6€P, T=€152'I’ 7ij=sij’ (3.4
with Q,, p;, etc., as in (2.1) and ¢,, €, real parameters. Then

[éi’qj] =ia Z/ﬁ}(fl)zlm

[6.5;) = (4#/A e,

(4::8;] = b1,

[@:.1] = —iA*/A)e)D,,

[5:] ] = (4if/2 )€ G,
while the remaining relations are as in Eqgs. (3.2), with g;
replacing g;, etc. When €, and ¢, are set to zero, Egs. (3.5)
reduce to Egs. (3.1). If €, is set to zero but not €, (or vice
versa), the Lie algebra obtained can be seen to be that of the
Euclidean group E (n + 1). (These cases correspond physical-
ly to an oscillator or free particle.}) This indicates that the
contraction from so(n + 2) to k,, can proceed in two stages,
via e{n + 1) (and that there are two distinct routes along
which this may be accomplished).

There is also a close relationship between the fundamen-
tal spinor representations of the so(n + 2) algebra, and uni-
tary ray representations of finite Abelian groups, so that con-
tact can be made with Weyl’s idea,’ and also the work of
Santhanam,? mentioned in the Introduction. Consider, for
example, thecasen = 1(one Qand one P )and the fundamen-
tal spinor representation of so(3), which is two dimensional.
We may take in this case

0=14o, P=(#/i)o, (3.6)
where o, and o, are Pauli matrices. Then Eqgs. (2.1) show
(3.7)

(3.5)

J =0,
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while there are no so(n) operators in this case. Define the
unitary operators

4(6) = explil6 /1)Q),
Then

A (m) = ioy,

B(¢) = explildAP /24)). (3.8)

B(7) = io,, (3.9)

anditcanbeseen that 4 (7) and B () generate under multipli-
cation the unitary ray representation of the four-element
Abelian group defined by Eqgs. (1.1), In contrast, the set of all
unitary operators 4 (8 ), B (¢), with 8,4€[0,27], generate un-
der multiplication a two-valued representation of SO(3) [that
is, a true representation of SU(2}].

Note that if we started with the unitary ray representa-
tion of the Abelian group, and hence with 4 (7) and B (7}, we
could define

Q= —(iA/mlogd (m), P= — (2ifi/A )log B(7),

(3.10)
and recover the so(3) algebra generated under commutation
by @ and P. On the other hand, if we started with a unitary
representation of su(2), we would more naturally identify Q
and P by setting

o _pdMO)  p_ _iidB@)
dé le-o 28 dé ls-o
(3.11)
IV. CONCLUDING REMARKS

Of various approaches to the description of a finite
quantum system with »# degrees of freedom, the one using the
so(n + 2) kinematical algebra is distinguished primarily by
the fact that it is known to be relevant to real relativistic
systems.”'%!! Furthermore, it has been shown that there is a
well-defined relationship between the so(r + 2) algebra and
the kinematical algebra k, of a system with n degrees of
freedom of the usual (noncompact) type. This relationship is
defined by a group contraction.

Of course, we do not claim that so{n + 2) is the only
algebra which could have such a relationship with k,,. How-
ever, the existence of this relationship suggests the possibil-
ity of studying a class of finite quantum systems which are
well-defined analogs of infinite quantum systems, and also
the connection between the two, through the contraction
process. One could start with the finite quantum oscillator,
as in Eqgs. (2.7), for example, but it would be interesting also
to construct finite analogs of other well-known dynamical
systems, such as the Kepler system, and to investigate their
symmetry and dynamical algebras.

Another important distinguishing feature of the
so{n + 2) algebra which has been emphasized above is the
existence of spinor representations. This makes possible the
“explanation” of the half-integral spin of “‘elementary” par-
ticles as the angular momentum of internal finite quantum
systems. Such an idea dates back to Schrodinger’s work on
Dirac’s electron,'® and has been further brought out in our
own recent efforts.”

Finite systems can be accommodated naturally in the
vector space setting of quantum mechanics—we merely
need to consider finite-dimensional subspaces of Hilbert
space. On the other hand, one might suppose that they have
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no classical counterparts. That this is not necessarily the case
is shown, for example, by the recent construction of a classi-
cal analog of Dirac’s spinning electron.'# (In this connection,
we mention also the earlier work by Grossmann and
Peres.”)

There is clearly more to be done towards understanding
the relationship of finite quantum systems to the more famil-
iar dynamical systems of classical and quantum mechanics.
The use of the so{n + 2) kinematical algebra defines a class of
finite systems for which some possible directions of future
research seem reasonably well defined.

Once the commutation relations of the internal dynami-
cal variables have been recognized, we can also take the infi-
nite-dimensional representations of the internal algebra
so(n + 2). These then represent many-body systems with »
degrees of freedom in the center of mass frame. Relativistic
theories of composite atoms or hadrons,'® or relativistic os-
cillator and rotator,'” belong to this category. The boosting
of such a system (i.e., induced representations of the Poin-
caré group) gives relativistic finite-component wave equa-
tions in the case of finite-dimensional representations, and
infinite-component wave equations in the case of composite
systems.

In the infinite-dimensional case one can use perhaps
more appropriately the unitary representations of the non-
compact form of the algebras so(p,q). The exact form of the
noncompact form depends on the physical interpretation of
the generators as Hermitian operators. For example, the
s0(3,2) form of so(5) has been used extensively.''¢'®
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