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It is shown that if o denotes an n X » antisymmetric matrix of operators o,,,p,4 = 1, 2, ...

, n, which

satisfy the commutation relations characteristic of the Lie algebra of SO(n), then a satisfies an nth

degree polynomial identity. A method is presented for determining the form of this polynomial for any
value of ». An indication is given of the simple significance of this identity with regard to the problem
of resolving an arbitrary n-vector operator into » components, each of which is a vector shift operator

for the invariants of the SO(n) Lie algebra.

1. INTRODUCTION

The structure of 3-vector operators in quantum
theory was investigated by Dirac,? Giittinger, and
Pauli,? who considered the matrix elements of
such operators in an angular momentum basis.
Later Wigner3 indicated the possibility of a sys-
tematic treatment of any set of operators trans-
forming according to an irreducible representation
of the rotation group, and the calculus of tensor
operators was subsequently developed by Racah.4
Some of the results of these investigations, and
their application to calculations in the quantum
theory of atomic spectra, can be found in the books
by Gondon and Shortleys and Slater.6

Racah? and Biedenharn8 have emphasized the de-
sirability of finding, in the case of other semi-
simple groups, the generalization of these and
other results in the theory of angular momentum,
or SU(2), We present here some results in the
theory of SO(n), or, more accurately, of its univer-
sal covering group [for convenience, this group is
subsequently referred to as SO(n)], relating in par-
ticular to the description of n-vector operators.
Even in the much studied case » = 3, our approach
has, we believe, some novel and attractive features.

We are concerned with the general situation where
one is given a set of operators 6,, @, (= — a,,)

qi
b.,q,r =1,2, ... ,n,satisfying the commutation
relations

(1)
(2)

-6 0

[apq’ O] = 8,0 + 850y — 8,04 gs“prs

(6, 0 ] = 6,58, — 6,0,

In particular, the o, could be anti-Hermitian
operators acting in a Hilbert space, in which case
they form the generators of a unitary representa-
tion, in general reducible, of SO(n). Then @

[ = (64,64, ... ,0,)]is an n-vector operator act-
ing within the corresponding representation space.

In such a case, the Casimir operator o, = o 0,
can be expressed in the form?

02=2A1(A1 +n-—2)+2A2(A2 +n—‘4)+"'

+ 2A,,(A,, + 7 — 2m), (3)
where m is the integral part of 3» and the eigen-
values A; of the operators A;, which serve to label
the irreducible components of the representation
of SO(n), are either all integers or all half-odd
integers and satisfy

A= Agzeee =z A, 20, n=2m+1,
Apzag ==, =120, n=2m.  (9)
When » = 3, an established result® 2 is that 8 can

be resolved into three components, each of which
is a 3-vector shift operator for A,, the magnitude
of the angular momentum. Thus

8 =0"+00+9-
where

A0° =001, A0t=0%A 1)

The results obtained by Bhabha, 10 in investiga-
tions of 4~-vector operators within finite-dimen-
sional representations of SO(3, 1), enable us to
deduce that, for n = 4,

0 =01 +07 +0} +03,
where

ABE= 05, £ 1),

It is not difficult (see Appendix B) to deduce the
generalization of these results for » = 3 and 4.
Thus when » = 2m + 1, # can be resolved into
components 0,087,087, i=1,2, ... ,m, where

AP0 =00A;, ABF=0%(A;t0,), (5)
while, in the case n = 2m, the result is the same,
except that 90 does not occur.

In what follows, it is convenient to think of o, as
the element in the pth row and gth column otP an
antisymmetric » X n matrix of operators. We de-
note this matrix by o and by a*and o*the mat-
rices whose pgth elements are

(@), = (@ N,0, k=23 ...,

("‘k)pq = (o Jap-

Furthermore (cf. 0,), we define o, by

0, = tr [¢*] = (a*),,.

We shall show that, as a consequence of the rela~
tions (1), @ satisfies an nth-degree polynomial
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identity, of the form

1.

F,(a) =a" +a;a” +a, =0, (6)
where the coefficients a,, £ =1,2, .

invariants of the SO(z) Lie algebra.

. ,m,are

The existence of this identity is in no way depen-
dent on the existence or nonexistence, within the
representation space for &, of an »-vector opera-
tor 8. However, when such a § does exist, its re-
solution into n n-vector shift operators for the
SO(n) invariants, as in Egs. (5) above, can most
readily be achieved with the use of this identity,
as we shall see,

We are mainly concerned with the determination
of the form of the coefficients g, in Eq.(6), as
functions of ¢,,03, ... , which are in turn func-
tions, also to be determined,of Ay, Ay, ... A,
Before proceeding, however, we make the following
general remarks concerning the identity expressed
in Eq. (6).

It is clearly an analog of the Cayley—Hamilton
identity for an n X n matrix of complex numbers.
There are, however, some interesting differences.

In particular, suppose we define the determinant
of an #n X n matrix A of noncommuting elements, by

det(4) = (1/nl)e;; . m€pq...t4ipA45 *** Aomes

where €;; . ,, is the alternating tensor, with
€12..., = 1. Then in the present context, we find

det(a—p[)::pn-l-aipn-l{--..+ar/” (7)

where p is an arbitrary complex number, I is the
n X n unit matrix,and a;,, £ =1,2, ... ,n, like
a,, is an invariant of SO(n). However, we find that,
in general, a; = a,, in contrast with the case when
o is a matrix of complex numbers.

The existence of the polynomial (7) is compara-
tively well known, having been discussed in studies
of Lie algebras by Killing!1 before the turn of the
century and, more recently, by Racah? and Bieden-
harn.8 Much less, it seems, is known of identities
of the form in Eq.(6).

This equation actually expresses n2 identities in
the elements of a. Lehrer-llamedi2 has shown
that n2 identities of more general form are satis-
fied by the elements of any #» X n matrix, provided
these elements belong to a free associative alge-
bra. Here we are dealing with a special case,
where the algebra is in fact a Lie algebra, whose
structure constants are such that these identities
can be expressed in the simple form of a poly-
nomial identity in @. [One of the authors (H.S.G.)
has now determined similar identities for Sp(n)
and SU(n).]

In the course of investigating certain identities
satisfied by elements of any representation of the
Lie algebra of SU(3), Lehrer-Ilamed13 has utilized
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similar generalized Cayley-Hamilton identities
satisfied by some elements of the algebra. (See
also Racah.14) However, to our knowledge, the
identity (6) for SO(») has not previously been pre-
sented, even for the case n = 3.

2. VECTOR SHIFT OPERATORS AND THE POLY-
NOMIAL IDENTITY

Considering a system of operators 8, a as in Eqgs.
(1)=(5), we find that 80, 8%, and 87 are eigenvectors
of the generator matrix o, in the sense that if 6,
represents any one of these » operators,

a8 =da@

T 7?2
i.e.,

d.o

6 TV TP?

Q54 =

where d_ is an invariant of SO(n). This follows
from the fact that, for any vector operator 6,

[02,6.] = 2(2a —n + 1)9,.

For, in view of Egs. (3) and (5) above, ¢, commutes
with 89, so that

(@ —3n +3)80=0, (8)
Also,
[05,67] = 2[A A, +n — 27), 6t]

=2(2A; +n — 2 + 1)67,

so that

(0 —3n + 18] = (A, + 3n— o}, (9)
Similarly,

(@ —zn + 187 =~ (A, + 30— 0)67. (10)

In Appendix A we show that o satisfies a poly-
nomial identity of the general form of Eq. (6).
The results (8)-(10) then allow us to write the
identity in more precise form, effectively deter-
mining a,, k=1,2, ... ,n as a function of A,

1=1,2, ... ,m. We must have

E (o) =0, (11)
where

E(a) = G, (a?), n = 2m, (12)

Fla) = (a — 3)G,(a2), n=2m +1, (13)
and

a=a—3n+1,

G,(a?) = T [a2 — (A, + 5n~ )2). (14)

i=1
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Conversely, once the results (11)-(14) are known,
one can see why and how an arbitrary n-vector
operator 8 can be resolved in the manner indicated
by Eqs.(5). Thus, in the case n = 2m + 1, we use
Eq.(11) in the obvious way to define projection
operators PO(a), PH(a),P;le), i=1,2, ... ,m,
which are polynomials of the (n — 1)th degree in

o and which satisfy

(@—4n +5PO=0,
[@ —in +1F (A; +on—2)JPF =0,

POPf = PEPO = PfP; = P7PT =0,

(PO)2 = PO,  P}P =05, PY,
PO+ 73, (Pt +P7)=1. (15)
i=1
Then the required resolution is
m
0 =60+, (07 +67),
i=1
with
g0 = P09, 9% = P%9. (16)

The case n = 2m is similar, except that PO and
89 do not occur.

We do not go into details here, but mention that in
order to confirm that Egs. (5) follow from Egs.
(15) and (6), it is not sufficient to consider the
commutators of 89,0% only with 0,. Rather one
needs to calculate the commutators of these vec-
tors with a complete set of invariants, which, like
0, but unlike A;, are explicitly constructed from
the set of Oy Finally, one must know the expres-
sion for each member of this complete set in
terms of the A;. We return to this last point in
Sec. 5.

3. SYMMETRIC AND ANTISYMME TRIC POLY-
NOMIALS IN o

If the matrix polynomial f(o) is symmetric, i.e.,

if fla) = f(a), then

gla) =(a —zn)fla) +3 tr [fla)] (17
is antisymmetric, i.e., g(a) = — g(a).
Furthermore, if g(a) is antisymmetric, then

ha) =(a —3n + 1)g(a) (18)

is symmetric.

The proof is as follows. Since f, (@) transforms
as a tensor under SO(xn),

[apq!fys(a)] = qufps(a) _ 6prqu(a)

+ Gqsfyp(a) - 6psfyq(a)- (19)
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By putting ¢ =~ and using f,(a) =, (a), we have

afla) + fla)a =nfla) —tr [fla)],

with the help of which the antisymmetry of g(a),
defined as in Eq. (17), is readily established. On
the other hand, if f, (o) is replaced in Eq.(19) by
£,s(a), where g,s(ozs = —g(a), we deduce that

agla) —gla)a = (n — 2)g(a),

which establishes the symmetry of k(a), defined
as in Eq. (18).

Noting that ¢© = 1 is symmetric and that ¢ is anti-
symmetric, we see from these results that any poly-
nomial of degree 2l ina, [ =0,1,2, ... ,can be
expressed as the sum of a symmetric one of de-
gree 2l and an antisymmetric one of lower degree,
Similarly, any polynomial of degree (2! + 1) can

be expressed as the sum of an antisymmetric one

of that degree and a symmetric one of lower de-
gree,

We then infer from Eqs. (11)—-(14) that F (a) is
symmetric or antisymmetric, according as »n is
even or odd, i.e.,
F,(@) = (- 1)'F,(a). (20)
4. METHOD FOR THE DETERMINATION OF
THE MATRIX POLYNOMIAL

For any given value of n, F,(a) can be‘calculated
by reduction to polynomial form of the appropriate
equation (A3) or (A10), as shown in Appendix A for
n = 3,4, and 5. However, as n increases, such a
calculation quickly becomes very involved. Here
we present, in each of the cases » even and » odd,
a method of obtaining F,(a) quite easily for any
given n.

(a) When n = 2m is even, F,(a) is completely
determined by the conditions
(i) F(a) = G,[(a?), where G,(a?) is a poly-
nomial in a2 of degree m and a =
a—m +1,
(i) F(a) = Fy(a),
(iii) tr [F,(a)] = 0,

which follow from Eqs.(12), (20), and (11). The
proof is as follows.

Consider the sequence of polynomials defined by

f():l,

S = [ala —2m + 1) +b]f,

fi=ale —m + 1) +b,f,

+[3¢ +cola —m +1) +d;]tr[f],

1=12, ..., (21)
where b,,b,,¢;, and d; are arbitrary constants.
According to the results of the preceding section,
each polynomial in the sequence is symmetric.
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Moreover, in view of the conditions (ii) and (iii)
above, we see that, for some choice of b,,b,,¢c,,
andd;,, 1=1,2, ... ,m—1,

F, =f,—tr[f,)/(2m).

Then f,,, like F, , must be even in a, and we shall
use this to determine b,5,,c,, and d; uniquely
[except for d,,_,, which remains arbitrary, but
which does not in any way contribute to F, , in view
of Eq. (22)].

We denote by f? that part of f; which is a linear
combination of positive powers of o, with numeri-
cal coefficients, i.e., not involving 0,,04, ... . It
is evident that

(22)

f? =oaf(e —m + 1)p,[a(a —2m +1)]

=ala +m —1)p,[(e¢ + m — 1)(a —m)]},
where p,(x) is a polynomial of the (I — 1)th degree
inx. It is also clear that if £, is even in q, so are
f8 and (f,, —f9). But, if O is even in a, we have
(@a+m—1)p,lla+m—1)@a—m)]

=(a—m +1)p [la—m + 1) (@ +m)].

We set, in succession, a =m -1, a=m ~2, ...,
a =1 in this identity and thus obtain (for n» > 2)

Pul1(2 —2m)] =p, (203 —2m)] = ...
=py[(m —1)(~m)] =0,
and therefore
Pu) = +2m —2)(x +4m —6) -+
X [x + mm — 1)],
fO=(@a+m—1(a—m+ 1)a + m —2)]
x[(@a—m +2)a+m—3)] - [(a—1)a)la,
=afla —2m + 2)(a —1)][(@ —2m + 3)(a—2)]
X oo fla—mila —m + D)@ —m + 1),
Thusb,=12m—1+1), 1=0,1, ... ,m~—1,and
in order that f,, should also be an even function of
a,we must takec, =—1/(2), 1 =1,2, ... ,m —1

andd,=—34(m —1), 1=1,2, ... ,m — 2, while
d,.q is left arbitrary.

Thus, when n = 2m,
F,l@) =f,—tr [£,)/(2m),

where
fi=eala —m +1),

frp=la—Da—2m +1+1)f,— (@ —m +1)

X (@ — 1) tr [f,]/(2D). (23)
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For example, when n = 2,
Fyla) =f, — 3 tr [f,),
fi=a?

for n = 4 [cf. Eq. (A6)],
Fyla) =f, — 3 tr f,),
f1=ala—1),

fo=(a =2)(a —1)2 - (a — 1)20,;

forn = 6,
Fgla) =f3—tr [f3),
fi= a(e —2),

f2 =(a —4)a — 2@ — 1)a — 3(a — 2)(a@ —1)o,,

fa=(a —4(a —3)a - 2)2(a —1)a — 3(a —3)

X (@ — 2)2(a@ — 1o, —; (@ — 2)2[20, — 140,
+ 160, — (03)?].
(b) When » = 2m + 1 is odd, F,(a) is completely
determined by the conditions

(i) F,(a)=(a - 3)G,(a2), where G, (a2) is a
polynomial in a2 of degree m and a =
a—m + %,

(i) F,(a) =—F,(a),

which follow from Eqs. (13) and (20).

In this case we consider the sequence of antisym-
metric polynomials generated by

g-]_:a’
811 = [ala —2m) +b,]g, + [c,0 + 3] tr [ag)],
1=1,2, ... .

For some choice of b, andc¢,, 1 =1,2, ... ,m,

we must have F, =g, .,. We determine these con-
stants uniquely by requiring that g, ,, satisfy con-
dition (i) above.

Suppose g? is obtained from g, by dropping terms
involving o, . Then

81 = ap Jala — 2m)),
=[a +m —5p,[(@ — 52 —m2],
where p,(x) is of degree ! in x. From condition (i),

we see that g9, must vanish for a = }, so that
P {—m2) = 0for m > 0,and we can write

b &) =(x + m2)q,(x),

891 = @ +m — la — $)2q,[@ — 52 —m?].
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Again from condition (i), we see that (@ + m — 3)
(a — 3)q,[(a — 3)2 — m2] must be an even poly-
monial in a, so that

3)4q ,lla —3)2 —m?2)

[(a +3)2 —m?2].

(a +m — 3)(a—

=(@a—m +3)a+3q,
We set, in succession, a = m — 3,

a———m——;,
and obtain, for m > 1,

a=s,

g, 1(1 —2m)] =q,[2(2—2m)] =

=qulm —1(—1—m)] =0,

whence
g %) =[x +12m —1)][x + 2(2m —2)] - --
X [x + (m —1)m + 1)),

g% =(@—5a+m—a—m+Ha+m-—3)]
X [(a—m + )(a+m——-)]---

X [(a —3)a + $))(a —3)

=afle —2m) + 1(2m — 1)][a(a — 2m) + 2(2m —2)]

X oo [a(@ —2m) +m2].

Form =1, dm= 1. Thusb,_l(2m——l) and, to
make g, 1/ {a — %) an even polynomial in a, we
must also take ¢, = — 1/(2).

Thus, whenn =2m + 1,
F,(a) =g ,.4la),
where
g =0,

&1 =(a—Na—2m +1)g,—(a —)trfag,]/(2]).

(24)
For example, when n» = 3 [cf. Eq. (A12)],
& = (@ — 1)2a — 3(a — 1)oy;

for n = 5 [cf. Eq. (A13)],

8g = (@ —1)(a — 3o — 3(a — 1)021
83 =(a —2)%(a —3)(a - 1)a — 3(a — 1)(a — 2)20,
— ila — 2)[o, — 405 + 30, — 3(0,)2].

5. INVARIANTS OF SO(n)
Consider the sequence of antisymmetric poly-
nomials e,(a), I'=1,2, , defined by

e =a, e, =alad—n+1le +itrjae].

OPERATORS
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The identity tr [e;] = 0 then expresses 0,, ; as a
function of 64,03, ... ,05,.5. Thus

Gy = 3(n — 2)02’

5 = 2(3n — 4o, — 3(n — 1)(n — 2)o;5 — 3(0,)2,

etc.

We see also, from the fact that tr [« an (@)]=0,
k=12, ,that ¢,,1,0,.s, ... can be expressed
as functions of ¢,,05, ... ,0,. It follows that all
o, can be regarded as functions of 05, I = 1,2,

, m, or, alternatively, and more conveniently
from our point of view, as functions of 7,;, where

T, = tr [f,]/(20),
T, = tr [agl]/(zl);

with f,,&,; as in Eqgs.(23) and (24).

The functional dependence of 7, 0n A,, i, =

1,2, ,m, and hence the eigenvalues of 7, can
be determined by comparing the two forms G, (a2)
given, on the one hand in Eq. (14), on the other via
Eqgs.(23) or (24).

Thus in the case n = 2m + 1, we deduce from Eq.
(24) that

n=2m,

n=2m + 1,

G la2) =7, —[a%2 — ]t p1
— a2 — $][a® ~ §Ir g
—[a2 = §][a? =3 -+ a2 — (m — 2}r,
+la2—4]fa2 =3) -+ [a? —(m — H2]},  (25)
so that
Tm=—6,3), Tpoy=3-7,—G,Q]
Toeg = [T, =67, —G(3))/24, etc.
(TAhei f_r;rﬂ :E):czl (14) we have, writing x; =
w=ED™ I (x — ),
Tm-1=(— 1)m+1<I'Q(x, :( -—.,)) etc.

We note also, from a comparison of Eqs. (25) and
(A10), that .
m
B(M)ﬁ(”‘) me = m(_ l)m ‘l;!l (X, _ Ti‘).

In the case » =2m, we find from Eq. (23) that

Gnla) ={—7,—a27,_; —a2[a2 —1Jr, ., —
—a2[a2 — 1]+ [a% — (m — 2)2]r,
+a2[a? —1] - a2 — (m — 1)2]} (26)
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Tm=—6G,0), 7, ,=—1,—6,Q1),

4r .1 — G ,(4)], etc.

.1
Tm-2 =3l Tm—
Again writing x, = (A; + m — )2, we see from
Eq. (14) that

m+l 7
m1| ™ m
Tm=-1= (_ 1) I;l;_[l (Xi - 1) _iI=Il Xi] , etc.
The set of operators 7,,Tg, ++ov ,T oy and 7,

(or Bgm)ﬁgm)) is a complete set of invariants for
SO(2m + 1). However, in the case n = 2m, asis
well known, one pseudoscalar invariant such as

g™ (see Appendix A) or A,, is needed. We note
from a comparison of Egs. (26) and (A3) that

[8U12/m2 = — 1, s0 that
(m) m 1 ,
B = m(z) il;I]. (A, +an — 1’)1

where we have taken the sign of the square root

which is consistent with that weight vector inter-
pretation of (Ay,A,, ... ,A,,) adopted in Appendix
B. The set of operators 7, [ =1,2, ... ,m —1,

and 8'™ is a complete set of invariants for S0(2m).

APPENDIX A:

Here we establish the existence of an nth degree
polynomial identity for a. Following Bakri,15 we
define the completely antisymmetric tensors

&

Bag  +++,, k=0,1, ... ,m, of rank n — 2, with

(0
qu.)..v= €pq...1)’
k k-1)
Bp(q.)..t = %auyB;q...tuu' (Al)
Then one finds that, for £ = 0,1, ... ,m — 1,15
n+l (k+1)
B;:.)..tuauv_kﬁp(:.)..tv= -1 (apvﬁqr...t
— BB, e+ (170, BB )/ (ke + ).
(A2)

In the case k& = 0, this identity is proved by inspec-
tion, and the proof for general values of & is ob-
tained by induction.

(a) When n = 2m, we take k = m — 1 in Eq. (A2)

to obtain

(m-l)a

-1 (m)
ﬁpq qr—(m_l)Bj(y:n )=—6pr6m/my
ie, 8 Vo —m +1) =— 8¢ /m . Moreover,
ag™ V) =" Ny 50 that

(@ —m + I)Z[B(m—l)]z — [B(m)]z/mZ. (A3)
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The quantity [ ]2 can be reduced to a poly-
nomial of degree {2m — 2) in a, so that Eq. (A3)
is in fact the required identity. It is not a simple
matter to complete this reduction for a general
value of m. However, for small values of »:, the
desired result can be obtained from the identity

S(P
€pij... kir€gst ...ur = E(_ 1) ( )quﬁiséjt' ** 0,400
(A4)

where Z(— 1) means a sum over all permuta-
tions of p,4, ... ,k,and [, with appropriate sig-
natures, by multiplying with

S(P)

(aij.“ akl)(ast“. auv) (A5)

and shuffling factors till the required order is
reached. For example, when n = 4,

[43(1)]2 =—a2 + 30, =—a2 +2a + o,
so that
(@ — 2)(@ — 1)20 — Ya — 1)20, + 4?12 = 0. (A6)

{In the important related case of SO(3, 1), with
generators J,,, A, p =0, 1, 2, 3, satisfying

[JMHJpo] =- i(g)\pJpc +gp0‘]>\p _gupJ)\c_g)\oJup)

where g,, is the pseudo-Euclidean metric tensor,
the corresponding result is

ay p, O, Vv . ay p v
I, TS T0d, —4id, T,
+ (Jy —5)J, T -2, —1)J,°
=, +[J5]28,%,
where J, = £, ™, and J, =3¢,,,,J""""}

(b) Whenn = 2m + 1, we take k =m — 1 in Eq.
(A2) to obtain

(m-1 )a

-1
qur (m~-1)

rs (m - I)qus
= (1/m)(6,,85™ — 5,,8™).

Premultiplying this equation, on the one hand by

(A7)

a,,, on the other by Bl(,m), we obtain
(m) _ olm) _ (m)

@By " =By oy =mBy (A8)

and
a,, + (m — 1)y, = (1/m)(g™8™

YorPrs Vsq m (Bs Bq

— 878" %,), (A9)
where y,, = —yg, = Bfm)ﬁ,(;';l). Next, premultiply-

ing Eq.(A9) by (¢, — md,,) and using Eq. (A8), we
obtain
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(@ —m)[ya +(m — 1)y + (l/m)ﬁ;m)ﬁ(m)] 0
or, since y is antisymmetric,
(@ —m)[(a —m)y + (1/m)p{™ B = 0. (A10)

This is the required identity, as  can be reduced
to a polynomial of degree (n — 2) in a.

In this case, using Eq. (A4), we find

=92C™, ..
pg = 2 (ai.

X23(=1)

For example, when n» = 3, we find y = «, so that

‘ akl )(ast T auv)

S(P)quéts 5]‘

" Oy Oy e (All)

(@ — Dta —1a + P8P =0; (A12)

for n = 5, after a lengthy calculation, we find
=203 —8a2 + (6 —o,)a + gy,

so that

(@ — 2){(a — 2)[2a3 — 8a2 + (6 — 0,)a + 0,)]

+ 489821 = 0. (A13)

APPENDIX B:

Here we justify the assertion that an arbitrary
n-vector operator 6 can be resolved into com-~
ponents satisfying Egs. (5).

An irreducible representation of SO(») is charac-
terized by a set of integers or half-odd integers
(Aq, 2q »A ), as in Eq.(4). This set may be
interpreted as the weight vector of highest weight
for the corresponding representation,16 when each
weight vector is defined as an ordered set of
eigenvalues of, in particular, — 109, — gy, +uu ,

— 0y ) ome Accordmgly, for such a represen-
tation, one can find an element y of the represen-
tation space, such that

—iazi-l,Zilp ‘_‘)\iw’ l: 1) 29 cee , M. (Bl)

Moreover, since  corresponds to the highest
weight and since, for ¢ > 2{ > 2j,

(—iag; g2 )(ag; g, + iag; ,)

= (0g4ey, g T 10y, Mg,y 5; + 1)

and

[(— Z'0‘2]‘—1.2]‘)’ (g1, t+ iaZi,q)] =0,

2105
it follows that

(@941, Ti0g; W =0, ¢q> 2. (B2)
One sees conversely that any y satisfying Egs.
(B1) and (B2) belongs to the representation labeled
(X1, 25, ... ,A,). For example, Eq. (B2) implies
that (no summation over repeated subscripts here
except where indicated)

(@gimq, g =ty Nog; g, Tiay, )Y =0,

q > 2i,
ie.,
(Agim1,q%q,2i-1 T Ay, 0%q, 2 ¥

=— g, 0¥ = MY

Thus

n

27 log,e 1 ta )=(n
=241 211q q,2i~1 21.q q,21

- 21')7\5\0,

[TE (@gim1, ¢%g,2i-1) T+ 2

=21 q=2i+1

Xoi,q% 2 i)]w

=70 +n— 20y,
and

op¥ = 2 2, +m— 2.
i=1

Now suppose there exists an n-vector operator

0 actmg on Y. In the case n = 2m + 1, define
(92Z 120,00, i=1,2, ... ,m, and

zpb . 1t follows from Eqs (2), (B1),

and (B2) that ¥ and Y0 correspond to weight

vectors ()\l,Az, D PRTE.VED 1 WD W

and Ay, g, ... ,A ) and that the set Y0, wi

i=12, ... ,m 1s “Invariant under the action of

the operators (@gj1,q Ti0y; 0, 5 =1,2, ... ,m,

q > 2j.

We deduce therefore that 8y has components only
in respresentations labeled (A, x5, ... ,; 1,4 2 1,
Migs eoe s A =12, 000 m,0r (N, kg, ool LA
It is easy to see then that the same must be true
if Y is replaced by any element of the represen-
tation space labeled (Aq,X5, ... ,1 ), so that the
required result follows for » = 2m + 1. The argu-
ment for the case » = 2m is similar except that
0 does not occur,and Oy can have no component
in the representation labeled (A ,2,, ... , )\m).

This work was done in part at the University of Adelaide and

in part while the authors were at Michigan State University

and the International Centre for Theoretical Physics at

Trieste.
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A hierarchy of tensor identities, satisfied by the generators of the general linear group GL (n}, is obtain-

ed in terms of two different sets of invariants. An application to the identification of irreducible repre~

sentations and the decomposition of reducible representations is described. Similar results are obtained
for the generators of orthogonal, pseudo-orthogonal, and symplectic groups.

1, INTRODUCTION
The generators of the group GL (n) satisfy the com-
mutation relationsl

[aij’akl] _ Gk‘ail_ Oilak

; e ..., l=1,...,n,

1)
and their matrix representations are of some
interest, as they also furnish representations for
other Lie algebras. Indeed,the commutation rela-
tions

k

[Zi 7zj] =C ij %k

in which the structure constants necessarily
satisfy

p

k
ij+cji:

!

l m 1 m mn
c 0,C°,C Yy +C LT +CCT, =0,

can be satisfied identically by writing
b
Zi =C jiajk s

provided that a’j satisfy (1). Different irreducible
representations of the a' ; are, moreover, associa-
ted with different sets of eigenvalues of the invari-
ants ¢, defined by (repeated affixes ¢,7,%,7,...
are understood to be summed over values from 1
to n; however, subscripts 7,s, ... are exempted
from this summation convention)

oy=a,, o0y=a,d, 03=a']a’kaki, (2)
etc., which are Casimir operators, i.e., commute
with all elements of the algebra. Thus, an irre-
ducible representation of GL(n) can, in principle,
be identified by determining the eigenvalues of
04,09,...,0,. Of course, such a representation is

not necessarily irreducible for the z,,and the o,

¥ < n,are not necessarily independent. The prob-
lem of determining a complete set of independent
invariants for a semisimple Lie algebra has been
considered by Biedenharn? and by Gruber and
O'Raiffeartaigh.3

Another, less explicit but sometimes more con-
venient way of defining a set of invariants for
GL(n) is in terms of the highest weights of the
finite-dimensional irreducible representations.
Let A, be an operator whose eigenvalue, in a par-
ticular representation R of this kind, is the same
as the maximum eigenvalue ¢, of a1, in this re-
presentation. Further,let A ,» =2,...,n) be an
operator whose eigenvalue é, in R is the same as
the maximum eigenvalues of a”,, when al,, ...,
ar? _, havethe eigenvalues ¢;, ... ,f,_ ,respec-
tively. Then, if ¥ is a vector such that a”, ¥ =
£y, it must satisfy ai;¢ = 0,j > i,and (as one
can verify by computing 0, and o,¥)

n
0’1 :E?\,’,
r=]

n
0o =2 2,0, +n+1—27). @)
r=1

The representation R is labeled by £ = ({, {,,...,
£€,),where £, — €, is integral and nonnegative

when 7 < s,and can be identified in this way if the
dependence of the first » of the ¢, on the A is
known. Unfortunately, the complexity of the expres-
sions for the ¢, in terms of the A increases
rapidly with .

One use of the invariants is in the decomposition
of a reducible representation into distinct irre-
ducible components, which can be solved by deter-
mining the projections on to different eigenvectors
of the o, (or A,). There are, of course, other ways
of dealing with this problem, notably the method

of character analysis, which has been applied to
U(n) and SU(n) by Blaha.? Our present interest in
the problem arises from its connection with a
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