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Hence, we have Eq. (1.16):

080 0T g g
i TP gl ¢
with
p = m?2a3,
g = —3k2w.
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For a negative «, pq is positive so that this equation
admits the solitary-wave solution, such as that given
by Eq. (1.17), while the plane waves are modulationally
unstable as was stated before in Eq. (I.18). On the
other hand, if « is positive, we have the solutions such
as those given in Sec. 2 for the plasma wave, and the
equation can be reduced to the Kortweg-de Vries
equation.
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Certain matrix transformations of the free-particle Dirac equation are described as momentum-
dependent SO(4, 1) transformations. Such of these belonging to any one of five subgroups G(® (a =
0, 1, 2, 3, 4) are canonical, preserving the Lorentz-invariant Dirac scalar product in a corresponding one
of five modes of expression. The Dirac equation itself is linear in all five components p, [p, (4« = 0, 1,2, 3)
is the four-momentum operator, and p, = m] of the “five-vector” p, and a transformation in G'#’ has the
additional property that the component p; appears linearly also in the transformed equation. The
Mendlowitz and the Foldy—Wouthuysen—Tanl transformation accordingly are in G, the SO(4) sub-
group; and that proposed by Chakrabarti is in G'*), the SO(3, 1) subgroup associated with homo-
geneous Lorentz transformations. For any p’, obtained from p by a momentum-dependent SO(4, 1)
transformation, there is a corresponding transform of the Dirac equation. Where p, appears in the Dirac
equation, p, appears in the transformed equation. The ambiguities which arise in the specification of the
transformatlon leading to a given such equation are associated with the existence of a “little group” for

any such p’.

1. INTRODUCTION

The Dirac equation for the four-component wave-
function p?'(x) is

(yp* — myyp'? =0, (L.1)
where
~9 0123 (1.2)
p[,t_axus /t—,,,, .

and the matrices y, form an irreducible representation
of the Dirac-Clifford algebra, with

Vs 7o} = 280 (1.3)
[We choose the diagonal metric with go = —gy =
—gy2 = —gss = 1; and, with no significant loss of

generality, we take yo, iy, iys, iys, and iy,
(= iyey1Ys2ys) to be Hermitian.]

The transformation properties of the bispinor
function ‘P’(x) with respect to the restricted homo-
geneous Lorentz group SO(3,1) are well known.
However, it has also been long known that larger
groups, in fact certain groups of rotations in five- and
six-dimensional spaces, are pertinent to discussions of

the Dirac equation, the Lie algebra of the Dirac
matrices y,, etc.’~7 In this paper, the connection
between Eq. (1.1) and the group SO(4, 1) in particular
is exploited in the development of a unifying group-
theoretical description of certain canonical momentum-
dependent transformations of the equation.

In a previous publication,® henceforth referred to as
BC, two features of Eq. (1.1) assume significance:
namely, the linearity in all five of the quantities p, , m,
and the existence of five different ways of expressing
one and the same Lorentz-invariant scalar product

L A. S. Eddington, Proc. Roy. Soc. (London) 121A, 524 (1928).

2P, A. M. Dirac, Ann. Math. 36, 657 (1935).

3 Harish-Chandra, Proc. Indian Acad. Sci. 224, 30 (1945).

4 A. O. Barut, Phys. Rev. 135, B839 (1964). See also A. J.
MacFarlane, Commun. Math. Phys. 2, 133 (1966); A. ten Kate, J.
Math. Phys. 9, 181 (1968).

5 J. K. Lubafski, Physica 9, 310 (1942). See also H. J. Bhabha,
Rev. Mod. Phys. 17, 200 (1945); J. A. de Vos and J. Hilgevoord,
Nucl. Phys. BI, 494 (1967); M. M. Bakri, J. Math. Phys. 10, 298
(1969).

¢ See, for example, C. Fronsdal, Proc. Roy. Soc. (London) 288A,
113 (1965), and references given therein.

7 A. O. Barut, Phys. Rev. Letters 20, 893 (1968).

8 A. J. Bracken and H. A. Cohen, Progr. Theoret. Phys. 41, 816
(1969).
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CANONICAL S0(4,1) TRANSFORMATION OF DIRAC EQUATION

W”, ¥iP)) of any two solutions p{2'(x). The five

expressions are all simple in the momentum repre-
sentation, introduced by defining

W(D)(x X) — (2”)—§f dak eik-x{e—iw(k,m):cox(DH(k)
> w(k, m)

+ e+iw(k,m)$ox(D)“(k)} , (1 4)
where

ok, m) = (k* + m*)}, (1.5)

and with, conversely,

2 P5) = e moy ok, m) + po)(2m)E
x f Pxe ' D(x %), (1.6)

Then the well-known coordinate representation form

(pi?, piP) = f

29 const

xpiP?(xy, )PP (x0, ¥),

W)

where P is the Hermitian conjugate of ‘P, yields
the five expressions

(w12, 9P
— d3k (D)+1, k (D)+ k (D)1 k (D)— k
=1 {2 ( )+ 27 T (K (k)
w(k, m)
(1.8a)
4k _ (D) -
= f — X (P kP ) — 2R (K))
mo(k, m)
(1.8b)
and
d’k —(D)+ (D)
=] — K)y 2 (k
w(k, mk, {Xl Kyixz " (k)
— 12 Wy (k)
(i = 1,2, or 3; no summation); (1.8c)
where
7= = X(D)tfyo. (1.9)

The equivalence of these five expressions is established
using the identity

k2500274 (k) = my Pk, 1 P%(k), (1.10)
where we define
kox"P'A(k) = +w(k, m)yP*(k). (1.11)

Equation (1.10) in turn follows® from the fact that one

® The proof is a simple extension of that for the case 0+ =
2P+ as given, for example, in S. S. Schweber, An Introduction to
Relativistic Quantum Field Theory (Row Peterson & Company, New
York, 1961), Chap. 4, preceding equation (129).
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has, from (1.1) and (1.6),

(yk* — myiD* = 0. (1.12)
Yu 1,

In BC we considered momentum-dependent matrix
transformations of the form

PP — 9'(x) = V(p, myP(x),
leading to the equation

Ve, mly,p* — mlV7(p, m)y’ = 0. (1.14)

Five special classes of such transformations were
presented, with every transformation in a given class
having two properties characteristic of that class.

The first of these properties is that the linearity in a
corresponding one of the five quantities p,, m is
maintained in the transformed equation. In this way
“Po~s “Pr=, “Pa=, Py, and “m-linear” equations are
obtained.

Amongst the “py-linear” forms, one finds the
Foldy-Wouthuysen-Tani'® equation

(1.13)

Py T = yo(p, myy'®, (1.15)

with, in this case,

y(x) = F(p, m)yP(x), (1.16)

where
F(p, m) = exp [Y_P arc tan (lﬂ)} (1.17)
2|pl m

Also of the “py-linear” type is the equation proposed
by Mendlowitz!!:

D0 = w(p, myp, TP 0,

P
Ipl

P ¥(x) = M(p, m)yp'P(x),

Doy (1.18)

where

(1.19)
with

M(p, m) = exp ,:— ;—“: arc tan (l%)] (1.20)

Amongst the “m-linear” equations is that proposed
by Chakrabarti'?:

(PP, o9 = my'@, (1.21)
where
€(po) = po Ipol™ (1.22)
and
¥'x) = C(p)yp'P(x), (1.23)

101, L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950);
S. Tani, Progr. Theoret. Phys. (Kyoto) 6, 267 (1951). The transforma-
tion was in fact earlier proposed by M. H. L. Pryce, Proc. Roy. Soc.
(London) 195A, 62 (1948).

1 H. Mendlowitz, Phys. Rev. 102, 527 (1956). The transformation
was rediscovered by M. Cini and B. Touschek, Nuovo Cimento 7,
422 (1958); and independently by S. K. Bose, A. Gamba, and E. C.
G. Sudarshan, Phys. Rev. 113, 1661 (1959).

2 A. Chakrabarti, J. Math. Phys. 4, 1215, 1223 (1963).

Downloaded 16 May 2007 to 130.102.128.60. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



2026
with
C(p) =exp— e(—po)y—OY—.—parc tanh (M) . (1.24)
2 |p| | Pol

The simplest “py-linear”” form obtained is

paw’ = €(po)MPo, P1» P2, MYeysy,  (1.25)

where

2(Po» Prs Pa> M) = () — (P12 — (po)* — m*t

(1.26)
and

Y(x) = W(po, P15 Pas m)w(D)(x): (1.27)

with
W(Po, pl > P29 m)
— ex {_ (po)yo(y1py + Y2P2 + M)
20(py)* + (po)* + m?Tt
(p)+ (p)'+ m ]2)} (1.28)
[ Pol

X arc tanh (

The second property characterizing a given one of
the five classes is that every transformation within that
class preserves the Dirac scalar product in a corre-
sponding one of the five modes (1.8a)-(1.8¢c), so that
each class consists of canonical transformations. In
fact, the transformations leading to “pg-, “m-, and
“p-linear” forms preserve the modes (1.8a)-(1.8c),
respectively.

In describing a subset of transformations (1.13)
as momentum-dependent SO(4, 1) transformations,
making use of the connection between Eq. (1.1) and this
group, we aim here in particular to interpret the above
results of BC in group-theoretical terms. To this end,
in Sec. 2, we make explicit this connection to the
extent required in what follows.

In Sec. 3, the significance of such a connection in
regard to transformations of the form (1.13) is
established. We stress in particular the existence of
five subgroups of SO(4, 1), labeled by us G (x =
0, 1, 2, 3, 4), which have the special property that any
momentum-dependent transformation (1.13) within
a given G'* leaves the equation linear in the corre-
sponding p, (where we write py = m).

As might be expected, the five classes of canonical
transformations presented in BC fall into these five
subgroups and, in fact, every transformation in a
given G'® also preserves the corresponding mode of the
scalar product. This we show in Secs. 4, 5, and 6,
where the subgroups G, G, and G (as typical of
G, i=1,2,3)and, correspondingly, “p,-, “m-, and
“pylinear” forms of the equation, are discussed in
more detail. [It is not shown that an arbitrary momen-

A. ]J. BRACKEN AND H. A. COHEN

tum-dependent SO(4, 1) transformation is canonical—
in fact it is not possible to write the scalar product
(1.82)-(1.8¢c) in SO(4, 1)-invariant form.]

We find that G is the maximal compact subgroup
S0(4), and G@ the SO(3, 1) group relating to the
Lorentz transformation properties of the equation.
The G are also SO(3, 1) subgroups, distinct from
G and from one another.

In Sec. 7, a discussion is given of the “little group”
of SO(4, 1) transformations which leave a particular
transform of the equation invariant, and the nature of
ambiguities which arise when one wishes to transform
one equation into another are made explicit.

2. DIRAC EQUATION AND S04, 1)

The sixteen elements

1, YurVss VsVus and [yu s Vv] (2.1)

of the Dirac-Clifford algebra form a complete set of
4 x 4 matrices, in terms of which the infinitesimal
generators of a four-dimensional representation of any
Lie group can be expressed as linear combinations
with complex coefficients.

In this connection, one is familiar with the case of
SO(3, 1),13 where the generators are defined as

S/.tv = (1/4)['}’,15 yv]

and satisfy the characteristic Lorentz-group com-
mutation rules

[Suv’ Spa] = —i(gupSva + gvaSMﬂ

- guaSVP - gVPSIJa)'
The significance of these operators in regard to the
Dirac equation is well known. In essence, the invari-
ance of the Dirac description of free spin-} particles
under restricted homogeneous Lorentz transformations
is expressed in the fact that

(2.2)

(2.3)

[y J sl =0, (2.4

where

Jow=1Lu+ Su (2.5)

and the L,,, satisfying commutation rules analogous
to (2.3), are defined by

L, = X,py — XyPy- (2.6)

Although not always referred to as such explicitly,
representations of the Lie algebras of larger groups,
such as SO(4, 1) and SO(4, 2), have been given in
terms of (2.1) by, for example, Eddington,! Dirac,?

13 We have taken some license with notation in referring to the
groups SO(3, 1), SO(4), and SO(4, 1), when in fact the covering
groups SL(2, C), SU(2) ® SU(Q), etc., are meant.
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Harish-Chandra,® and Barut.? The connection between
the orthogonal groups in five dimensions [such as
SO(4, 1)] and a class of relativistic wave equations,
of which the Dirac equation is the simplest, was first
discussed in detail by Lubanski> More recently
SU(4) [of which SO(4,2) may be regarded as a
type] has received attention from several authors®;
and Barut,” in particular, has exploited the connection
between Eq. (1.1) and SO(4, 2) in “reformulating the
Dirac theory of the electron.”

For our purposes here it will be sufficient to indicate
and use the relationship of the group SO(4, 1) to the
Dirac equation. Multiplying (1.1) by y;, one obtains

(ysyup" — ysm)p'? = 0. @7
Defining
F,,:')’s'}’,“ P4='}J53 (28)
and
pt=—m, (2.9)
one can write (2.7) as
TP =0, (2.10)

where the summation is now over « = 0, 1, 2, 3, and
4. In the following, note that indices take these values:
a, B,y,0,€0,1,2,3,4,
B> v, p,0:0,1,2,3,
T, Ca 77:0’ 1’ 2; 49
a,b,c:1,2,3,4,
I k:1,2,3.
Introducing g (= g,,), with

o= —8u= —8u= —fFun=—gu=1,

8 =0, as#f, 2.1
we define I'* = g*T';, etc. Now defining also
T = (i/9)(T,, T'y] (2.12)
and noting
{Ta, Tg} = 28,4, (2.13)
we find

[Taﬂ3 Ty&] = _—i(gquﬂﬁ + gﬂJTay
- gaéTﬂy - gﬂyTad)’ (214)

which are the characteristic commutation rules for the
Lie algebra of SO(4, 1). Since this group is non-
compact, the 7,, are not all Hermitian, but

ToT!, = T,T. (2.15)

One also has

[Fas Tﬂy] = i(gaﬂrv - gayPﬁ)- (2'16)

2027

Note that the ten different 7,, consist of the six
different 7,, [=S,, of (2.2)] and four T,,
= —(i/2)y,], so that this Lie algebra is as small as
any containing scalar multiples of all four Dirac
matrices 7, .* The representation of SO(4, 1) generated
by these ten operators is irreducible. The Casimir
operators** ~4T,,T* and —w,0*, where

0, = beugp THTH (2.17)

(= §I', in this case), are multiples of the unit matrix
by —% and —1%, respectively.

It is worth mentioning that there are two inequiv-
alent irreducible representations of the Clifford
algebra defined by (2.13), both of four dimensions.
By making the choice (2.8) for I',, we fix on one of
these. The other representation is obtained if one
chooses instead

FM = VsVu» F4 = —%s (218)

(and so necessarily p* = m). The set of T,; one obtains
in this case is then also different, again with

Ty = ({By, vl (2.19)
but now

Ty, = +32)y,. (2.20)

However, these T, generate an equivalent representa-
tion of SO(4, 1). (The invariants take the same values.)
This is clear from the fact that this second set of Ty
is obtained from the first set via the substitution
Yu—> —V,. However, this can be achieved by a
similarity transformation, because, under this sub-
stitution, a different set of matrices satisfying (1.3)
is obtained and, as is well known, all irreducible
representations of the Dirac-Clifford algebra are
equivalent.

3. §0(4, 1) TRANSFORMATIONS OF THE
EQUATION

When written in the form (2.10), the Dirac equation
has an SO(4, 1)-invariant appearance. One might hope
to find operators M,, satisfying commutation rules
analogous to (2.14), and such that 5 transforms?® as a
five-vector operator with respect to transformations
generated by them, that is, such that [cf. (2.16)]

3.1
One would then have, ensuring SO(4, 1) invariance,

[Papa’ Kﬂ;r] = Oa (3'2)

!4 See, for example, T. D. Newton, Ann. Math. 51, 730 (1950).

15 We introduce at this point the notation p for the object with
components pg , distinguishing it from the four- and three-vector
operators p and p, respectively.

(P> Mﬁv] = i(g“ﬂpv - g"'YPﬁ)'

Downloaded 16 May 2007 to 130.102.128.60. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



2028

with

Kﬂ)‘ = Mﬁ)‘ + Tﬂ}’.’ (3.3)

however, such M#" (and K#Y) cannot be found, as is
clear from (3.1) and the fact that p, is a constant.
Nevertheless, one can consider the effect of trans-
formations generated by all ten T, on the equation.
Furthermore, despite the above conclusions, we shall
see that it is in some ways convenient to regard j as a
five-vector quantity and, similarly,

PP = (p)® — (p)° — (p2)* — (ps)> — m* (3.4)

as an SO(4, 1) scalar.

Consider the SO(4, 1) transformation
I, —T, = LT, [= (LD),], (3.5

where L2 are real and satisfy

Lig™L) = g, (3.6)
L3> 1, (3.7
and
det L = 1. (3.8)
Then one can write
I, =Qr,0™, (3.9)
where
0 = exp [(i/2)0w* T, (3.10)
with the w* (= —w?f?) real quantities determined by

the L. [The converse result aiso holds: (3.9) and
(3.10) = (3.5)—(3.8).] Defining

¥'(x) = QypP(x), (3.11
one obtains from (2.10) and (3.9) the equation
(LD)py" =0 (3.12)
or, equivalently [using (3.6)],
L (L'p)yy = 0. (3.12)

Thus this transformed equation is obtained from (2.10)
by replacing therein the “five-vector” p with its
transform under the SO(4, 1) transformation inverse
to the L of (3.5) [at the same time replacing »'P’ by
v’ as in (3.11)]. Conversely, if p’ is obtained from j
by some arbitrary SO(4, 1) transformation, then the
equation

Ly’ =0 (3.13)
can be obtained from (2.10) by defining " as in (3.11)
with appropriate coefficients «*# determining Q.
Furthermore, since the p, behave like real numbers to
the extent that they commute with one another and
with all I'y, and have only real eigenvalues on the

A. J. BRACKEN AND H. A. COHEN

functions under consideration, a generalization to
allow »** to be (Hermitian) functions of j is possible.

To summarize: The possible forms (3.13) of Dirac’s
equation, obtained from (2.10) via transformations of
the form (3.11), with 0* = w*(), are determined by
the possible transforms ' of g,

pi=Ltp,, (3.14)

where Lf are (Hermitian) functions of j satisfying
(3.6-3.8). For all such transformations,

1o ra

pp"* = pp* = pp* — m?, (3.15)

and
&(po) = €(po)- (3.16)

At this point we note that knowledge of p’ is not
sufficient to uniquely determine the transformation
L? of (3.14), as for any p’ there is a “little group” of
such transformations which leave it invariant. Corre-
spondingly, there are transformations of the form
(3.10), which, on application to a solution of a given
equation (3.13), produce a further solution of the
same equation. A further discussion of these questions
is given in Sec. 7.

As mentioned in the Introduction, there are five
subgroups, which we label G'*, of SO(4, 1), having
particular significance when the question is raised of
the canonicality of transformations of the form (3.11).
G'*) is that subgroup consisting of all SO(4, 1) trans-
formations which leave invariant arbitrary five-vectors
whose only nonzero component is the «th. Since every
component of the “five-vector”” j appears linearly in
(2.10), it follows that if p’ is obtained from j by an
SO(4, 1) transformation (3.14) in G'#, the 8 com-
ponent of j appears linearly also in (3.13), which we
then refer to as “a ‘py-linear’ form of the Dirac
equation.”

4. G'9 AND “p,-LINEAR” FORMS

The subgroup G [the maximal compact subgroup
SO(4)] acts only on the indices 1, 2, 3, and 4. The
corresponding generators are T, , which are Hermitian
matrices, and they in fact generate two inequivalent
unitary irreducible representations of SO(4), labeled
by the two eigenvalues 41 of Iy (= ysv,), which is
effectively a Casimir operator for this subgroup.
(Note [I'y, T,,] = 0.) Under the associated trans-
formations (3.14), p, and p, p* [= —w?(p, m)] remain
separately invariant.

Thus, from

,5=(P0,P1’P2,P3,m) (4'1)
via G'® transformations, one can obtain
ﬁ’ = (pOa p]i H pé5 p:;s p;)’ (42)
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where the p,(p,) are Hermitian and

118

pap’® = —oi(p, m). (4.3)
The corresponding equation (3.13) is in each case

(Top® + Tap™)y’ = 0, (4.4)
which gives, on multiplication with T'y, the general
“py-linear”” form

po¥’ = vo(y1P1 + ¥2Ps + vsPs + PV

In considering the canonicality of momentum-
dependent transformations in G'®, we note that
when

(4.4)

pP(x) > Q(p, my P (x), (4.5)

where Q(p, m) is as in (3.10) [with 0® = w*(p)],
one has, from (1.6),

2 PHK) — Q(k, m)y' P*(k). (4.6)

Furthermore, when in particular Q is in G'?, it follows
from the Hermiticity of T, that Q(k, m) is a unitary
matrix. Every such transformation is therefore canoni-
cal, preserving the scalar product in the mode (1.8a).

All transformations presented in BC and yielding
“py-linear” forms are of G'* type. For example, in the
simple cases of the Foldy-Wouthuysen-Tani equation,
which corresponds to

ﬁl = (Po ’ O’ 0’ 0’ w(ps m))’ (47)
and the Mendlowitz equation, which corresponds to

" __( op,m)  op,m)  op,m
- po,

1 390’
P Ipl Ip] ol )
(4.8)

one sees that the corresponding transformations
(1.17), (1.20) are indeed of the form

exp [(i/2)w™ Ty},

with the *® [= w*®(p,)] Hermitian. They are, in fact,
the SO(4, 1) transformations (3.10) corresponding to
the “little group rotation-free”” (l.g.r.f.) transforma-
tions 5 — p’ in the two cases. More generally, corre-
sponding to

2

(4.9)

P = (po, £rqy, £rgs, £rqs, £rq,), (4.10)
where the ¢,(p,) are Hermitian,
r= w(pa m)[_qaqa]_-%, (411)
and
0.(p* —q") =0, (4.12)
from (4.4’) one has
pov’ = 0@, m—q.4 g + 74
+ vsgs + gy, (4.13)

2029

which is the general “py-linear” form obtained in BC.
[There are the §’ as in (4.2) which cannot be expressed
in the manner of (4.10)-(4.12), viz., those for which
p.p* = 0. The corresponding transformations and
equations were not obtained in BC.] Again, the trans-
formation presented in BC and yielding (4.13)
corresponds to the Lg.r.f. transformation of p into j’
as in (4.10).

The angles appearing in (1.17) and (1.20) can be
regarded as those between the Euclidean ‘“‘four
vectors” p, and p, through which one rotates to obtain
P. in each case. [The idea of looking upon the Foldy-
Wouthuysen-Tani and Mendlowitz transformations
as rotations is not new,!¢ nor is the use of the group
G in discussing them: it is evident in the work of
Bollini and Giambiagi,)” who have not, however,
noted the connection with SO(4, 1).]

5. G4 AND “m-LINEAR’’ FORMS

G" is the SO(3, 1) group associated with homoge-
neous Lorentz transformations. Thus momentum-
dependent SO(4, 1) transformations (3.14) in G@¥
leave p, (= m), p,p*, and also e(p,) separately invar-
iant. The associated generators T,, are not all Her-
mitian, but satisfy

T;v = F0P4Tqu0F4 (= Yol o) (5.1

and, as is well known, they generate two inequivalent

irreducible representations of SO(3, 1), labeled by the

two eigenvalues +i of I'y (= y;) (cf. the case of G©).
From

P = (po» P15 P25 P3, M), (5.2)
via G transformations, one can obtain
P = (pg> 1, P2» Pz, M), (5.3)
where the p,(p,) are Hermitian,
. p.p* = pp’, (5.4)
and
€(po) = €(po)- (5.5)
In each case, Eq. (3.13) is
(I'yp™ — Tam)y’ =0, (5.6)
yielding the general “m-linear”” form
my' = y,py'. (5.6")

It should be mentioned at this point that, because
of the way it is obtained, p, will not, in general,

18 See, for example, K. M. Case, Phys. Rev. 95, 1323 (1954).

17 C. G. Bollini and J. J. Giambiagi, Nuovo Cimento 21, 107
(1961). See also Ref. 19. Note added in proof: Since the preparation
of this paper, E. de Vries [Physica 43, 45 (1969)] has independently
established this connection.
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be a Lorentz four-vector operator like p,. Our nota-
tion is perhaps misleading in this regard: p is better
regarded as a numerical five-vector than a five-vector
operator for the purposes of this paper.

Each momentum-dependent transformation in G
is also canonical, This follows from the fact that (5.1)
implies that the corresponding Q(k, m) of (4.6) satisfies

Q7Y (k, m) = y,Q'(k, myy,, (5.7)

so that the scalar product in the mode (1.8b) is
preserved in every case.

Every transformation presented in BC and leading
to an “m-linear” equation is of G type (again
corresponding to the lL.g.r.f. transformation of j into
7’ in each case). Thus, for example, in the Chakra-
barti case, where

P = (PP, 0,0, 0, m),
the Lg.r.f. transformation (1.24) is indeed of the form
exp {(i/2)w*'T,,}. (5.9)

In fact, all p’ of the form (5.3) can be written as

(5.8)

[3, = (rqO’ rq,, r4z, qs, m), (510)
with ¢,(p,) Hermitian, ¢,4* positive-definite,
r=(p" a0, (5.11)
and
9.p" — ¢") = 0. (5.12)

[Proof: Take q, = p,p*(p,p*)"'p,, noting that p, p* is
positive-definite because of (5.5).] Then (5.6") becomes

my’ = (0,04 a,0") 0%, (5.13)

which is the general “m-linear”” form presented in BC.

Whereas in the case of the compact subgroup G

one can talk of an “angle of rotation” for each trans-

formation, here one typically has pseudoangles

associated with the anti-Hermitian T, generators of
“boosts” rather than rotations [cf. (1.24)].

6. G AND “‘p,-LINEAR”’ FORMS

Each of the three subgroups G'¥ is again an SO(3, 1)
group. Transformations of the form (3.14) within
G®™ leave p,, p,p’, and e(p,) separately invariant. The
corresponding generators 7, in this case are not all
Hermitian, but

TTT,, = rlor‘aTn,Fors (= 70737;,,‘}’0'}’3)' 6.1)

In complete analogy with the case of G, the T,,
generate two inequivalent irreducible representations
of SO(3, 1), labeled by the two eigenvalues +i of
T'; (= v5ys) in this case.

A. J. BRACKEN AND H. A. COHEN

From
7 = (Pos P1> Pas P3, M), (6.2)
via G® transformations, one can obtain
P =Py, P1, Ps> P3» Pa)s (6.3)
where the p/(p,) are Hermitian,
P = pp" [= 2Py, prs p2s M), (6.4)
and
(o) = €(po). (6.5)

(Note that the transformations may become singular
as p,p"— 0.) The corresponding equation (3.13) in
each case is

(Lep” — Typg)y’ =0 (6.6)
or, equivalently, the general *“‘pg-linear” form
Py’ = —ys(yobs — 71P1 — 2Pz — POV (6.6)

Again in analogy with the G case, one finds that
every momentum-dependent transformation in G® is
canonical, the scalar-product mode [(1.8¢c);i = 3]
being preserved in each case as a result of (6.1).

The transformations presented in BC and leading
to “pg-linear” equations are all of G*® type (in each
case corresponding to the l.g.r.f. transformation of
p into p'). In the simplest case, for example, where the
equation is (1.25), corresponding to

7 = ((p)(p.p)2, 0,0, ps, 0), (6.7)

the l.g.r.f. transformation (1.28) is indeed of the form
exp {(i2)0™T,). 6.8)

Furthermore, all §" as in (6.3) can be written in the
form

P = (rqo, 141, rq2, s, 7q4), (6.9)

where ¢,(p,) are Hermitian, ¢,¢ is positive-definite,

r= (p,p’)%(q,,q")‘*, (6.10)
and

a(p"—q)=0. (6.11)

[Take g, = p,p(p,p")'p; -] Equation (6.6") then be-
comes the general “ps-linear’” form of BC:
Py’ = —Npo, 1 P2y a4V

X ys(Yodo — 7191 — Ygd2 — 44y’ (6.12)
Again pseudoangles rather than angles appear in

association with the anti-Hermitian generators T,
[cf. (1.28)].
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7. SIGNIFICANCE OF THE LITTLE GROUP

We have mentioned that for a given “five vector”
P’ there is a little group of SO(4, 1) transformations
which leave it invariant. We are dealing here only with
functions on which p p'* (= p,p* = p,p* — m?) van-
ishes. In order to identify the little group appropriate
in this situation, consider the particular case (corre-
sponding to the Foldy-Wouthuysen-Tani equation)

7 =(po,0,0,0, w(p, m)). (7.1)

It is seen that the matrix generators corresponding to
the little group in this case are

Tl2 H T23 > and T31 ’ (72)

together with

Ty — E(pO)TM’ Ty — E(Po)Tu,

and Ty — e(po)T5. (7.3)

The Lie algebra of (7.2) and (7.3) is isomorphic to that
of the three-dimensional Euclidean group, (7.2) being
the generators of “rotations,” and (7.3) of “trans-
lations.”

However, from (3.13) and (7.1), we find that
I’y — e(py)I'y vanishes on the wavefunctions involved
here. Multiplying this by (i/2)I'; (j =1, 2, or 3), we
obtain the result that this is also true of each of the
generators (7.3). Thus the little group is effectively
reduced to SU(2).*8

We conclude that, for any given j’, the little group
consists of an effective part, which is SU(2), and an
ineffective part. Any transformation in. the ineffective
part is unity when applied to a wavefunction satisfying
(3.13), while one in the effective part produces a new
function satisfying the same equation. Note that j’,
asin (7.1), can be obtained from j by a transformation
in G and that the effective little group generators in
this case (7.2) also generate G'” transformations. This
indicates that if (3.13) is obtained from (2.10) by means
of a canonical SO(4, 1) transformation (i.e., a trans-
formation in one of the subgroups G'), a subsequent
little-group transformation leaving (3.13) invariant is
also canonical.

It is clear that any p’ and p” obtained from j by
SO(4, 1) tranformations (3.14) must themselves be
linked by a further such transformation. Furthermore,
by a procedure analogous to that used in obtaining
(3.13) from (2.10), it is possible to obtain the equation

L,p"y" =0 (7.4)

18 There is a marked analogy here with the case of the little
group (in the usual connection with the Poincaré group now)
appropriate to a particle of zero rest mass and nonzero spin, as
treated by V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci.
U.S. 34, 211 (1948). See also de Vos and Hilgevoord (Ref. 5) in this
connection.
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directly from

Ip*y = 0. (1.5)

Denoting by Q" and Q' the operators (3.10) used to
obtain " and ¢, respectively, from y'®, we have,
trivially,

V= Q0. (7.6
While the operator Q"Q'~* certainly corresponds to an
SO(4, 1) transformation taking §’ into 5" and enables
one to obtain (7.4) from (7.5), it will not in general
correspond to the lg.r.f. such transformation, even
if 9" and Q' correspond to the l.g.r.f. transformations
taking g into p”, p’, respectively. More precisely, if we
denote by Q(p', p), Q(p", p), and Q(p", p’) the oper-
ators (3.10) corresponding to the l.g.r.f. transforma-
tions taking p into p’, p into p”, and p’ into p”,
respectively, then in general

Qp", p) = AQ(Y", PR, b,

where A is also of the form (3.10) and corresponds
to an SO(4,1) transformation in the little group
defined by p". If A is in the effective part of the little
group, then Q(p", p') and Q(p", p)Q~(p’, p) will differ
on the wavefunctions »’; but if it is in the ineffective
part, then these two operators, while perhaps differing
formally, will produce the same result when applied to
any such " satisfying (7.5).

As an example, consider the case when j’ is as in
(7.1), and

(1.7)

7" = ((po)(pp"t, 0, 0,0, m), (71.8)

corresponding to the Chakrabarti equation. It is seen
that in this case the l.g.r.f. transformation taking
P’ into p” is in the 0-4 plane, and correspondingly,
(7.9
(7.9

O(p", p') = exp (ipTy,)
= cosh (3¢) — y, sinh (39),
where @(p)is Hermitian. A straightforward calculation

of the pseudoangle ¢ involved in this “boost” trans-
formation yields

@(p) = arc tanh {e(py)[6® — MP][E% + MY}, (7.10)
where
& = Hipol + w(p, m)] (7.11)
and
Mo = H(pp"t + m]. (7.12)
Then
cosh (3¢) = H{[&/M]E + [/8]}}  (7.13)
and
sinh (3¢) = [Be(p)I{[8/M] — [M/E]E}. (7.14)
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Because p’ in this case corresponds to the Foldy-
Wouthuysen~Tani equation, Eq. (7.5) yields

My = my', (7.15)
&' = w(p, my’, (7.16)

and
(poyoy’ = ¥ (7.17)

It follows then from (7.9') and (7.13)-(7.17) that

O, B = [mfw(p, mty.  (1.18)
However, in this example we have
Q(p', p) = F(p, m) (7.19)
and
Q@ p) = C(p), (7.20)

and it is known that!®

$'O(x) [= C(p)F(p, M)y T (x)]
= [mjo(p, mPFy(x). (7.21)

Thus from (7.18) we deduce

", Py = C(DF'(p, myp'™” (1.22)
= Q(p", O, pv'F. (1.22)

On inspection, however, Q(§",5’) and Q(p”, p) X
Q7Y (p’, p) are found to be formally distinct, and we
conclude that they are related in the manner (7.7),

M

with A in the ineffective part of the little group of 5”.

8. CONCLUSION

The connection between the group SO(4, 1) and the
free-particle Dirac equation can be exploited to allow
the presentation of a unified treatment of the well-
known canonical transformations of the equation.
Similarities and relationships between these trans-
formations assume a new and simple significance in
such a treatment.

This approach also makes obvious the existence and
also the actual form of many other similar canonical
transformations, some of which we feel will prove

1 R, H. Good, Jr., and M. E. Rose, Nuovo Cimento 24, 864
(1962).
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useful® in discussing limiting situations other than the
nonrelativistic and extreme-relativistic ones (where the
Foldy—Wouthuysen-Tani and the Mendlowitz trans-
formations, respectively, are most appropriate).

It is tempting to speculate as to a deeper physical
significance of the group SO(4, 1) itself in this context,
in view of recent activity centering on this and related
groups in connection with dynamical symmetries?-2°
for elementary particles. However, there are relativistic
wave equations, linear in the energy-momentum
operators, for which there is no simple connection with
S04, 1).2! For all such equations describing massive
particles, it is, however, a consequence of Lorentz in-
variance that there will be a Chakrabarti-type trans-
formation corresponding to the transformation of
the four momentum to the rest frame: Such a trans-
formation expresses the canonical Wigner amplitudes
in terms of the manifestly covariant ones.

Foldy and Wouthuysen!® generalized their approach
to the free-particle Dirac equation to gain considerable
insight into the problem of the Dirac particle in
interaction with a weak electromagnetic field, and this
approach has been pursued consequently by several
authors.?? The Foldy-Wouthuysen method involves a
perturbation procedure and yields a “pg-linear”
equation containing an infinite number of terms. In
the absence of the interaction, this equation reduces to
their form of the free-particle equation. One of us
(H. A.C.) has generalized this procedure to develop
similar expansions corresponding to various other
forms obtainable from the free-particle Dirac equation
via canonical SO(4, 1) transformations.
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