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Probability Backflow for a Dirac Particle
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The phenomenon of probability backflow , previously quantified for a free non-
relativistic particle, is considered for a free particle obeying Dirac’s equation. It is
shown that probability backflow can occur in the opposite direction to the momen-
tum; that is to say, there exist positive-energy states in which the particle certainly
has a positive momentum in a given direction, but for which the component of the
probability flux vector in that direction is negative. It is shown that the maximum
possible amount of probability that can flow `̀ backwards ,’’ over a given time inter-
val of duration T , depends on the dimensionless parameter e= Ï 4a/mc 2T , where
m is the mass of the particle and c is the speed of light. At e= 0, the nonrelativistic
value of approximately 0.039 for this maximum is recovered. Numerical studies
suggest that the maximum decreases monotonically as e increases from 0, and
show that it depends on the size of m, a, and T , unlike the nonrelativistic case.

1. INTRODUCTION

Asim Barut was intrigued by the remarkable structure of Dirac’s equation
for the electron: The meaning of the Zitterbewegung , ( 1) the structural role
of the group SO ( 4, 2), ( 2) and the interpretation of different concepts of
localization (3) for the electron were among topics he helped to illuminate
with characteristically novel insights. One aspect which he repeatedly
emphasized in discussions was the independence of the concepts of velocity
and momentum for the Dirac electron. In the Heisenberg picture, the equa-
tion of motion for the Dirac coordinate x is of third order: with H the
Dirac Hamiltonian, we have in the case of the free particle( 1)

ia x
¼ = 2 2 H xÈ ( 1)

allowing x, xÇ , and xÈ ( or x, xÇ and the momentum p) to be independent
operator functions of time.
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It was shown recently ( 4) that the quantum mechanical description of a
free nonrelativistic particle allows for the existence of states in which the
probability of finding the particle to have a negative x-coordinate increases
with time even though the states certainly have positive x-component of
momentum (velocity) . The possibility of such a remarkable and counter-
intuitive nonclassical effect seems to have been indicated first by Allcock. (5 )

The maximum possible amount of probability backflow in any given time
interval T , taken over all possible initial positive-momentum states, was
found( 4) to have the value

D max f 0.039 (2)

This value is independent of the size of T , the mass m of the particle, and
most remarkably, of Planck’s constant a.

As the description of the nonrelativistic behavior of a particle must
correspond to a limiting case of its relativistic description, it is to be expected
that the phenomenon of probability backflow will occur in the relativistic
case. However, in the case of the free Dirac particle, it is not immediately
clear what are the appropriate states to consider, because of the nontrivial
distinction between velocity and momentum. Furthermore, the concept of
localization of such a particle is contentious, ( 3) and the phenomenon of
Zitterbewegung (1 ) in particular raises questions as to the expected behavior
of a Dirac particle in regard to probability backflow.

The following analysis shows that probability flow can indeed take
place against the direction of the momentum of a free Dirac particle. It
transpires that the maximum possible cumulative amount of probability
flowing `̀ in the wrong direction’’ over a time interval of duration T depends
on the dimensionless parameter e= Ï 4a/mc 2T , involving the speed of
light c, as might be anticipated.( 4) Numerical analysis suggests that this
maximum possible backflow decreases monotonically towards zero with
increasing e, and so depends on the sizes of T , a, and m , unlike the non-
relativistic case. For any fixed values of these three quantities, the nonrela-
tivistic result is recovered as c ® ¥ .

2. ANALYSIS

It is sufficient to consider Dirac’s equation in one dimension to
demonstrate the result. The wavefunction in this case has two complex-
valued components:

Y(x, t)= 0 w 1(x, t )
w 2(x, t ) 1 ( 3)
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If the rest mass of the particle is m , the Hamiltonian can be expressed in
terms of Pauli spin matrices as

H= c r 1 p+ r 3 mc 2 ( 4)

where p= 2 ia ¶ / ¶ x, and Dirac’s equation

ia
¶ Y (x, t)

¶ t
= HY (x, t) ( 5)

can be expressed as the two equations

¶ w 1(x, t)
c ¶ t

+
¶ w 2(x, t)

¶ x
= 2

imc
a

w 1(x, t ) ( 6)

¶ w 2(x, t)
c ¶ t

+
¶ w 1(x, t)

¶ x
=

imc
a

w 2(x, t) ( 7)

The expressions for the probability density r= Y
²
Y and probability flux

vector j= cY
² r 1 Y take the forms

r(x, t)= w 1*(x, t) w 1(x, t) + w 2*(x, t ) w 2(x, t) ( 8)

and

j(x, t) = c( w 1*(x, t) w 2(x, t)+ w 2*(x, t ) w 1(x, t) ) ( 9)

respectively.
We consider positive momentum solutions to Dirac’s equation, of the

form

Y (x, t) =
1

Ï 2pa &
`

0
e { iHt / " e ixp / "

W( p) dp ( 10)

where

W( p) = 0 w 1( p)
w 2( p) 1 ( 11)

is the initial state vector in the momentum representation. The integration
limits in ( 10) ensure that only positive momentum components are con-
sidered. Furthermore, for physically meaningful solutions, we are restricted
to positive energy states. Thus we have

[cp r 1+ mc 2 r 3] W( p) = E( p) W( p)= Ï c2p2+ m 2c4 W( p) ( 12)
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so that

Y(x, t)=
1

Ï 2pa &
`

0
e ixp / " e { iE ( p) t / " W( p) dp ( 13)

with the normalization condition

&
`

0
W ² ( p) W( p) dp= 1 (14)

Positive energy solutions, satisfying (12) and (14), have the general
form

W( p)= f ( p)
1

Ï 2E( p )(E( p) + mc 2) 0
mc 2+ E( p)

cp 1
= f ( p) 0 u1( p)

u2( p) 1 = f ( p) u( p) ( 15)

with f ( p) an arbitrary complex-valued function on 0 < p< ¥ satisfying the
normalization condition

&
`

0
f *( p) f ( p) dp= 1 (16)

From (13) and (15) we can now express the probability flux vector ( 9)
at the point x= 0 as

j(0, t)

=
c

2pa &
`

0
e iE ( p ) t / "

w 1*( p) dp &
`

0
e { iE (q ) t / "

w 2(q) dq+ c.c.

=
c

2pa &
`

0 &
`

0
e it(E ( p ) { E (q ) ) / " f *( p) f (q)[u1( p) u2(q)+ u1(q) u2( p) ] dq dp

( 17)

From an intuitive, `̀ classical’’ perspective, j(x, t) should be nonnegative
at all values of x and t, because the particle certainly has a nonnegative
x-component of momentum as a result of ( 10). In fact however, j(x, t) can
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be negative, in particular at x= 0, and there can therefore be a net back-
flow of probability from the region x> 0 to the region x< 0 over a given
time interval. For the interval (0, T ) , this net backflow is given by

D = 2 &
T

0
j( 0, t) dt

= 2
c

2pa &
`

0 &
`

0

e iT (E ( p ) { E( q) ) / " 2 1
i(E( p) 2 E(q) )/a

f *( p) f (q)

3 [u1( p) u2(q)+ u1(q) u2( p) ] dq dp

= &
`

0 &
`

0
f *( p) K( p, q) f (q) dp dq ( 18)

where

K( p, q )=
ic
2p

e iT (E( p ) { E(q ) ) " 2 1
E( p) 2 E(q)

1

Ï 2E( p) (E( p) + mc 2 )

1

Ï 2E(q)(E(q)+ mc 2)

3
1

[ (mc 2+ E( p) ) cq+ (mc2+ E(q) ) cp]
( 19)

Note that this kernel is hermitian and that the singularity at p= q is only
apparent. Our object is to maximize D ; as we shall see, this maximum is
indeed positive, implying that j( 0, t) can be negative. We have to take into
account the normalization constraint ( 16), and we therefore consider the
unconstrained maximum of

I( f )= &
`

0 &
`

0
f *( p) K( p, q) f (q) dp dq 2 l &

`

0
f *( p) f ( p) dp ( 20)

where l is a Lagrange multiplier. At any stationary point of I, the
Euler± Lagrange equation

&
`

0
K( p, q) f (q) dq= lf ( p) ( 21)

must hold, and then for such an f , it follows from (18) and (16) that D = l.
Our problem is then to find the largest positive eigenvalue in (21) of the
integral operator with kernel K( p, q) .
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With the substitutions

e= ’ 4a
mc 2T

( 22)

p= ’ 4ma
T

r= mcer ( 23)

q= ’ 4ma
T

s= mces ( 24)

E( p) = Ï c2p2+ m 2c4= mc 2 Ï e2r2+ 1= mc 2E ( r) ( 25)

the eigenvalue equation becomes

&
`

0

i
4p

(e4i( E ( r ) { E (s ) ) / e2

2 1)[ r(E (s )+ 1) + s(E (r) + 1) ]

[ (E ( r ) 2 E ( s) )/e2] Ï E (r) E ( s) (E ( r) + 1) (E ( s) + 1)
f (mces ) ds

= lf (mcer ) ( 26)

which reduces to the real equation

&
`

0

1
p

sin[2(E (r ) 2 E ( s) )/e2][ r(E ( s)+ 1)+ s(E ( r) + 1) ]

[2(E (r) 2 E ( s) )/e2] Ï E ( r)(E ( r) + 1) E ( s)(E (s )+ 1)
Q ( s) ds= 2 lQ (r )

( 27)

where

Q ( r) = e { 2 iE ( r ) / e 2
f (mcer ) ( 28)

By letting e approach zero we recover the nonrelativistic eigenvalue equation

1
p &

`

0

sin( r2 2 s2)
( r 2 s)

Q ( s) ds= 2 lQ ( r) ( 29)

as derived in our earlier study, (4) and for which we know the largest
positive eigenvalue is approximately 0.039.

3. SUMMARY OF RESULTS

An analytical solution of the eigenvalue equation (27) , or even of its
nonrelativistic counterpart (29), has not been forthcoming, and numerical
methods have been used to estimate D max . With the range of integration in
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( 27) approximated by the interval [ 0, Nt] , divided into N segments of
length t, library subroutines were used to estimate the integral offer each
subinterval and then to find the largest eigenvalue of the associated dis-
cretized eigenvalue problem. For each of a set of values of the parameter e,
it was found that as t ® 0 and Nt ® ¥ , the maximum value of backflow
apparently approached a limit D max . The estimates obtained were

e= 0.01, D max = 0.0384

e= 0.1, D max = 0.0376
(30)

e= 0.5, D max = 0.0312

e= 1.0, D max = 0.0249

suggesting that D max decreases monotonically as e ® ¥ .
These results may be interpreted in a number of ways. Firstly, they

indicate the variation in D max as the velocity of light c `̀ varies’’ for fixed
a, m , and T . Then c ® ¥ corresponds to e ® 0, where the estimates of D max

converge to the nonrelativistic value of approximately 0.039. Alternatively,
the results show the variation in D max for varying values of a , m , or T when
c is held fixed. Then it is apparent that the greatest value of D max

corresponds to T ® ¥ , m ® ¥ , or a ® 0. This last result is surprising, as
a ® 0 is usually regarded as corresponding to the classical limit, yet the
phenomenon of probability backflow is certainly a nonclassical effect.

These results should dispel any suspicion that the emergence of the
peculiar phenomenon of probability backflow± ± or of the mysterious quan-
tum number whose approximate value is 0.039 ± ± indicates some inadequacy
in the nonrelativistic formulation of quantum mechanics.

4. PHYSICAL INTERPRETATION

The phenomenon of probability backflow was shown in the non-
relativistic case to be a kind of self-interference effect for quantum wave-
packets. This was illustrated by considering a (non-normalizable) state
which was a superposition of two plane waves.

It is interesting to consider an analogous state for the relativistic case
as this throws some light on the nature and physical meaning of the
phenomenon.

Consider then the wave function

Y(x, t)= Au( p1 ) e ih1(x, t )+ Bu( p2 ) e ih2(x , t ) ( 31)
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with

hn(x, t) =
pn x 2 E( pn ) t

a
+ c n ( 32)

and

u( pn) = 0 u1( pn )
u2( pn ) 1 , n= 1, 2 (33)

Here A and B are non-negative constants, p1 and p2 are positive momenta,
and c1 and c2 are arbitrary constant phases. This leads to a current
distribution

j(x, t)= cY ² (x, t ) r 1 Y(x, t)

= 2c(A2u1( p1) u2( p1 )+ B2u1( p2 ) u2( p2) + AB[u1( p1) u2( p2 )

+ u1( p2) u2( p1 ) ] cos[h2(x, t) 2 h1(x, t )] ) ( 34)

For a single plane wave with positive momentum (B= 0) this gives
a positive constant, as might be expected for a particle traveling in the
+ x-direction. However, for two such plane waves, so that A and B are
both positive, the flux varies with time between an upper value of

(Au1( p1) + Bu1( p2 ) )(Au2( p1 )+ Bu2( p2 ) ) ( 35)

and a lower value of

(Au1( p1) 2 Bu1( p2 ) )(Au2( p1 ) 2 Bu2( p2 ) ) ( 36)

This lower value can be made negative by a suitable choice of A, B, p1 ,
and p2 . For example, if

p2= 2p1= 2mc ( 37)

we can choose

A= 0 4+ 2 Ï 2

10+ 2 Ï 5 1 aB ( 38)

with

1+ Ï 5

1+ Ï 2
< a< 2 (39)
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We then have

u1( p1 )= (1+ Ï 2) u2( p1 )=
1+ Ï 2

Ï 4+ 2 Ï 2
(40)

and

u1( p2 )= (1+ Ï 5) u2( p2 )=
1+ Ï 5

Ï 10+ 2 Ï 5
(41)

and it is easily checked that the value of the expression (36) is indeed
negative.

Can the possibility of negative values of j be related to the inde-
pendence of the velocity operator xÇ = c r 1 and the momentum operator p ?
Given j(x, t) , we may define a `̀ local mean velocity’’ v(x, t) by

v(x, t)=
j(x, t)
r(x, t)

( 42)

Because r is positive, this local mean velocity is positive or negative accord-
ing as j(x, t) is positive or negative. We have

v(x, t) =
Y ² (x, t) xÇ Y (x, t)
Y ² (x, t) Y (x, t)

( 43)

and since xÇ commutes with x, it makes sense to refer to v(x, t) as a `̀ local’’
expectation value of xÇ . Note that the overall expectation value of xÇ in the
state Y is

á xÇ ñ = &
`

{ `
Y ² (x, t) xÇ Y(x, t) dx= &

`

{ `
r(x, t ) v(x, t) dx ( 44)

As is well known,

á xÇ ñ ( t)= á c2p/E( p) ñ ( 45)

which is constant and positive in the cases under consideration. We see
that the possibility of negative values of j(x, t) ( equivalently of v(x, t) ) is
directly related to the association of negative as well as positive values of
xÇ with each value of x, even though p is positive, and even though we are
dealing with positive energy states, in which the sign of the velocity xÇ is
indeterminate.
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In principle the phenomenon of probability backflow for the Dirac
particle is observable; by experiments on many systems prepared in the
same state, we can measure the probability mass on the negative x-axis
after any elapsed time, and hence the changes of this quantity with time. It
would seem important to confirm by experiment the predicted maximum
possible amount of probability that can flow `̀backwards’’ over a given
time interval, since this would help to confirm the description of the par-
ticle by Dirac’s equation. Even an observation of the phenomenon might
be regarded as significant in providing a direct confirmation of the inde-
pendence of the concepts of velocity and momentum for the Dirac particle,
and for this reason alone it is worthy of experimental investigation. In par-
ticular, it is remarkable that negative values of v(x, t) might be observed in
positive energy states, even though in such states the overall expectation
value á xÇ ñ ( t) is positive.

We should keep in mind that the probability backflow phenomenon
can also occur for a nonrelativistic, spinless particle, where there seems to
be no possibility to attribute its origin to the independence of the concepts
of momentum and velocity. In that case too we can define a velocity v(x, t )
in terms of probability density and current density by an equation like
( 42) , and again this velocity will necessarily be in the same direction as the
current density. However, the interpretation of such a v(x, t) as a `̀ local
mean velocity’’ is more difficult to justify in this case, and the interpretation
of the backflow phenomenon is accordingly more obscure.
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