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Tracer clearance curves are conventionally extrapolated beyond times of 
observation by using monoexponential asymptotic forms. The inadequacy 
of the resulting predictions, especially as to the mean transit time and 
quantities derived from it, has been previously demonstrated experi- 
mentally. 

Here improvements in extrapolations and in the resulting predictions 
are derived theoretically and tested on previously published data, venous 
as well as externally recorded. First, secure lower bounds on the mean 
transit times are constructed, and shown to be much higher than conven- 
tional outright estimates for venous data (twice as high in some cases). 
Next, new asymptotic forms of tracer clearance curves from kinetically 
heterogeneous systems are derived; they are not monoexponential, but 
they are as robust, contain as few parameters and are as easily connected 
to data. It is shown theoretically that for real organs these new asymptotic 
forms should extrapolate and predict better than monoexponentials, and 
this is demonstrated on previously published venous data from perfused 
muscle. In particular, the resulting outright predictions of mean transit 
times are substantially better than the best lower bounds. Furthermore, a 
correction is derived to the standard estimate of the rate of regional cerebral 
blood flow. In an application to previously published data recorded 
externally, that correction reduces the estimated flow rate by 4%. 

1. Introduction 

Major physiological conclusions from tracer kinetic data depend on extrapo- 
lations of  tracer clearance (disappearance) curves beyond the times of  
observations. This dependence is particularly pronounced for quantities 
(such as volumes of  distribution of indicators, or regional blood flows: e.g., 
Lassen & Pert, 1979) determined by the mean transit time of  the tracer 
through the domain of  interest, because very long transit times can make 
an important contribution to the mean even when they are infrequent. Even 
more sensitive to extrapolation are quantities that depend on the mean 
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square transit time, such as the variance of transit times (Homer & 
Weathersby 1980, Bass 1982). 

A standard monoexponential extrapolation of tracer clearance curves has 
been used routinely for a long time in experimental and clinical work 
(Lassen & Perl, 1979), especially to correct for effects of the recirculation 
of tracers which obscures the frequency function of transit times in intact 
subjects. In a fundamental study of the extrapolation problem, Lassen & 
Sejrsen (1971 ) reviewed the theoretical basis of the standard monoexponen- 
tial extrapolation method, and subjected that method to the most rigorous 
and complete experimental testing that we could find in the literature. 
Accurate measurements of 5~Cr-EDTA and J3~I-thalamate tracer activities, 
both venous and external, in cat gastrocnemius muscle (once-through per- 
fusion) were continued for two hours. After a sufficiently long time the 
experimental results were consistent with a monoexponential asymptotic 
form of tracer clearance curves, but "sufficiently long" turned out to be in 
excess of half an hour. For example, when the standard monoexponential 
extrapolation was applied to the venous outflow of 5~Cr-EDTA after 1 min 
as if no later data were available, the predicted recovery of the radioactive 
dose was 83.2% of the actual dose, but the predicted mean transit time was 
only 19% of the true (two-hour) value. The corresponding predictions made 
after 10 minutes were 98.5% and 59%, respectively (Lassen & Sejrsen 1971, 
experiment 5). Since extrapolations are commonly needed and used between 
1 and 10 minutes, the ultimate experimental success of the standard monoex- 
ponential extrapolation comes too late for many practical applications. 

These practical shortcomings of currently used extrapolations underline 
the need for improved extrapolation procedures which would be theoreti- 
cally justified and more effective in practice. This challenge is increased by 
the requirement that any useful asymptotic form of the tracer clearance 
curve should be independent of the initial distribution of tracer (e.g., of 
the detailed shape of the input bolus); its mathematical form should be so 
simple as to be connected to the available data by the choice of a few 
parameters, preferably only two, as in the case of the monoexponential. We 
require moreover that the improved extrapolations should be no less robust 
(stable), with respect to experimental errors or premature fitting, than 
monoexponential extrapolations. 

In the present paper we develop, and test on existing experimental data, 
two methods of improved extrapolation with special emphasis on improved 
predictions of mean transit times ?. In the first part of the paper (section 
4) we use the monoexponential asymptotic form to construct secure lower 
bounds on ? which are substantially higher than the standard venous estimate 
(which is thereby superseded). For example, the aforementioned predictions 
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of  ? are improved from 19% to at least 44% at 1 minute, and from 59% 
to at least 78% at 10 min, from the same venous data. Even better results 
are obtained for the mean transit time of  ~3JI-thalamate (Table 1). In 
Appendix A we prove that the highest of  our  lower bounds is, in an 
appropriate sense, the best possible lower bound on ~. Upper  bounds on 
are discussed in Appendix B. 

In the second part of  the paper (sections 5-7) we turn to outright estimates 
(in place of bounds) of  ~', applicable to external as well as to venous 
recordings. We relate the practical deficiencies of  the standard monoex- 
ponential extrapolation method to fundamental  questions as to its theoreti- 
cal basis: what is a compartment  in kinetic analysis (Rescigno, Lambrecht 
& Duncan,  1983), and how many similar but non-identical compartments 
comprise a capillary bed? The latter o f  these physiological questions will 
be shown to have its mathematical counterpart  in a question as to which 
of two non-commutat ive limiting processes is to be taken first. From such 
considerations we arrive at a new asymptotic form for clearance curves 
which is not monoexponential ,  but which is independent  of  initial conditions 
in the same sense as the monoexponential .  We show that the new asymptotic 
form is either attained before the monoexponent ia l  form, or replaces it 
altogether (depending on the kinetic heterogeneity of  the perfused domain).  

The new asymptotic form predicts, for clearance curves from once-through 
perfused organs, that at late times the logarithm of tracer activity (venous 
or externally recorded) is a convex function of  time. This is invariably 
observed (and we assume it in the first part of  the paper),  but it is deducible 
in terms of  compartmental  models only with the aid of  certain physio- 
logically based assumptions, which we specify in section 3. 

We demonstrate from the venous data of  Lassen & Sejrsen (1971) that 
extrapolations based on the new asymptotic form give better agreement 
with experiments,  and in particular substantially better outright estimates 
of ?, than extrapolations based on the monoexponential .  In an application 
to externally recorded data from a human brain (Lassen et al., 1963), we 
reduce by some 4% the standard estimate of  cerebral blood flow in the 
temporal  region. 

2. Tracer Clearance Curves at Long Times 

For well-known steps leading to our point of  departure, we refer to the 
detailed presentation by Lassen & Sejrsen (1971) and to references therein. 
Briefly, an organ is perfused by steady blood flow (at the rate F )  which is 
manifolded through the many capillaries of  the organ and reunites in the 
vein. After a bolus of  (intravascular or diffusible) tracer has entered the 
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organ, the mixing of capillary outputs in the vein yields the successive venous 
samples having the observed activity co(t) (dilution curve) which determines 
the normalized frequency function (probability density) h (t) of transit times 
t: if the bolus contained the dose m0, then 

h( t) = Fco( t)/ mo. (1) 

This definition ensures normalization of h(t), since all indicator must 
ultimately be carried out of the organ by the outflux Fcv: 

o°h dt = 1. (2) 

(If F has not been measured, approximate normalization is obtained by 
dividing c~(t) by the area under that curve, observed and extrapolated.) 
From now on we shall set mo = 1: the choice of a unit dose does not reduce 
the generality of the work. 

The residue of the unit dose, re(t), remaining in the organ at any time 
t > 0 (the part which is yet to appear in the vein) is 

re(t) = Fco(z) d r =  h(r) dr, (3) 
l 

so that 

-rh = h. (4) 

(Here and below, a dot denotes differentiation with respect to time.) It is 
the quantity re(t) that is observed by external recording, independently of 
observations of co(t). If the second time-derivative of h (or of m) is positive 
throughout some time-interval, we say that h(t) (or re(t)) is a convex 
function on that time-interval. If the second time-derivative of In h (or of 
In m) is positive, we say that h(t) (or re(t)) is a logarithmically convex 
function. If  the signs of the second derivatives are reversed, we speak of 
concavity and of logarithmic concavity. 

The present work deals with asymptotic forms of h(t) and re(t) at long 
times. We are therefore not concerned with any brief initial rise and con- 
cavity of h(t); we consider only times long enough for the convexity of 
h(t) and re(t) to have become established: 

,~>O(h<O), h'>O. (5) 

If the organ is modelled as a set of N +  1 compartments (labelled i=  
O, 1 , . . . ,  N) taking up, exchanging and releasing tracer, it is well known 
that the time-dependence of h(t) is given by the sum over the organ of the 
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contributions from individual compartments, as follows: 

h(t)= Cik e -'~kt = ~ Gk e -%t ( 6 )  
i=0  k=0 k~0  

with constants Cik, Gk: 
N 

Cik = Gk, k = 0, 1 , . . . ,  N (7) 
i=0  

and with a set (spectrum) {ak} of positive exponential constants: 

0 < a o < a ~ <  . . .aN.  (8) 

We see from equations (3) and (6) that re(t) has the same mathematical 
form as h(t), with Gk/ak in place of Gk in equation (6). Whereas the 
constants Cik and Gk carry the influence of initial conditions, asymptotic 
forms of h(t) and re(t) useful at long times must be determined primarily 
by the nature of the spectrum {ak}. It is clear that as time increases, the 
smallest ak'S will become increasingly influential in equation (6). One may 
then form a picture of contributions from "bad sites" (releasing tracer 
slowly) dominating increasingly over contributions from "good sites". That 
picture elucidates the exponential terms in equations (6) directly in terms 
of Poisson processes of tracer release at long times but, inasmuch as the 
compartments exchange tracer even before the mixing of capillary outputs 
in the vein, the constants ak are not uniquely associated with spatial sites 
in the organ (Lassen & Sejrsen, 1971). In this final clearance of tracer, 
with which the present paper is concerned, the compartmental model is at 
its best. By contrast, early parts of h(t) and re(t) depend strongly on the 
distribution of lengths of pathways of blood through the organ (convective 
spaghetti: Lassen & Perl, 1979) which does not fit naturally into a compart- 
mental picture. To form an idea of "early" in this context, we note that in 
the experiments of Lassen & Sejrsen (1971) the true mean transit time of 
a tracer confined to the blood (T1824 albumin) was ten times shorter than 
the true mean transit times of the two diffusible tracers discussed below. 

The limitation of the compartmental approach at early times is revealed 
in mathematical terms when modelling of tracer transport through an organ 
includes convection and diffusion explicitly. In the model of Perl & Chinard 
(1968) the clearance curve (deduced from a partial differential equation) 
is given at late times by a convergent series of exponentials, as in equation 
(6) with N=oo;  but the series diverges at early times. 

At long times h(t) and re(t) will appear as monoexponential functions 
if and when the exponential term associated with the smallest exponential 
constant, a0 in the spectrum (8), comes to dominate the sum in equation 
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(6). We shall consider this in detail in sections 5 and 6. Here we note only 
that, since h is always non-negative, this limit implies that the constant Go 
in equations (6) and (7) must be positive; this in turn ensures the validity 
of inequalities (5) at sufficiently long times. The late convexity of h(t) and 
of re(t) is therefore explained by the compartmental model. 

Since re(t) and h(t) tend to monoexponentials at long times, it seems 
natural to extrapolate them by suitably chosen monoexponential functions. 
We conclude this Section by recalling the standard monoexponential 
extrapolations, and the associated estimates of mean transit times, for venous 
and for externally recorded data (Lassen & Perl, 1979). If  h(t) or m(t)  is 
known for all times t, the mean transit time is 

f0 o ?= th dt = rn dt, (9) 

where the second equality follows by using equation (4) and integrating by 
parts. However, data are available only up to some time to, beyond which 
h or m is extrapolated to estimate ?. 

Venous observations of  h(t) up to some time to are extrapolated to all 
t > to by the monoexponential function h*(t) which joins h(t) at t = to with 
continuous h and/~ (and hence l~/h). Evidently, 

h*( t )=h( to )e  -~'-'°), t>to  (10) 

where 

/~(to) 
>0 (11) 

•= h(to) 

is the magnitude of the logarithmic derivative (slope of  the semilogarithmic 
plot of In h against t) seen at t = to. We denote the resulting estimate of  T 
by ?*. From equations (9) and (10), 

fo fo ,o ,o 7 (12) 7 =  t h d t +  t h * d t =  thd t+h( to )  •t°+l 
o 77 

Observations of  m(t )  recorded externally up to the time to are extrapolated 
to all t >  to by the monoexponent ia l  function m*( t )  which joins rn(t) at 
t = to with continuous m and rh ; 

m*(t) = re(to) e -~'('-'°~, t> to, (13) 

where 

m(to) 
> 0 ,  (14) 

t~ re(to) 
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in correspondence with equations (10) and (l 1). We denote the resulting 
estimate of t by ~2. From the last expression in equation (9), 

;o '° 
~ =  m dt+m(to)/~.  (15) 

3. Convexity and Logarithmic Convexity of Late Clearance Curves 

Suppose that the residue re(t) is a logarithmically convex function at all 
t >  to (so that the semilogarithmic plot of re(t) is convex). Since In m*(t) 
given by equations (13) and (14) is a linear function of time, tangent at 
t = to to the convex In m(t), In rn*(t) must be below In re(t) and so 

m*(t )<m(t ) ,  t> to. (16) 

Therefore ~ given by equation (15) is below the true value of t- given by 
equation (9): 

~ < ~ .  (17) 

If re(t) is logarithmically concave for t > to, then F~ > T. Similarly, F* given 
by equation (12) underestimates (overestimates) ? if h(t) is logarithmically 
convex (concave). 

Evidently it is not convexity (concavity) but logarithmic convexity (con- 
cavity) that is decisive in deducing bounds on ~'by extrapolations. However, 
only convexity, expressed by relations (5), is guaranteed at late times by 
the compartmental model. This raises the question as to why, in once- 
through perfusions of real organs, h ( t ) and m (t) invariably develop logarith- 
mic convexity in the course of time, as exemplified in Figs. 3 and 4 below. 

To examine this question we write explicitly 

d 2 In h/dt  2-- ([~h - l~2)/h 2. (18) 

We observe that if h is concave (/~" < 0), then it is logarithmically concave; 
but if h is convex (as it must become in time), it may be logarithmically 
convex or logarithmically concave. This important remark holds similarly 
for re(t). Substituting h(t) from equation (6) in equation (18), we find after 
some manipulation 

N N 

hh-h2=½ E Y. (cq--Ctk)2O, Ok e-C"'+~k)'. (19) 
i = 0  k = 0  

This sum of all members of a symmetric array (with zeros on the diagonal) 
is equal to twice the sum of all members on one side of the diagonal. For 
a non-zero sum we need at least two compartments. 
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Suppose first that there are just two compartments; the sum in equation 
(19) is reduced to one term, the sign of which is the sign of  GoGI. Since 
Go> 0 and Gj are constants,/~'h-/~2 is permanently positive if GI > 0, and 
negative if G~ <0.  Compartmental analysis permits therefore h(t) (and 
re(t)) to be logarithmically concave at the same (late) times as it is convex. 
If there are N +  1 compartments and hence N(N+ 1)/2 independent terms 
in equation (19), then the first term will dominate after a sufficiently long 
time because ao + a~ is the smallest of all combinations a,~ + Gk formed from 
the spectrum (8). Since Go> 0, then G~ > 0 again implies logarithmic con- 
vexity and G~ < 0 implies logarithmic concavity, but now only at sufficiently 
late times. 

A physiologically relevant compartmental model which generates 
logarithmic concavity is as follows. Suppose that the extravascular space 
belonging to a single perfused capillary of an organ is represented as two 
compartments, one belonging to the upstream half of the capillary and the 
other to the downstream half; and suppose that the compartments are 
connected only by the unidirectional flow of the perfusate. Let extraction 
of tracer be so high that almost every tracer molecule in the unit bolus is 
first taken up by the upstream compartment, then released into the perfusate, 
then taken up by the second compartment, and then released and swept 
into the vein. One calculates easily (Lassen & Perl, 1979). 

h a0at (e_%, _ e_,~,,), (20) 
G 1 - -  OL o 

~ l  e - C t ° t  - ~ 0  e - c t l t  

m - (21) 
G 1 - -  G O 

Comparing with equation (6) we find Go = - G t  = ~ot~,/(eel - a0) > 0, SO that 
GoG~ < 0. Hence h and m are logarithmically concave functions at all times, 
in contrast to the observed long-time behaviour of h and m from real organs. 
(The logarithmic concavity can be seen directly by differentiating In h and 
In m twice.) 

To build up a picture of the organ, consider a second model capillary, 
with exponential constants 0 < oz~ < c~'~ corresponding to the constants 0 < 
G0< a~ of  the first capillary. From real organs, especially capillary beds, 
we take as postulates: capillaries are arranged essentially in parallel (with 
outputs mixed in the vein); they are similar but not identical. The parallelity 
postulate implies that the total residue of  two unit boluses is m + m' where 
m' is as m in equation (21), but with a'~, Ce6 in place of a~, O~o. The 
non-identity postulate implies that ao, GI, a~, a~ are distinct. The similarity 
postulate implies that G0 is close to o~, and ot~ to a]. Therefore, since Oto 
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is below at ,  so is a~. Since a~ is below a~, so is ao. Hence each of a0 and 
a~ is below both a~ and a~. Since Go> 0 and G~> 0, logarithmic convexity 
of m + m' (and hence of h + h') at late times is assured. 

Adding many more capillaries in this way, and relabelling constants 
consistently with the ordering (8), we see that G~ > 0 will be correlated with 
low ai, G~ < 0 with large ai. If we plot G~ against a~, the resulting points 
will cluster above the a-axis when a~ is small, and below it when a~ is 
large; the points will be distributed along a curve G(a)  such as is drawn 
in Fig. l below. For an organ comprising many capillaries, this picture is 
unlikely to change qualitatively if we introduce smaller extractions in the 
basic two-compartment element above, and permit some transfer of tracer 
between capillaries. For the purposes of the present work we require only 
that the positivity of G~'s belonging to the smallest a~'s be preserved in the 
transition to a real organ. We conclude that while a small compartmental 
system is capable of permanent or at least asymptotic logarithmic concavity 
of h and m, a sufficiently large compartmental system satisfying the foregoing 
physiological postulates must result in the observed logarithmic convexity 
at late times. 

We close this Section with two remarks on logarithmic convexity which 
are relevant to what follows. Let 6i = -/~ > 0, and consider the meaning of 
the relation 

-mira < -#~l h, (22) 

which states that In h falls with time more steeply than In m. At t = to relation 
(22) becomes, according to equations (1 l) and (14), 

p. < r/. (23) 

Since h = - m  and /~ = - 6 1  according to  equation (4), inequality (22) is 
equivalent to him > m 2, which means that re(t) is logarithmically convex. 
The inequality in relation (22) is replaced by equality if (and only if) m 
and h are monoexponential.  

Suppose that h(t) is logarithmically convex for all t >  to, and consider 
the extrapolation .of h by equations (10) and (11). The area under the 
extrapolation is easily calculated to be h(to)/rl, and this must be less than 
the true area, which is re(to) according to equation (3): h( to) < ~Tm( to). 
Using equations (4) and (11), this inequality becomes equivalent to 
inequality (23), which asserts the logarithmic convexity of re(t) at t = to. 
But this reasoning holds if we replace to by any t~ (say) such that t~> to. 
Hence, if h(t) is logarithmically convex for all t >  to, so is re(t). One can 
show further that the converse of this result does not hold (because the 
definition of logarithmic convexity of m, stated in terms of h, involves h'). 
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The assumption of  logarithmic convexity of re(t) for all t >  to is therefore 
weaker (more general) than the corresponding assumption for h(t). 

4. Lower Bounds on Mean Transit Times 

On the basis of  the considerations of section 3, and of empirical observa- 
tions, we assume from now on the existence of  a time to such that rn(t) is 
a logarithmically convex function for all t -> to. We consider extrapolations 
of re(t) and h(t) for t - to, given data for t - to. Under these conditions the 
inequalities (17) and (23) are valid. In practice re(t) will be logarithmically 
convex for some time before to, as in Fig. 4 below. 

We introduce another estimate of the mean transit time ? based on a 
monoexponential. In equation (12) for F*, the integral of th involves the 
empirically known h(t) from t =0  to t = to, and for t >  to, h(t) is replaced 
with h * <  h. Here h* was used more than actually necessary: if we write 
equation (9) in the form 

Io ° fo° I/ f ?= th dt = th d t +  to h d t +  ( t -  to)h dt (24) 
O tO 

we need to replace h with h* from equation (10) only in the last term, since 
the middle term is known from data (h(t)  being normalized). We thus 
obtain the estimate ~ :  

~ =  f~°th d t+ to (1 -  f~°h d t )  + h(to)/rl2, (25) 

expressed entirely in terms of h given at t -  to. 
We have three estimates of f, given by equations (12), (15) and (25); we 

now compare them with ? and with each other. From equations (25) and 
(12) we have 

~ - F* = toh(to) h dt/h(to) - n- '  • (26) 
to 

From equations (3), (4) and (14) we see that the bracketed term in equation 
(26) is ~-~-~7-J ;  from inequality (23) we conclude that ~ > F*. 

Using equation (4) in integrating by parts the first term in equation (15), 
we find 

fo° m dt = fo° th dt + to(1- fo° h dt). (27) 

From equations (15), (25) and (27) we find 

- ~ = m(to)/l~ - h(to)/rl 2 = h (to)(/z -2 - r/-2), (28) 



F I N A L  C L E A R A N C E  O F  T R A C E R S  765 

where we used equations (4) and (14) to deduce the last equality. From 
inequality (23) we conclude that ~ >  ~ .  Using also inequality (17), we 
obtain the sequence of  inequalities 

F * < ~ <  ~ <  ?. (29) 

Thus ?*, ~ and ~ are all lower bounds on ?. Since ~ is the best (highest) 
of them, it is important to transform it for use with venous data, such as 
we shall analyse below. Using equations (27), (14), (2), (3) and (4), we find 
that equation (15) can be rewritten: 

which is expressed entirely in terms of venous data up to the time to. 
Since ~ was obtained from a monoexponential extrapolation of re(t) 

for t > to, equations (4) and (9) show that it must also be obtainable from 
a monoexponential extrapolation of h(t) for t > to, say/~(t). How does/~(t) 
difter from h*(t) given by equations (10) and (11)? The continuity of rh(t) 
and re(t) at t = to means, in terms of h, that h(to) is continuous at to, and 
that the area under h(t),  t > to, is such as to preserve the normalization of  
the complete h(t)  (observed and extrapolated). This determines the two 
parameters available in a monoexponential;/~(to) cannot therefore be made 
equal to/~(to). Thus extrapolation by h(t),  leading to ~ ,  involves a discon- 
tinuity in/~ at t = to. By contrast, extrapolation by h*(t), leading to F* and 
~ ,  is continuous in h and /~, but does not preserve normalization of h. In 
general, a two-parametric extrapolation function such as the monoexponen- 
tial cannot have preassigned values of h and /~ at the starting time t = to, 
as well as an area under it preassigned so as to normalize the complete h(t)  
(observed and extrapolated); that would require an extrapolation function 
with at least three parameters. 

Given that re(t) is logarithmically convex for t-> to, and given at to only 
the three quantities 

h( to), h( to), h dt  = re(to) 
,o 

that have been used in constructing F*, ~ and ~ ,  it is natural to ask whether 
still better (higher) lower bounds on ~ can be constructed. We show in 
Appendix A that the answer is negative: i* is the best (highest) possible 
lower bound in this sense. 

Are there also useful upper bounds on f? It seems clear that i can be 
arbitrarily large if the smallest exponential constant, ao, is sufficiently small. 
In Appendix B we construct the lowest upper bound that can be given in 
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terms only of ao and of quantities observed up to the time to, and we show 
explicitly how it tends to infinity as a0 tends to zero. We then use this upper 
bound to test the extent to which asymptotic forms, developed in the second 
part of the paper, are applied prematurely to data extrapolation. 

We now apply these results to the data obtained by Lassen & Sejrsen 
(1971) by venous recordings of two tracers from cat gastrocnemius muscle. 
In these experiments, h(t) and re(t) become convex and logarithmically 
convex after less than 0.5 min. From regressions of experimental data up 
to several values of to, Lassen & Sejrsen computed and tabulated three 
quantities: 77 given by equation (11); ?* given by equation (12); and the 
ultimate recovery of the tracer, predicted by extrapolation by means of 
equations (10) and (11), expressed as the fraction R* of the actual dose: 

Io I fo ' ° h d t +  d t =  ' ° h d t + ~  (31) R* = h* h(to) 
o 7t 

(Since h(t) was logarithmically convex at t>  to for each to, we have h*(t) < 
h(t) for t >to, and so R*< 1.) 

Using equations (31) and (12), respectively, we recover at each to the 
empirical quantities 

fo h dt = - h(to)/~7, (32) R* 

fo dt = h(to)(~Tto+ 1)/r/2 (33) th i'*- 

in terms of quantities given by Lassen & Sejrsen and listed in the first five 
lines of Table 1. Thus the numerical values of the new estimates ~ ,  ~ are 
determined from the venous data of Lassen & Sejrsen (1971) by means of 
equations (25) and (30). We list the resulting ~ in the sixth, ~ in the 
seventh line of  Table I. The successive improvements in the estimate of/" 
are seen to be systematic (in accord with the inequalities (29)) and substan- 
tial in all entries. For thalamate at 25 min, ~ is indistinguishable from ?. 

5. Asymptotic Forms of Tracer Clearance Curves 

In the first part of this work we viewed the standard estimate /'* of the 
mean transit time, given by equation (12), as a secure lower bound on the 
time ?. A more usual interpretation of/'* is to regard it as an outright estimate 
of ? based on the circumstance that the monoexponential h*(t), given by 
equations (10) and (l l) and used in the calculation of ?*, is an asymptotic 
form of equation (6) at very long times (Lassen & Sejrsen, 1971). From 
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TABLE 1 

Venous recordings from cat gastrocnemius muscle: estimates of  mean transit 
times by extrapolations from times to 

to (min) 

1 10 25 

to/f 0.565 (0.813) 5-65 (8-13) 14.7 (20-3) 
hmin -I 1.70 x 10-1 (7.35 x 10 -~ ) 2.94 x 10-3 (1.04x 10 -3 ) 4.62 x 10-4 (2.30 x 10 -4 ) 
77 rain -~ 2-888 (2.475) 0-277 (0.266) 0.0660 (0.0693) 
R* 0,832 (0.913) 0-985 (0.985) 0.9976 (0.9951) 
F*/r O' 19 (0'25) 0"59 (0"50) 0"84 (0-73) 
7 / [ '  0"28 (0"32) 0"67 (0"62) 0"88 (0"83) 
~2/[' 0"44 (0'46) 0-78 (0"89) 0"92 (1 '03) 
['ff [' 0'29 (0'32) 0"68 (0"63) 0"94 (0"86) 
t2/t 0"53 (0"55) 0-81 (1"11) 0"95 (1"15) 

Numbers outside brackets pertain to experiment 5 with StCr-EDTA; inside brackets to 
experiment 7 with JalI-thalamate; h is the frequency function of transit times, and r/= [l~/hl; 
R* is the fractional recovery of the dose predicted by standard monoexponential extrapolation 
of h from the time t o onwards; [ is the true mean transit time. /'* is the standard estimate of 
[; t ~ and t2 are new lower bounds on [.; r~ and ['2 are new outright estimates of t, derived in section 7. 
The first five lines (Lassen & Sejrsen 197 I, and private communications) contain all the data used 
in the calculations of the last four lines. 

now on  we shal l  a d o p t  a s imi la r  p o i n t  o f  v iew a n d  seek  an  i m p r o v e d  
a s y m p t o t i c  fo rm o f  e q u a t i o n  (6) w h i c h  wil l  l e ad  to  i m p r o v e d  ou t r igh t  

es t imates .  
H o w  is the  m o n o e x p o n e n t i a l  a s y m p t o t i c  fo rm o f . e q u a t i o n  (6) a t t a i n e d ?  

The  ra t io  o f  any  k th  t e rm to the  first one  var ies  wi th  t ime  as exp  [ - ( t ~  k - t~o) l] ;  
for  k > 0 this  b e c o m e s  a rb i t r a r i ly  smal l  at  a suff icient ly long  t ime.  Since  

a ~ -  a0 is the  sma l l e s t  o f  all  the  d i f ferences  t~ k -of0 ,  k >  0 (cf. r e l a t ions  (8)) ,  
any  one t e rm with  k > 0 b e c o m e s  neg l ig ib le  as c o m p a r e d  wi th  the  first t e rm 

when  

(t~l-ao)t >> 1; (34) 

th is  f a m i l i a r  c o n d i t i o n  is necessary for  the  a t t a i n m e n t  o f  the  m o n o e x p o n e n -  
t ia l  a s y m p t o t i c  fo rm Go exp  (-aot).  W e  no te  tha t  the  c o n d i t i o n  ( r e l a t i on  
(34))  is i n d e p e n d e n t  o f  the  n u m b e r  N + l o f  e x p o n e n t i a l  t e rms  in the  series.  

H o w e v e r ,  the  a s y m p t o t i c  r e p r e s e n t a t i o n  o f  the  sum in e q u a t i o n  (6) b y  its 
first t e rm  requ i res  tha t  the  sum o f  the  o t h e r  N t e rms  be  re la t ive ly  smal l ,  
a n d  the  m a g n i t u d e  o f  tha t  r e m a i n d e r  sum at any  t ime  does  d e p e n d  on the  
n u m b e r  N o f  its te rms.  A sufficient c o n d i t i o n  for  the  r e p r e s e n t a t i o n  o f  the  
sum in e q u a t i o n  (6) by  its first t e rm m a y  the re fo re  be  e x p e c t e d  to d e p e n d  
on N as wel l  as on  t. F o r  f ixed a0 a n d  for  aN b o u n d e d  f rom above ,  such  
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a sufficient condition may then depend on the density of the spectrum (8) 
in such a way that the greater that density, the longer the time needed to 
satisfy the sufficient condition. It is for this reason that in the limit of a 
continuous spectrum we shall arrive at a new asymptotic form which is not 
monoexponential.  

The derivation of  equation (6) presupposes that the organ can be analysed 
into a finite number (N  + l) of distinct homogeneous compartments (Lassen 
& Sejrsen, 1971). However, the interplay of tracer uptake with unidirectional 
flow of  perfusate generates spatial gradients of  concentration which render 
any compartment of  finite volume heterogeneous in the context of  uptake 
(Bass et al. 1983). Thus the number of  homogeneous compartments in a 
perfused organ is very large or, strictly speaking, infinite, Then the con- 
tinuous spectrum 

Oto-< a < aN (35) 

may be physiologically more appropriate than the discrete spectrum (8). 
We take account of this possibility by extending equation (6) to 

h(t) G(a )  e-" '  dot, (36) 
- -  ~ Cro 

where 
Aa = aN - at0> 0 (37) 

may be infinite. 
I f  there is a finite number N +  l of  homogeneous compartments, or an 

infinite number of  (infinitesimal) homogeneous compartments which 
nevertheless fall into a finite number N + 1 of distinct classes, we recover 
equation (6) from equation (36) by setting 

N 

G(a)  = E Gk 8(a -- Otk) , (38) 
k = O  

where 8(a  - Otk) are impulse (Dirac delta) functions. In this case the kinetic 
heterogeneity remains finite. If  however the number of distinct classes is 
infinite (infinite kinetic heterogeneity), then G(a)  in equation (36) may be 
a continuous function of  a. In that case the asymptotic form of  h(t) at long 
times is not monoexponential,  as we now show. 

We assume that 

lim G ( a ) =  G ( a 0 ) > 0 .  (39) 
ct ~ ao+  

(For the case G ( a o ) = 0 ,  see below.) We introduce the new integration 
variable 

u = ( a - C t o ) t  , d u = t d a ;  (40) 
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equation (36) becomes 
C-aot f tact 

G(ao+U/ t )  e -~ du. (41) h(t)  ='-'-~- jo 

At long times, we have the precise result 

lira (h( t ) t  e %') = G(so) e -~ du = G(ao), (42) 
t ~ c o  

using equation (39). This means that, asymptotically 

h(t) ~ G(so) e-%'/ t .  (43) 

For an intuitive appreciation of this key result, replace G ( a )  by the 
rectangular distribution G ( s ) = G(so) between So and So + A a, and G ( a  ) -- 
0 elsewhere. Then equation (36) yields by direct integration 

h( t) = G(so) (e -%' /  t)( l - e -~ t ) .  (44) 

At large times, exp (-Ast)<< 1, the value of As becomes immaterial, and 
equation (43) approximates equation (44). That is: so long as G ( s )  is 
represented correctly near So, the effect of the errors G ( s )  - G(so) at s > So 
on the sum (integral) becomes relatively insignificant at times t >> l / A s .  It 
is interesting and cautionary to note that as long as t A s  is small (as can 
happen even at long times for a sufficiently narrow spectrum (8)), equation 
(44) simulates a monoexponential,  from which it deviates at later times. In 
the following applications of equation (43), So and G(so) will be estimated 
from data, whereby equation (39) defines an empirical representation of 
the effective part of  G( s ) .  In practice equation (43) may be applied 
prematurely, so that the estimated value of  So may differ from the true one. 
In what follows we shall denote by y the empirical estimate of s0. When 
h(t) is extrapolated continuously for t > to by equation (43), we have 

h=h(to)toe-VCt-to)/t, t>-to, (45) 

where y remains to be determined from data (see section 7). Equation (45) 
corresponds to equation (10) used in monoexponential  extrapolations. The 
form of G ( s )  which would lead exactly to equation (45) through equation 
(36) with As = oo is evidently 

G ( s )  = h(to)to e:"°H(s - y) (46) 

where H ( x )  is the step function equal to zero for x < 0  and to unity for 
x - 0 .  The form of  G ( s )  which would lead exactly to equation (10) is, by 
contrast, 

G ( s )  = h(to) e~'°8(s - r/) (47) 
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where 8 is the impulse (Dirac) function. Thus the forms given by equations 
(45) or (10) may be viewed as consequences of approximating the true 
G(a) by equations (46) or (47), respectively. We represent these relations 
schematically in Fig. 1. We shall see below that as to increases, r/ and 3' 
approach So while preserving the ordering O~o < 3' < r/. 

G(a} 

G(y) 

G(ao) 

0~0 y 

.......................... i 

FIG. 1. A cont inuous  spect rum of  exponential  constants  a, with distributions o f  their 
weights G ( a ) .  The peaked distribution at a = r /  produces the familiar monoexponent ia l  
asymptot ic  form of  the tracer clearance curve, the step at t~ = 3' the new asymptot ic  form. The 
rectangular  distribution facilitates the discussion in the text. 

Consideration of Fig. 1 suggests that equations (39) and (46) may yield 
ettective representations of G(a), but even better representations may be 
obtained by allowing for the possibility that G(a0) = 0. In Appendix C we 
derive the asymptotic form of h(t) for this case. This interesting form 
contains three parameters, so that its success in extrapolations would not 
be comparable with the successes of extrapolations by two-parametric 
asymptotic forms such as the monoexponential, and the new form given 
by equations (43) and (45). We shall therefore not apply the three-parametric 
form to data in the present paper. 

Next we deduce the form of m(t) by integrating h(t) according to equation 
(3). If h(t) has the general form given by equation (36), we find readily 

rn(t) = ¢,~o --ct e -~' dc~ (48) 

which differs from h(t) merely by having G(a)/a in place of G(a). It is 
apparent from a comparison of equations (36) and (48) that re(t) approaches 
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its asymptotic state faster than h(t), because the division of G(ot) by a in 
the integrand of equation (48) diminishes particularly those contributions 
to the integral which are to be relatively diminished in the course of time. 

The foregoing steps leading to equation (43) now go through to the 
asymptotic form 

e --Orot 
m ( t ) - ~ G ( a o ) ~  as t-->oo, (49) 

Otot 

so that the limiting ratio h(t)/m(t) tends to the constant ao: at long times, 
In re(t) and In h(t) tend to become parallel. As in the case of finite kinetic 
heterogeneity leading to the limiting monoexponential, such parallelity 
between data recorded externally and from the vein signifies that the 
asymptotic state has been approached. However, while the monoexponential 
asymptotic form is characterized by rectilinear plots of In h(t) and In m(t), 
the corresponding plots of equations (43) and (49) are convex, tending to 
rectilinearity only when tz 0 >> 1 / t: 

1 
d In h/dt = d In m/dt = - a o -  7' (50) 

with second derivatives equal to 1//.2. 
We test this important distinction in Fig. 2 on the data of Lassen & Sejrsen 

(1971, Fig. l) relating to the longest transit times of S~Cr-EDTA through 

- 3  

{ : : :  

-9 

-12 I I I i 
120 rain 4O 80 

FiG. 2. Final clearance of S~Cr-EDTA tracer from cat gastrocnemius muscle. Venous data 
(open circles) determining the frequency function h(t)  of transit times, and externally recorded 
data (closed circles) determining the fractional residue re(t), are from Lassen & Sejrsen (1971, 
Fig. 1). A monoexponential (lower broken line) and the new asymptotic form (lower solid 
line) were fitted to the venous data between 55 rain and 130 rain. The corresponding upper 
lines, obtained from the lower ones by integration, predict the time-course of the residue. 
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cat muscle. The venous data (open circles, lower plot) were fitted between 
55 and 130 min by a monoexponential, using linear regression of In h against 
t; and by the regression of In (th) against t, which is likewise linear according 
to equation (43). The models thus obtained are shown plotted over the 
range from 40 to 130 min as the lower broken curve and the lower solid 
curve, respectively. Both fit the data satisfactorily; the slight curvature of 
the solid line appears to improve the fit. When the two forms of h(t) so 
fitted are integrated according to equation (3), the corresponding upper 
lines in Fig. 2 are obtained. Both are seen to fit equally well the externally 
recorded data (closed circles) from the same preparation (Lassen & Sejrsen 
1971, Fig. 1). We note that when applied to extrapolations of the data from 
130min onwards, both forms of h(t) yield practically identical values of 
the true mean transit time ? (Table 1). 

The satisfactory interpretation of the data in Fig. 2 in terms of the new 
asymptotic form demonstrates that, even when empirical plots of In h and 
In m at long times are consistent with rectilinearity and parallelity, one need 
not infer that a "'final monoexponential" has been reached. 

6. Interchange of Limiting Processes: an Illustrative Example 

The appearance of two distinct asymptotic forms of clearance curves at 
long times (equations (10) and (43)) remains surprising until the connection 
between them is clarified more fully. The question whether the kinetic 
heterogeneity of a particular organ is infinite or merely very large seems 
rather theoretical, and one may ask instead which asymptotic form should 
be preferred for practical extrapolation if the spectrum (8) of t~k'S is discrete 
but so dense that the sum in equation (6) could be approximated closely 
by the integral in equation (36) in the time-domain of interest. 

In order to see the essentials we take equal differences between neighbour- 
ing t~k'S throughout the width aN- ao = Aa of the spectrum: 

Aa 
0L 1 - -  0g0"-~  0 ~ 2 - -  0~1 --"~ ' " " ~ 0 ~ N  - -  0 ~ N - I  - -  N '  (51) 

and put all Gk in equation (6) equal to each other. Then equation (6) 
becomes 

h(O) e_%, ~ e_k~a,,/N),, h(t) = ' ~ - ~  k=0 (52) 

where the initial value h(0) is the sum of the (equal) Gk'S. The sum of this 
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geometric series is 

h(O) e_.o t 1 - e  -(~/N~tl+N)t 
h( t )  = - ~ - ~  1 - e  -C~'~/N)' (53) 

If t ~ oo at some fixed N (no matter how large), we approach the mono- 
exponential limit 

h(t)  = h(0) e - % ' / ( N +  1). (54) 

If we then take N arbitrarily large (at fixed A~x), the form of h(t )  in equation 
(54) remains monoexponential. By contrast, if we first proceed to the limit 
N - o o  (with fixed Aa) at some finite time, no matter how large, we can 
expand the exponential in the denominator of equation (53) and obtain: 

h(t )  h(O) e -%' - - ( 1  - e  - ~ ' )  (55) 
Aa t 

which has the same form as equation (44). If we then proceed to the limit 
of large t, we arrive at the asymptotic form given by equation (43), with 
AotG(ao) = h (0). The limiting processes N ~ oo, t~oo are not commutative; 
if they are interchanged, the two asymptotic forms are interchanged. 

We can now return to the foregoing question concerning the long-time 
effects of a dense but discrete spectrum (8). The long-time behaviour of 
equation (53) falls into two successive regimes. The earlier regime is charac- 
terized by the inequalities 

N >> Aa.  t >> 1, (56) 

which reduce equation (53) to equation (43). The other regime is reached 
much later still, when 

N<< Aa.  t, (57) 

whereby equation (53) yields the monoexponential form in equation (54). 
The influence of the width A~ of the spectrum on these considerations is 
apparent from the foregoing equations. 

Because the limiting processes t ~ oo and N-->oo are not commutative, the 
transition to the monoexponential cannot be made by increasing the variable 
t in equation (55): one must return first to equation (53). Despite this 
interesting mathematical detour, the monoexponential asymptotic form 
should be regarded as the ultimate limiting form of equation (55) when N 
is finite. However, when N is very large, the monoexponential form resulting 
from the attainment of equation (54) might never be seen experimentally 
because tracer activities could be too small to be detectable at the requisite 
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times. In that case our new asymptotic form (43) is the relevant one, even 
though N is finite. 

We emphasize that the foregoing special choices of the sets C~k and Gk 
are made in this Section alone, in order to sum the series in equation (6) 
and hence to elucidate explicitly the relation between the two non-commuta- 
tive limiting processes. The two resulting asymptotic forms are, of course, 
the same as those arrived at previously under more general assumptions. 

7. Transit Times through Muscle and Brain: Outright 
Estimates of the Mean 

We now apply the new asymptotic form to extrapolations o f  venous and 
of externally recorded clearance curves, and use them for outright estimates 
of  the mean transit time ~. 

We start again from equation (24), but in the last integral we now insert 
the new asymptotic form given by equation (45), which ensures continuity 
of h at t = to. (A simpler but poorer estimate of ~ would be obtained by 
proceeding similarly from equation (12).) We thus obtain 

fo o "f~ th d t +  to h d t +  t°h(t°)[1 - yto eV'°E,(yto)], (58) 
to ")/ 

where El is the exponential integral 

E ~ ( x ) = f [ ° e ~ y Y d y  (59) 

tabulated in Abramowitz & Stegun (1965). 
In determining the parameter y from data there are alternatives which 

are analogous to those exploited in section 4 for extrapolations by mono- 
exponentials. Firstly, we can determine y by making /i (as well as h) 
continuous at t = t0. Applying equation (50) at t = to and using equation 
(11 ), we obtain 

Y = ~7 - 1~to. (60) 

We denote the estimate of  ? from equations (58) and (60) by /-1. All the 
experimental results needed for the computation of 71 are contained in the 
first five lines of Table 1 (cf. equations (32) and (33)) ; the resulting values 
of 71 are listed in the penultimate line. As expected, f~ is much better 
throughout than the standard estimate/'*. It is better than the lower bound 
~ ,  but substantially so only at to = 25 min. However, /-~ is below the best 
lower bound ~ in all cases except for EDTA at to = 25 min. 
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Secondly, we can determine 3' so that the area under h(t) observed up 
to t = to, and the area under the extrapolation, add up to unity. Using 
equation (45) for the extrapolation, we obtain readily 

f0 f° d t +  toh(to) eVtoEl(yt0)-- 1. (61) h 

We denote the estimate of  ~ from equations (58) and (61) by t2. Using 
equation (61) to simplify equation (58), we obtain 

Io ° ~2 = th d t +  toh(to)/y, (62) 

in which y is still determined by equation (61). All the experimental results 
needed for the computat ion of t2 are again contained in the first five lines 
of  Table 1. Using tables of  E~, we can readily estimate yto (and hence y) 
from equation (61): see Table 2 in Appendix B. The resulting values of  t-2 
are listed in the last line of  Table I. The relative success of  this estimate is 
evident by comparison with the preceding four lines, and is particularly 
important in practice at (or near) t0-- 1 min. We note that a slight overesti- 
mate for thalamate at to -- 10 and 25 min persists unambiguously even when 
typical experimental errors are taken into consideration. 

We turn to the practical problem of  stability (robustness) of  extrapolations 
with respect to experimental errors and premature applications of  
asymptotic forms (cf. Appendix B). The use of  equation (60), leading to 
the est imate/ i  of  [, is prone to generating instabilities, as follows. In general, 
a local determination of  77 (near some to) makes extrapolations sensitive 
to a small segment of  the time-course of  h(t) or m(t). In particular, if in 
that segment 7/ happened to be equal to or less than 1/to, the value of  y 
estimated from equation (60) would be zero or negative, and the resulting 
estimate ~'~ would be infinite. (By contrast, the estimate of  t" from any 
monoexponential  extrapolation is finite so long as 77 is positive.) If  we 
choose to extrapolate m(t) by the asymptotic form given by equation (49), 
continuity of  m and ra at t = to yields, in correspondence with equations 
(45) and (60) and using equation (14), 

m=m(to)toe-~(t-to)/t, t>_to (63) 

y =/~ - 1/to, (64) 

from which another estimate of  ? is obtained by integrating m(t) (observed 
and extrapolated) over all time (of. equation (9)). However,  because /z  < 77 
(inequality (23)), the instability associated with the possibility of  estimating 
a negative y at some to is even greater when using equation (64) than when 
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using equation (60). We therefore do not use equations (63) and (64) any 
further. 

The determination of /2 is, by contrast, as robust as estimates of  ? by 
monoexponent ia l  extrapolations. The value of  3' is determined from 
equation (61) by finding yto which satisfies 

e~'oE,( y to )=(1-  f~° h dt)  / t oh (  to). (65) 

The positive quantity on the right-hand side is given experimentally at each 
to. Because the function eXEj(x) falls monotonical ly  from +oo at x = 0  to 0 
at x = co, a unique and positive yto (and hence a finite ?2) is always estimated 
from data. [From equation (59) we have 

fl 
OO e - X ( y - I  ) 

eX El(x)  = - - d y ,  
Y 

which has evidently the value 0 at x =oo, and In ( c ~ ) = ~  at x=0 .  Moreover,  

d-~ (eXEi) = - f ~ Y - l e-x(y-~' dy < O, 
I Y 

so that only one value o f x  -- yto is found.] We conclude that equations (61) 
and (62) yield a combinat ion of  robustness and predictive power  (see Table 
1) which marks them as the best use of  the new asymptot ic  form. 

-m - 6  c 

-i2 
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\ o 
\ \ \  o o 
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40 80 rnin 

FIG. 3. Semilogarithmic plots of the frequency function h(t) of transit times of 5~Cr-EDTA 
through cat gastrocnemius muscle. Venous data (open circles) of Lassen & Sejrsen (1971) are 
extrapolated from 1, 10 and 25 minutes onwards, using the monoexponential (broken lines) 
and the new asymptotic form (solid curves). 
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To examine this conclusion further, we show how equation (45) predicts 
the time-course of h(t) for t >  to when 3' is estimated from equation (61). 
Figure 3 shows venous data (open circles) of Lassen & Sejrsen (1971). In 
three separate pairs of regressions, the data were truncated to end at to = 1, 
10 and 25 min and then extrapolated using equations (45) and (61) (solid 
lines) and, for comparison, using equations (10) and (11) of the standard 
monoexponential extrapolation (broken lines). The superiority of the former 
over the latter extrapolation is apparent in all corresponding pairs, and it 
is reflected in the superiority of the estimate t2 over ?* in Table 1. However, 
all the extrapolations fall short of the data (the more so, the earlier they 
are made); this is because, as is usual in practice, the asymptotic forms are 
used before they are sufficiently closely attained (see also Appendix B). 

An outstanding feature of the data of Lassen & Sejrsen (1971) is the 
provision of simultaneous venous and external recordings. This enables us 
to compare the residue re(t), calculated by means of equation (3), with 
independent external measurements. In Fig. 4 the measurements (closed 
circles) are compared with predictions (solid and broken lines) obtained 
by integration from corresponding extrapolations of venous data in Fig. 3. 
The greater success of the new asymptotic form is again apparent in each 
pair of corresponding predictions. All predicted residues are too low because 
all extrapolated h(t) in Fig. 3 are too low. There is a characteristic difference 
between the results of the two types of prediction. The residues predicted 

-12  
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FIG. 4. Semilogarithmictime-courses ofthe fractionalresidue m(t) ,predictedbyintegrating 
the extrapolations of h(t) described in Fig. 3. The broken and solid lines are obtained by 
integrating the monoexponential and the new extrapolations, respectively. The predictions are 
to be compared with data (closed circles) recorded externally by Lassen & Sejrsen (1971). 
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from the standard monoexponential extrapolation (broken lines) are below 
the observed ones even at the times when h(t) was fitted to data, because 
that extrapolation underestimates the area under the extrapolated venous 
curve. By contrast, the normalization-preserving predictions fit the data 
where h(t) was fitted to the data (solid lines). 

Equations (61) and (62) (or equivalently, (62) and (65)) are readily 
rewritten for use with externally recorded data. Using equations (2), (3) 
and (14), we see that the right-hand side of equation (65) is (top.)-', so that 
equation (65) becomes 

p.to eV'°E~(yto) = 1. (66) 

Next, we use equations (27), (2), (3) and the identity h(to)= tzm(to) (cf. 
equations (4) and (14)) to rewrite equation (62): 

Io o [2= m d t+  tom(to) - 1 . (67) 

Another way of arriving at equations (66) and (67) is to form re(t), t> to, 
by using equation (45) in equation (3); and then use it to extrapolate re(t) 
with m and rn continuous at t-- to. 

For the important class of experiments in which only externally recorded 
data are obtained, the standard estimate of ? is ~2 given by equation (15) 
(Lassen & Perl, 1979). For logarithmically convex re(t), we have shown ~2 
to be an underestimate of ?. It differs from our best outright estimate, given 
by equation (67), by 

?2-~=m(t°)[ t°lz-y7 1 ]  (68) 

where y is given by equation (66). 
An impoaant application of externally determined mean transit times is 

to regional cerebral blood flows, especially using inert gas tracers (Lassen 
& Perl, 1979). The rate f of the blood flow perfusing one gram of tissue in 
a region from which radioactivity is monitored externally, is 

f =  Z / [ m l .  g- t .  min-t, (69) 

where A is the empirically known tissue-blood partition coefficient. Since 
is an underestimate of the true ?, its use in equation (69) yields an 

overestimate off .  The use of f2 in equation (69) yields a lower estimate of 
f. We consider the effect of the difference given by equation (68) on the 
estimated value off. We denote the estimate A/~2 by fl, A/?2 by f2, and write 

l_l= _A-f, = ([2- ~2)Ik. (70) 
A A ftf2 
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When the magnitude of  the (negative) change of  ~ f = f E - f t  in the estimate 
is small as compared with the true value of  the flow, we can regard the 
geometric mean ( f l f2)  ~/2 as being sufficiently close to the true f to be used 
in calculating the relative change ~ f / f  of  the estimate of  f :  

~ - f ( ? 2 -  ~ ) .  (71) 

To illustrate the relevance of  the foregoing considerations to clinical data 
(which are inevitably less precise and less extensive than data from animal 
experiments),  we consider external recordings from the temporal  area of  
the brain of  patient No. 9 of  Lassen et aL (1963, Fig. 2). These yielded 
f = 0 - 6 4  ml .  g-~. min - j ,  and /~ =0-198 min -t from a linear regression of  
I nm against time for the late data. (For  the 85Kr tracer used, A = 1 ml .  g-t.) 
I f  we assume that the slope of  the semi-logarithmic plot pertains to the 
mid-point of  the linear regression (to---6 rain), we find re( to)= 0-0555, and 
3/= 0.0975 min -1 from equation (66). From equations (71) and (68) we then 
find ~ f / f =  -0-04,  that is, a reduction of  4% in the expectation value. This 
should be considered in relation to the experimental error of  6% (Lassen 
et al., 1963). 

The relative smallness of  this correction illustrates the general observation 
of Lassen & Sejrsen ( 1971 ) that ? is estimated better from externally recorded 
data than from venous data. The foregoing analysis shows more specifically 
that this is because the standard estimate ~ of  t" from externally recorded 
data corresponds, in terms of  venous data, to the best lower bound on T 
rather than to the much lower standard estimate F* (see Table 1). 

We are grateful to Dr N. A. Lassen and Dr P. Sejrsen for additional information 
on their experiments; to them and to two referees for valuable comments; and to 
the Australian Research Grants Committee for financial support. 
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APPENDIX A 

Best Lower Bound on Mean  Transit  Time 
Determined from Venous Data 

Suppose that venous data available at times t<_ to determine the three 
fixed positive numbers A, V, D: 

fo ,0 1 -  h dt = h dt = A (A1) 
l0 

h(to) = V (A2) 

-/~(to) = D. (A3) 

In order to estimate the mean transit time (see equation (24)), 

I) T= th dt  + toA + O (A4) 

where 

f 
oc~ 

Q = (t - lo)h dt, (AS) 
tO 

we need to estimate Q by extrapolat ion of  h( t )  to t ~  to. We assume that 
the true h (t) and/~ (/)  are continuous and,  on the basis of  the considerations 
of  Section 3, that S~ h dt  is a logarithmically convex function for t >- to. 
This excludes monoexponent ia ls  from our considerations and in part icular  
implies that at t = to 

A D  > V 2 (A6) 

which is equivalent to inequality (23). Then the sequence of  inequalities 
(29) holds; the highest of  these three lower bounds on T is ~2, defined by 

Q = A 2 / V  (A7) 

according to equations (30) and (A4). 
We now show that amongst  all estimates of  Q constructed in terms only 

of A, V and D, equation (A7) gives the highest lower bound on Q, so that 
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is the best (highest) lower bound on t. We prove this by constructing an 
h(t) which is possibly true for times t -> to and yields a value of Q exceeding 
A 2 / V  by an arbitrarily small number. As the possibly true h(t)  at t -> to we 
choose 

h(t) = Co e-'~°('-'°)+ Ci e -~'O-'°), t > to (A8) 

with positive constants Co, C~, ao, aj.  It is not difficult to check the following 
results. If  we set 

V 
a0 = ~ -  e (A9) 

with any e > 0  such that a o > 0 ,  then equations (Al),  (A2) and (A3) are 
satisfied by equation (AS) with 

A D -  V2+ eA V 
al = eA 2 , (A10) 

Co = ( V -  eA )( A D  - V 2) 
A D -  V2 + e2A 2 ' (A l l )  

e A ( A D  - V 2 + eA V) 
Ci = A D -  vE+e2A 2 (A12) 

Moreover, the resulting value of Q is 

32 [ ( A D -  V2)(AD - V 2 + e A V ) + e 3 A 3 ( V - e A ) . ]  
Q= V-~AL ~--A~-Z_~~-~-~2~- ~ _" (g13) 

We are still free to choose e in the interval 0 <  e < VIA.  We choose e 
arbitrarily close to zero. Then, according to equation (A13), Q approximates 
A 2 / V  arbitrarily closely from above, as we set out to prove. 

In this limiting process, Co tends to V and ao tends to V / A ,  while C~ 
tends to zero as eA and a~ tends to infinity as ( A D -  V2)/eA 2. We note 
that, although equation (A8) thus approaches a monoexponential for t > to, 
the contribution of  the second exponential to/1 at t = to (that is, a~C~) tends 
to the finite limit D -  V2/A. It is for this reason that equation (A3) and 
inequality (A6) remain satisfied in the limit. I f  we use equations (A8)-(A12) 
to construct F* and ~ given by equations (l l), (12) and (25), and proceed 
to the limit of vanishing e, F* and ~ remain below ~ because of their 
dependence on/~ (to). 

If  the foregoing assumption of  logarithmic convexity was replaced by 
that of  logarithmic concavity (and inequality (A6) was accordingly 
reversed), an analogous argument would show ~2 to be the lowest (best) 
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upper  bound on L Because of  the considerations of  section 3, this mathemati- 
cal result seems to be physiologically uninteresting. 

Higher moments of  h(t), such as the mean square transit time t 2, can be 
estimated and bounded similarly. It is to be expected that the higher the 
moments,  the more sensitive they are to extrapolations. We hope to return 
to these problems in a later paper. 

APPENDIX B 

Upper Bound on Mean  Transit Times 

We consider the mean transit time f in the form (see equation (9)) 

io o T= mdt+ mdt (BI)  
to 

in which the second term is estimated by extrapolating re(t) to t >  to. We 
assume again that the true re(t)  is continuous, has a continuous derivative, 
and is a logarithmically convex function for t - -  to (section 3). 

Consider extrapolation by the function 

m * * =  m(to) e -%(t-'°), t >  to, (B2) 

where ao is the magnitude of  the final slope of  the semilogarithmic plot of  
re( t) ;  in terms of  the spectrum (8), ao is its smallest element. At t = to the 
extrapolation m**(t) joins re(t) continuously, but with an upward jump 
in the slope. The linear function In m**(t) and the convex function In re(t) 
coincide in their values at t = to, and in their slopes at t = oo. Therefore 
In m**> In m for t >  to, and 

m * * ( t ) >  re(t), t> to. (B3) 

It follows from equation (B1) that 

f/o i '< m d t +  m** dt  = F**, (B4) 
to 

defining an upper bound F** on ~. From equations (B4) and (B2), 

- l o ° m d t +  m(to)/Olo. (B5)  
f * * -  

To express ?** in terms of  venous data, we use equations (2), (3), (27) and 
(as) :  

~*= f/°th d t+( l -  f~°h dt)(to+ l/cto), (B6) 
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where all terms except O~o are known from data at t ~< to. The equality T= t'** 
would hold only if h (t)  was actually the monoexponent ia l  with the exponen- 
tial constant ao. Clearly there are many forms of  h(t)  for which F** is 
arbitrarily close to L 

Unfortunately,  the upper  bound F** is useless in the sense that by the 
time we can determine O~o from data, no bound is needed because the 
monoexponent ia l  asymptotic form has been attained; and until we can 
determine Oto, it remains possible that ao will be arbitrarily small, rendering 
F** arbitrarily large. It is clear that this feature of  t'** must be shared by 
any upper  bound on E Practical predictive work with bounds on ~is therefore 
confined to lower bounds.  

However,  the two-hour data of  Lassen & Sejrsen being available, F** can 
be used for an additional a posteriori critique of  the use of  asymptotic forms 
at and after the times to in Table 1. The standard monoexponent ia l  extrapola- 
tion approximates ~Xo by 77 from equation (11), the extrapolation by the 
new asymptotic form approximates O~o by 3" from equation (61): see Fig. 1. 
We can therefore test the legitimacy o f  these extrapolations by inserting 
and 3' in place of  Oto in equation (B6), and demanding that the resulting 
approximation to F**, called F**(r/) and F**(3'), respectively, should ideally 
be larger than the true ~ The results, normalized to the true T, are collected 
in Table 2 in correspondence with Table I. The relevant values of  3' (solutions 
of  equation (61)) are also listed. 

Table 2 shows that all values of  F**(3')/t-are above 0.75, and three are 
above unity. By contrast, all values of  F**(~7)/t are below unity, and four 
are below-0.75. This quantifies further the foregoing comments on Figs 3 
and 4: the use of  the new asymptotic form for extrapolation is shown to 
be premature in half  the cases in Table 1, but  much less so than the use of  
the s tandard monoexponent ia t  extrapolation. 

TABLE 2 

Approximate upper bounds on mean transit times 

t o (min) 

I I0 25 

3' (m in-l)  0-25 (0.18) 0.054 (0-012) 0.024 (0.0088) 
F**(~7)/t" 0-31 (0-28) 0-70 (0,67) 0-90 (0.89) 
F**(3,) t" 0.78 (0.84) 0.91 (1.77) 1.04 (1-55) 

Approximations to an upper bound on the mean transit time ~" (normalized 
to the time t-), set out as in Table I. Estimation of the smallest exponential 
constant ct o by 77 (from Table I) generates the second line; by y (from first 
line) generates the third line. 
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APPENDIX C 

A Three-parametric Asymptotic Form 
of Tracer Clearance 

We begin again from equation (36) with an integrable G(a)  in the interval 
ao, ao + Ao~ (with possibly infinite As), and G(a)  = 0 elsewhere. We consider 
the class of functions 

G ( a )  = (a  - a o ) ~ F ( a )  (C1) 

where F(ao)>0,  and A > - I  is a constant which determines how G(ot)  

behaves as a tends to So from the right. Using equation (C1) in equation 
(36), h( t )  becomes 

( O~o+ACt 
h( t )  = ( a - a o ) X F ( a )  e - " '  dct. (C2) 

ot o 

Using again the substitution u = ( a - a o ) t  as in equations (40), equation 
(C2) becomes 

e-aot [* tact 
h(t) = t-~i- [ u ~ F ( a o + U / t )  e -u du. (C3) 

dO 
At long times we obtain in place of equations (42) and (43): 

io o !ira [h(t)t T M  e %'] = F(~o) u" e -u du = F(~o)F(A + 1), (C4) 

h ( t )  ~ F(A + 1)F(ao) e - % ' / t  "÷' (C5) 

where F(A + 1) is the gamma function. An alternative derivation of these 
results is given by Doetsch (1974). With A = 0 we recover equations (42) 
and (43). 

For the purpose of extrapolating data from some time to onwards, equation 
(C5) contains three adjustable parameters. If we write 

A + 1 = - C ,  So = - B ,  F ( a o )  = eA/F(A + 1), (C6) 

the parameters could be obtained from a least squares fit of the model 

in h ( t ) = A + B t + C l n  t (C7) 

to sufficiently numerous and accurate venous data. We hope to discuss 
elsewhere these computational problems in relation to real data. 

A more detailed specification of G(ot)  would determine a time-course of 
the approach to the asymptotic form. For example, if in equation (C l) we 
choose F ( a ) = 0  for a < no, and 

F ( a )  = F(ao)  e - ~ - ' ° ) / ~ ,  a >- So, (C8) 



F I N A L  C L E A R A N C E  O F  T R A C E R S  785 

with positive constants fl and F(~to), then G(a) has the form of a Pearson 
Type III distribution (Abramowitz & Stegun, 1965). Substituting from 
equation (C8) in equation (C2) with Aa = oo, and transforming the resulting 
integral to a gamma function, we obtain 

h(t) = F(A + 1)F(ao) e-%t/(fl-I+ t) TM. (C9) 

The additional parameter/3 -I determines the time-scale on which equation 
(C9) approaches equation (C5). Equation (C9) was derived in a statistical 
context by Turner (1963) for the case a0 = 0. 

For A = 0 the Pearson Type III distribution is reduced to the corresponding 
exponential distribution, and equation (C9) describes a time-course of the 
approach to the two-parametric asymptotic form given by equation (43). A 
different time-course of approach to that asymptotic form has already been 
exemplified in equation (44), based on a rectangular distribution of G(a). 
In equation (44) the time-scale of the approach was determined by (Aa) -I 
rather than by/3 -~. 


