STAT4404: Advanced Stochastic Processes II, Semester 1, 2013.

 Quiz 4 (with solution)

 Quiz 4 (with solution)}

Problem 1:

Consider a "telephone booth". Assume people arrive to the booth according to a Poisson process at rate 1 (person/minute) and that phone call durations are exponentially distributed with mean 1. Assume that upon arrival, if the person finds an occupied (in use) booth, she leaves and never returns.
Assume that at time $t=0$ the phone booth is empty. Let $D(t)$ denote the number of people that have left the booth by time t, after completing their phone calls.
(i) Write an expression for $P(D(t) \leq n)$ for some natural number n.

Solution:

It is clear that $D(\cdot)$ is a renewal process, with inter-renewal time distributed as a sum of two independent, mean 1 , exponentials. Such a random variable is a $\operatorname{Gamma}(2,1)$, random variable (also known as $\operatorname{Erlang}(2,1)$).
Now, S_{n} (the sum of the first n renewal times) is distributed as Gamma($2 \mathrm{n}, 1$).
Thus,

$$
P(D(t) \leq n)=P\left(S_{n} \geq t\right)=\int_{t}^{\infty} \frac{1}{(2 n-1)!} x^{2 n-1} e^{-x} d x
$$

(ii) Find,

$$
\lim _{t \rightarrow \infty} P\left(D(t) \leq \frac{t}{2}\right)
$$

Justify your answer.
Hints: Construct $\{D(t), t \geq 0\}$ as a renewal process. To write the solution to (ii) you do not necessarily need to rely on (i).

Solution:

$D(\cdot)$ is a renewal process with inter-renewal mean $=2$ and inter-renewal variance $=2$ (you get this from summing the mean and variance of two $\exp (1)$ random variables - for these the mean is 1 and variance is 1).
Hence from the CLT for renewal processes,

$$
\frac{D(t)-2^{-1} t}{\sqrt{\frac{2}{2^{3}} t}} \rightarrow^{d} N(0,1) .
$$

So,

$$
\lim _{t \rightarrow \infty} P\left(\frac{D(t)-2^{-1} t}{\sqrt{\frac{2}{2^{3}} t}} \leq 0\right)=\frac{1}{2}
$$

but,

$$
P\left(\frac{D(t)-2^{-1} t}{\sqrt{\frac{2}{2^{3}} t}} \leq 0\right)=P\left(D(t) \leq \frac{t}{2}\right)
$$

hence the desired result is $\frac{1}{2}$.
This also agrees, with the answer to (i). E.g. try in Mathematica:

$$
p\left[\mathrm{t}_{-}\right]:=\text {NIntegrate }\left[\frac{1}{(t-1)!} x^{t-1} E^{-x},\{x, t, \infty\}\right]
$$

The Mathematica function p[] then computes the probability $P\left(D(t) \leq \frac{t}{2}\right)$ for integer t . You can plot it as follows:

ListPlot[

Table $[\{t, p[t]\},\{t, 10,1000,10\}]$, PlotRange $\rightarrow\{0.46,0.51\}$, Epilog $\rightarrow\{\operatorname{Line}[\{\{0,0.5\},\{1000,0.5\}\}]\}]$
The obtained plot is:

Problem 2:

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. non-negative random variables. Denote the geometric mean,

$$
G_{n}:=\left(\prod_{i=1}^{n} X_{i}\right)^{\frac{1}{n}}
$$

(i) Find sequences $a_{n}, b_{n}, n=1,2, \ldots$, perhaps depending on the distribution of X_{1}, such that,

$$
\left(a_{n} G_{n}\right)^{b_{n}} \rightarrow^{d} e^{Z}
$$

where Z is a standard normal random variable. Justify the convergence in distribution. You may assume all moments of X_{1} and related random variables are finite.

Solution:

Let's look at $\log \left(a_{n} G_{n}\right)^{b_{n}}$:

$$
\log \left(a_{n} G_{n}\right)^{b_{n}}=b_{n}\left(\frac{1}{n} \sum_{i=1}^{n} \log X_{i}+\log a_{n}\right) .
$$

Now since $\log e^{Z}=Z$ we would like to find the "proper" a_{n}, b_{n} such that $\log G_{n}$ converges to Z based on the CLT. Hence it must be that,

$$
b_{n}=\frac{1}{\sqrt{\operatorname{Var}\left(\log X_{1}\right) / n}}, \quad a_{n}=e^{-E\left[\log X_{1}\right]}
$$

With such a_{n}, b_{n}, by the CLT, $\log \left(a_{n} G_{n}\right)^{b_{n}}$ converges in distribution to Z and then by the continuous mapping theorem, $G_{n}=e^{\log \left(a_{n} G_{n}\right)^{b_{n}}}$ converges in distribution to e^{Z}. Note that e^{Z} is actually called a log-normal random variable (since its \log is the normal).
(ii) Consider now for continuous $t \geq 0$

$$
G_{n}(t):=\left(a_{\lfloor n t\rfloor} G_{\lfloor n t\rfloor}\right)^{b_{n}}, \quad(*)
$$

As $n \rightarrow \infty$, does $G_{n}(t)$ converge in distribution (weakly) to some limiting process, $G(\cdot)$? If so, write that process in terms of a Brownian motion process, $B(\cdot)$.
Hint: Don't be shy to use logarithms.

Solution:

Note: It would have been better to denote, $G_{n}(t)$ by $\hat{G}_{n}(t)$, so as not to confuse with the notation of the sub-problem above.
This sub-problem is the "process version" of the above. Look at $\log G_{n}(t)$:

$$
\begin{aligned}
\log G_{n}(t) & =b_{n}\left(\log G_{\lfloor n t\rfloor}+\log a_{\lfloor n t\rfloor}\right) \\
& =\frac{\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} \log X_{i}-E\left[\log X_{1}\right]}{\sqrt{\operatorname{Var}\left(\log X_{1}\right) / n}} .
\end{aligned}
$$

Now by Donsker's theorem, $\log G_{n}(\cdot)$ converges on $\left(D, J_{1}\right)$ to $B(\cdot)$, a standard brownian motion.
Now applying the mapping $D \rightarrow D$, taking $e^{x(t)}$ for every t , of $x(t)$, we have by the continuous mapping theorem that,

$$
G_{n}(\cdot) \rightarrow^{d} e^{B(\cdot)}, \quad \text { on } \quad\left(D, J_{1}\right) .
$$

