
STAT4404: Advanced Stochastic Processes II,
Semester 1, 2013.

Quiz 4 (with solution)

Problem 1:
Consider a “telephone booth”. Assume people arrive to the booth according to a Pois-

son process at rate 1 (person/minute) and that phone call durations are exponentially
distributed with mean 1. Assume that upon arrival, if the person finds an occupied (in
use) booth, she leaves and never returns.

Assume that at time t = 0 the phone booth is empty. Let D(t) denote the number of
people that have left the booth by time t, after completing their phone calls.

(i) Write an expression for P
(
D(t) ≤ n

)
for some natural number n.

Solution:
It is clear that D(·) is a renewal process, with inter-renewal time distributed as a sum

of two independent, mean 1, exponentials. Such a random variable is a Gamma(2,1),
random variable (also known as Erlang(2,1)).

Now, Sn (the sum of the first n renewal times) is distributed as Gamma(2n,1).
Thus,

P
(
D(t) ≤ n

)
= P

(
Sn ≥ t

)
=

∫ ∞
t

1

(2n− 1)!
x2n−1e−xdx.

(ii) Find,

lim
t→∞

P
(
D(t) ≤ t

2

)
.

Justify your answer.

Hints: Construct {D(t), t ≥ 0} as a renewal process. To write the solution to (ii) you
do not necessarily need to rely on (i).

Solution:
D(·) is a renewal process with inter-renewal mean = 2 and inter-renewal variance = 2

(you get this from summing the mean and variance of two exp(1) random variables – for
these the mean is 1 and variance is 1).

Hence from the CLT for renewal processes,

D(t)− 2−1t√
2
23
t

→d N(0, 1).

So,

lim
t→∞

P
(D(t)− 2−1t√

2
23
t

≤ 0
)

=
1

2
.
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but,

P
(D(t)− 2−1t√

2
23
t

≤ 0
)

= P
(
D(t) ≤ t

2

)
,

hence the desired result is 1
2
.

This also agrees, with the answer to (i). E.g. try in Mathematica:

p[t ]:=NIntegrate

[
1

(t− 1)!
xt−1E−x, {x, t,∞}

]
The Mathematica function p[] then computes the probability P (D(t) ≤ t

2
) for integer t.

You can plot it as follows:

ListPlot[

Table[{t, p[t]}, {t, 10, 1000, 10}],PlotRange→ {0.46, 0.51},Epilog→ {Line[{{0, 0.5}, {1000, 0.5}}]}]

The obtained plot is:
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Problem 2:
Let X1, X2, . . . be a sequence of i.i.d. non-negative random variables. Denote the geo-

metric mean,

Gn :=
( n∏

i=1

Xi

) 1
n
.

(i) Find sequences an, bn, n = 1, 2, . . ., perhaps depending on the distribution of X1, such

that, (
anGn)bn →d eZ ,
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where Z is a standard normal random variable. Justify the convergence in distribution.
You may assume all moments of X1 and related random variables are finite.

Solution:
Let’s look at log

(
anGn)bn :

log
(
anGn)bn = bn(

1

n

n∑
i=1

logXi + log an).

Now since log eZ = Z we would like to find the “proper” an, bn such that logGn converges
to Z based on the CLT. Hence it must be that,

bn =
1√

V ar(logX1)/n
, an = e−E[logX1].

With such an, bn, by the CLT, log
(
anGn

)bn
converges in distribution to Z and then by

the continuous mapping theorem, Gn = elog
(
anGn

)bn
converges in distribution to eZ . Note

that eZ is actually called a log-normal random variable (since its log is the normal).

(ii) Consider now for continuous t ≥ 0

Gn(t) :=
(
abntcGbntc

)bn
, (∗).

As n→∞, does Gn(t) converge in distribution (weakly) to some limiting process, G(·)?
If so, write that process in terms of a Brownian motion process, B(·).

Hint: Don’t be shy to use logarithms.

Solution:
Note: It would have been better to denote, Gn(t) by Ĝn(t), so as not to confuse with

the notation of the sub-problem above.
This sub-problem is the “process version” of the above. Look at logGn(t):

logGn(t) = bn(logGbntc + log abntc)

=

1
bntc
∑bntc

i=1 logXi − E[logX1]√
V ar(logX1)/n

.

Now by Donsker’s theorem, logGn(·) converges on (D, J1) to B(·), a standard brownian
motion.

Now applying the mapping D → D, taking ex(t) for every t, of x(t), we have by the
continuous mapping theorem that,

Gn(·)→d eB(·), on (D, J1).
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