STAT4404: Advanced Stochastic Processes II, Semester 1, 2013.
 Quiz 3 (with solution)

Let $\left\{B_{1}(t)\right\}$ and $\left\{B_{2}(t)\right\}$ be two independent standard Brownian motion processes defined on the same probability space.
Denote,

$$
A(n)=\frac{B_{1}(n)-B_{2}(n)}{n^{\alpha}}, \quad n=1,2, \ldots, \quad \alpha \geq 0 .
$$

Problem 1:

Denote,

$$
A_{0}(n)=A(n)-n A(100), \quad n=0,1,2, \ldots, 100
$$

Find $\mathbb{E}\left[A_{0}(n)\right]$ and $\operatorname{Var}\left(A_{0}(n)\right)$.

Problem 2:

Describe the convergence of $\{A(n), n=0,1,2, \ldots\}$, prove your findings. That is find when,

$$
A(n) \rightarrow Y
$$

where the convergence is in one of several ways (almost sure, probability, r 'th mean, or distribution). Your answer may depend on α. The element Y may either a constant, a non-degenerate random variable or infinity.
You can assume any theorem stated or proved in class as known.

Solution (for both problems):

We have,

$$
\begin{aligned}
A(n) & =n^{-\alpha}\left(B_{1}(n)-B_{2}(n)\right) \\
& =n^{-\alpha}\left(\sum_{i=1}^{n}\left(B_{1}(i)-B_{1}(i-1)\right)-\sum_{i=1}^{n}\left(B_{2}(i)-B_{2}(i-1)\right)\right) \\
& =n^{-\alpha} \sum_{i=1}^{n} \Delta_{1}(i)-\Delta_{2}(i) \\
& =n^{-\alpha} \sum_{i=1}^{n} \tilde{\Delta}(i)
\end{aligned}
$$

where for $k=1,2$ and $i=1, \ldots, n$,

$$
\Delta_{k}(i):=B_{k}(i)-B_{k}(i-1) \quad \sim N(0,1) \quad \text { i.i.d. }
$$

and thus,

$$
\tilde{\Delta}(i):=\Delta_{1}(i)-\Delta_{2}(i) \quad \sim N(0,2) \quad \text { i.i.d.. }
$$

So we have,

$$
A(n) \sim N\left(0,\left(n^{-\alpha}\right)^{2} n 2\right)=N\left(0,2 n^{1-2 \alpha}\right)
$$

Thus observe that for $\alpha<\frac{1}{2}, \operatorname{Var}(A(n))$ is increasing while for $\alpha>\frac{1}{2}$ it is decreasing. For $\alpha=\frac{1}{2}, \operatorname{Var}(A(n))=2$ for all n.

Problem 1:

First, Showing $E\left[A_{0}(n)\right]=0$ is trivial, even though, $A(n)$ and $A(100)$ are not independent, we just have,

$$
E\left[A_{0}(n)\right]=E[A(n)]-n E[A(100)]=0-n 0=0
$$

To compute the variance, break up to independent increments (in the standard way):

$$
\begin{aligned}
A_{0}(n) & =A(n)-n A(100) \\
& =n^{-\alpha} \sum_{i=1}^{n} \tilde{\Delta}(i)-\frac{n}{100^{\alpha}} \sum_{i=1}^{n} \tilde{\Delta}(i) \\
& =n^{-\alpha} \sum_{i=1}^{n} \tilde{\Delta}(i)-\frac{n}{100^{\alpha}}\left(\sum_{i=1}^{n} \tilde{\Delta}(i)+\sum_{i=n+1}^{100} \tilde{\Delta}(i)\right) \\
& =\left(n^{-\alpha}-\frac{n}{100^{\alpha}}\right) A(n)-\frac{n}{100^{\alpha}}(A(100)-A(n)) .
\end{aligned}
$$

Now $A(n)$ and the increment $A(100)-A(n)$ are independent, so take variance and rearrange to obtain:

$$
\operatorname{Var}\left(A_{0}(n)\right)=2 n^{1-2 \alpha}-\frac{4}{100^{\alpha}} n^{2-\alpha}+\frac{2}{100^{2 \alpha-1}} n^{2}
$$

Problem 2:

It was only required to give an answer of the form below (or more detailed). A complete characterization of when and how $A(n)$ converges (based on α), is possible, yet was not required in the given time frame.

- First observe that for $\alpha<\frac{1}{2}, \operatorname{Var}(A(n))$ is increasing and thus it does not converge in any of the modes to any RV.
- Now for $\alpha=1 / 2$ the distribution of $A(n)$ is fixed as $N(0,2)$ thus it converges in distribution to $N(0,2)$.
- For $\alpha>1 / 2$ we have by Chebyshev's inequality that $A(n)$ converges in probability to 0 . Similarly we have convergence in the 2'nd mean to 0 .
- For $\alpha=1$ we have by the SLLN that $A(n)$ converges to 0 .

