STAT4404: Advanced Stochastic Processes II, Semester 1, 2013.
 Quiz 1

Exercise 1:

Let Y_{0}, Y_{1}, \ldots be a sequence of independent, identically distributed random variables such that $E\left(Y_{n}\right)=0$ and $E\left(Y_{n}^{2}\right)=\sigma^{2}>0$ for all n. Show that the pair (Z, \mathcal{F}) is a martingale with

$$
Z_{n}=\left(\sum_{j=1}^{n} Y_{j}\right)^{2}-\sigma^{2} n
$$

and $\mathcal{F}_{n}=\sigma\left(Y_{0}, \ldots, Y_{n}\right)$. Justify every step.

Exercise 2:

Let Y_{0}, Y_{1}, \ldots be independent, identically distributed random variables whose moment generating function $\phi(\theta)=E\left(e^{\theta Y_{i}}\right)$ is finite for some value $\theta \neq 0$. Show that (Z, \mathcal{F}) is a martingale

$$
Z_{n}=Z_{n}(\theta)=\prod_{j=1}^{n} \frac{e^{\theta Y_{j}}}{\phi(\theta)}=\frac{e^{\theta S_{n}}}{\phi(\theta)^{n}}
$$

Justify every step.

Exercise 3:

Consider the matching problem. For example, suppose N people, each wearing a hat, have gathered in a party and at the end of the party, the N hats are returned to them at random. Those that get their own hats back then leave the room. The remaining hats are distributed among the remaining guests at random, and so on. The process continues until all the hats have been given away. Let X_{n} denote the number of guests still present after the $n^{t h}$ round of this hat returning process. At each round, we expect one person to get his own hat back and leave the room. In other words, $E\left(X_{n}-X_{n+1}\right)=1$. Find a martingale which is a function of X_{n}.

Solutions

In the following exercises, we are asked to show that a given pair (Z, \mathcal{F}) is a martingale and thus the following conditions must be verified.

1. $E\left|Z_{n}\right|<\infty$
2. $E\left(Z_{n+1} \mid \mathcal{F}_{n}\right)=Y_{n}$.

Exercise 1:

Noticing the following

$$
\begin{equation*}
\left(\sum_{i=1}^{n+1} Y_{j}\right)^{2}=\left(\sum_{i=1}^{n} Y_{j}\right)^{2}+Y_{n+1}^{2}+2 \sum_{j=1}^{n} Y_{j} Y_{n+1} \tag{1}
\end{equation*}
$$

we verify the martingale assumptions.
1.

$$
\begin{aligned}
\left.E\left|Z_{n}\right|<E\left(\mid\left(\sum_{j=1}^{n} Y_{j}\right)^{2}-\sigma^{2} n\right) \mid\right) & \leq E\left(\left|\left(\sum_{j=1}^{n} Y_{j}\right)^{2}\right|\right)+\sigma^{2} n \\
& \leq n \operatorname{Var}\left(Y_{j}\right)+\sigma^{2} n \\
& \leq 2 n \sigma^{2}<\infty
\end{aligned}
$$

since Y_{1}, Y_{2}, \ldots are i.i.d and $E\left(Y_{i}\right)=0$ for all $i=1, \ldots, n$.
2. It follows by (1), the independency of the random variables in the sequence and the moments properties.

$$
\begin{aligned}
E\left(Z_{n+1} \mid Y_{0}, \ldots, Y_{n}\right) & =E\left(\left(\sum_{j=1}^{n+1} Y_{j}\right)^{2}-\sigma^{2}(n+1) \mid Y_{0}, \ldots, Y_{n}\right) \\
& =E\left(\left(\sum_{i=1}^{n} Y_{j}\right)^{2}+Y_{n+1}^{2}+2 \sum_{j=1}^{n} Y_{j} Y_{n+1}-\sigma^{2}(n+1) \mid Y_{0}, \ldots, Y_{n}\right) \\
& \left.=E\left(\left(\sum_{i=1}^{n} Y_{j}\right)^{2} \mid Y_{0}, \ldots, Y_{n}\right)+E\left(Y_{n+1}^{2}\right)+2 E\left(\sum_{j=1}^{n} Y_{j} Y_{n+1} \mid Y_{0}, \ldots, Y_{n}\right)\right)-(n+1) \sigma^{2} \\
& =\left(\sum_{i=1}^{n} Y_{j}\right)^{2}-\sigma^{2} n=Z_{n}
\end{aligned}
$$

Exercise 2:

1. Using the Taylor series expansion of $e^{\theta S_{n}}$ and the equality $E\left(e^{\theta S_{n}}\right)=\prod_{i=1}^{n} E\left(e^{\theta X_{i}}\right)$, we have

$$
\begin{aligned}
E\left|Z_{n}\right| & =E\left|\frac{e^{\theta S_{n}}}{\phi(\theta)^{n}}\right| \leq \frac{1}{\left|\phi(\theta)^{n}\right|} E\left|e^{\theta S_{n}}\right| \\
& \leq \frac{1}{\left|\phi(\theta)^{n}\right|} E\left(\sum_{i=1}^{n}\left|\theta X_{i}\right|^{n} / n!\right) \\
& =\frac{1}{\left|\phi(\theta)^{n}\right|}\left(E\left(\sum_{n=0}^{\infty}\left(\theta X_{i}\right)^{2 n} /(2 n)!\right)+E\left(\sum_{n=0}^{\infty}\left(\left|\theta X_{i}\right|\right)^{2 n+1)} /(2 n+1)!\right)\right. \\
& \leq \frac{1}{\left|\phi(\theta)^{n}\right|} E\left(\sum_{n=0}^{\infty}\left(\theta X_{i}\right)^{n} / n!\right) \leq 1
\end{aligned}
$$

2. Considering the properties of the sequence $X=\left\{X_{1}, \ldots, X_{n}\right\}$, the independence between the random variables and the fact that S_{n} is measurable in the σ-algebra generated by X, the second assumption holds.

$$
\begin{aligned}
E\left(Z_{n+1} \mid X_{1}, \ldots, X_{n}\right) & =E\left(\left.\frac{e^{\theta S_{n}+1}}{\phi(\theta)^{n+1}} \right\rvert\, X_{1}, \ldots, X_{n}\right) \\
& =E\left(\left.\frac{e^{\theta S_{n}+\theta X_{n+1}}}{\phi(\theta)^{n+1}} \right\rvert\, X_{1}, \ldots, X_{n}\right) \\
& =\frac{e^{\theta S_{n}}}{\phi(\theta)^{n+1}} E\left(e^{\theta X_{n+1}} \mid X_{1}, \ldots, X_{n}\right) \\
& =\frac{e^{\theta S_{n}}}{\phi(\theta)^{n+1}} E\left(e^{\theta X_{n+1}}\right) \\
& =\frac{e^{\theta S_{n}}}{\phi(\theta)^{n+1}} \phi(\theta) \\
& =Z_{n} .
\end{aligned}
$$

Exercise 3:

We consider the σ-algebra \mathcal{F} generated by $\left\{X_{1}, \ldots, X_{n}\right\}$ and we search for the martingale by first considering the pair (X, \mathcal{F}).

$$
\begin{aligned}
E\left(X_{n+1} \mid X_{1}, \ldots, X_{n}\right) & =E\left(X_{n+1}-X_{n}+X_{n} \mid X_{1}, \ldots, X_{n}\right) \\
& =E\left(X_{n+1}-X_{n} \mid X_{1}, \ldots, X_{n}\right)+X_{n} \\
& =X_{n}-1 .
\end{aligned}
$$

Then the sequence $\left\{X_{n}+n: n \geq 0\right\}$ is a martingale:
1.

$$
\begin{aligned}
E\left(X_{n+1}+(n+1) \mid X_{1}, \ldots, X_{n}\right) & =X_{n}+(n+1)-1 \\
& =X_{n}+n .
\end{aligned}
$$

2. The number of hats after the $n^{\text {th }}$ round, X_{n}, is smaller or equal than the number of hats at the beginning of matching game.

$$
E\left|X_{n}+n\right|<N+n<\infty .
$$

