Welcome to the course profile for STAT1201 in Semester 1, 2006.

Objectives

The aim of STAT1201 is to provide an understanding of the nature of biological data and the subsequent need for statistical analysis, and to develop your statistical expertise and critical judgement. You will learn about the different types of data and how each can be visualised and summarised, and how you can make conclusions and predictions from the statistical analysis. You will also see that these statistical tools are based on simple mathematical ideas and associated assumptions.

Contents Overview

The course contents will include

- The nature of data and the need for statistical analysis
- Designing surveys and experiments
- Graphical and numerical summaries of data
- Relationships between variables
- Probability models, random variables, conditional probabilities
- Binomial distribution, Poisson distribution, Normal distribution
- Expected values and combinations of random variables
- Sampling distributions, bias and precision
- Confidence intervals for means and proportions
- Odds, odds ratios and logistic regression
- Tests of significance and decision making
- Transformations of data
- Analysis of variance, regression, and correlation
- Goodness-of-fit tests
- Non-parametric procedures

Background

Students should have a sound understanding of mathematics equivalent to Queensland Mathematics B or MATH1040.

Resource Page

Staff

Dr Michael Bulmer (Mathematics) Course Coordinator

email m.bulmer@uq.edu.au
web www.maths.uq.edu.au/~mrb
phone 07 336 57905
fax 07 336 51477
room 67–755
consultation Wednesday 10-12 in 67-755

Dr Yvonne Buckley (The Ecology Centre / CSIRO)

email Yvonne.Buckley@csiro.au
phone 07 336 57805
room 8–375 (Tuesdays and Thursdays only)

Dr Valda Miller (Molecular & Microbial Sciences) PASS Coordinator

email v.miller@uq.edu.au
phone 07 336 52782
room 76–221

Textbooks

The prescribed book is A Portable Introduction to Data Analysis (3rd Edition). You should try to bring this book to lectures, tutorials and practicals. You will also be expected to read the sections relevant to the lecture content (see next page).

Two traditional textbooks are available in the libraries for reference and additional exercises:

Lectures

There are 3 lectures in each week for most of semester. Visit mySI-net to check the current room allocations.

The table below gives the intended topics for each lecture during semester, along with the relevant sections from the textbook. The exact lecture topics may differ slightly from these. An updated list will be maintained on the Resource Page.

Try to read the relevant sections, or at least skim them, before coming to each lecture. You are welcome to ask questions during the lectures. If you are too shy then you can also ask anonymous questions through the Forum on the Resource Page.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Date</th>
<th>Topics</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Feb 27</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Mar 1</td>
<td>Experiments, research ethics</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Mar 3</td>
<td>Quantitative plots</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Mar 6</td>
<td>Statistics in biology</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mar 8</td>
<td>Quantiles</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Mar 10</td>
<td>Averages</td>
<td>5, 6</td>
</tr>
<tr>
<td>7</td>
<td>Mar 13</td>
<td>Relationships</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Mar 15</td>
<td>Correlation, regression</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Mar 17</td>
<td>Proportions, two-way tables</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mar 20</td>
<td>Probability, conditional probability</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>Mar 22</td>
<td>Discrete random variables, Binomial distribution</td>
<td>10, 11</td>
</tr>
<tr>
<td>12</td>
<td>Mar 24</td>
<td>Expected values, standard deviation</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>Mar 27</td>
<td>Creating formulas</td>
<td>13, 14</td>
</tr>
<tr>
<td>14</td>
<td>Mar 29</td>
<td>Continuous random variables, Normal distribution</td>
<td>15, 16</td>
</tr>
<tr>
<td>15</td>
<td>Mar 31</td>
<td>Sampling distribution of the mean, Central Limit Theorem</td>
<td>17, 18</td>
</tr>
<tr>
<td>16</td>
<td>Apr 3</td>
<td>Confidence intervals</td>
<td>19</td>
</tr>
<tr>
<td>17</td>
<td>Apr 5</td>
<td>Hypothesis tests</td>
<td>20, 21</td>
</tr>
<tr>
<td>18</td>
<td>Apr 7</td>
<td>Student’s t distribution</td>
<td>22</td>
</tr>
<tr>
<td>19</td>
<td>Apr 10</td>
<td>CIs and tests for a single mean, assumptions, transformations</td>
<td>23</td>
</tr>
<tr>
<td>20</td>
<td>Apr 12</td>
<td>Comparing two means</td>
<td>24</td>
</tr>
<tr>
<td>21</td>
<td>Apr 24</td>
<td>Inferences for a single proportion</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>Apr 26</td>
<td>Comparing two proportions, odds ratios</td>
<td>26</td>
</tr>
<tr>
<td>23</td>
<td>Apr 28</td>
<td>Regression, correlation</td>
<td>27, 28</td>
</tr>
<tr>
<td>24</td>
<td>May 3</td>
<td>ANOVA for regression</td>
<td>29, 30</td>
</tr>
<tr>
<td>25</td>
<td>May 5</td>
<td>ANOVA for comparing means, multiple comparisons</td>
<td>32</td>
</tr>
<tr>
<td>26</td>
<td>May 8</td>
<td>Two-way ANOVA, multiple regression</td>
<td>33, 34</td>
</tr>
<tr>
<td>27</td>
<td>May 10</td>
<td>One-way and two-way tables</td>
<td>35, 36</td>
</tr>
<tr>
<td>28</td>
<td>May 12</td>
<td>Logistic regression</td>
<td>37, 38</td>
</tr>
<tr>
<td>29</td>
<td>May 15</td>
<td>Nonparametric methods</td>
<td>39</td>
</tr>
</tbody>
</table>
Small-Group Learning

PASS Tutorials

The weekly tutorials will be run as peer-assisted study sessions (PASS). You will have an opportunity to practice the ideas covered in the lectures, working through activities and exercises with other students and the PASS leaders. Try to look at relevant data sets in the book before the session to identify any specific problems. PASS leaders are not available for help outside the sessions so use the sessions wisely.

PASS tutorials start in Week 2. Sign-on for a PASS tutorial on mySI-net before the end of Week 1.

Note that most PASS tutorials will be held in 67-140.

Practicals

This semester there will be 12 one-hour practical sessions, starting in Week 2.

In the practicals you will use statistical software (OStats) to explore and analyse data, as well as to learn or reinforce some of the course content. You will be expected to use the skills you develop in the practicals in your project work and in the practical exam. The statistical software is also available for use in your other courses.

Each practical involves a small task which you submit on the web. Each practical you complete correctly counts 1% to your overall grade, to a maximum of 10%. The deadline for completing each practical task is 5pm on the Friday of the week in which the practical is held.

Practicals start in Week 2 and will be held in iLC1 (69-209). Sign-on for a practical session on mySI-net before the end of Week 1.

OStats

The OStats statistical software is available for download from the Resource Page and can be used for free by current students and staff at the University of Queensland. Versions are currently available for Mac OS 8-9, Mac OS X, and Windows 98/NT/2000/XP. Please contact Michael Bulmer if you would be interested in a Linux version.

OStats is intended to be a tool and there is no way of entering data directly into it. Instead you should first enter data into something like a spreadsheet, or even a text editor or word processor. You can then copy and paste your data into OStats for exploration and analysis. There will also be data sets provided from the Resource Page which can be copied from the web browser into OStats. You can also save your files in OStats to open again later.
Assessment Details

Your final grade is calculated by adding up your marks for each of the assessment items, using the weights indicated in this section. Refer to the Assessment Criteria on page 11 for how the marks are translated to grades.

Note that the criteria on page 11 are also used as a general guide for marking each of the assessment items, particularly the projects, in addition to the specific marking guides included for each item.

Survey (1%)

At the start of semester we ask you to complete a basic survey to provide data for use in the lectures, tutorials, and practicals. This survey is completed online, via the Resource Page, and you can do it as part of the practical in Week 2. It should be completed by the end of Week 2 at the latest, and completing it counts 1% towards your final grade.

Hundred Word Project (3%)

The Hundred Word Project gives you an opportunity to express your view of statistics at the start of the course. It involves composing a story which describes your view of statistics, which contains exactly 100 words, and which mentions a certain number that has been allocated to you. Visit the Resource Page to find your allocated number and to submit your work. Submissions close at 5pm on Friday, March 17th.

All submissions that show some effort will receive 3% towards the assessment of the course (2% if they are not exactly 100 words).

In addition to counting towards assessment, a short-list will be chosen by a panel and then all students in the course can vote for the best story. There will be a prize for the winning entry of a $50 book voucher to the UQ Bookshop, with two runner-up prizes of $30 and $20.

Practicals (10%)

As noted on page 4, the weekly practical tasks count 1% each to a maximum of 10% of your final grade.

Evaluation (1%)

At the end of semester you’ll be asked to reflect on the course and provide feedback about your experience of the teaching and learning. This evaluation will be posted on the Resource Page in Week 13 and should be completed by the day before the final examination. Completing it counts 1% towards your final grade.
Experiment Project (20%)

The aim of this project is to design and carry out a study involving a comparative experiment and then to analyze the results and present them as a scientific paper. Examples of good and bad projects are available on the Resource Page, and Section 45 of the textbook gives examples of experiments completed in previous semesters, but you can choose any experimental topic of interest to you.

If your study will involve humans then you will need to complete an Ethics Clearance Form on the web page and have it approved before carrying out the experiment. A discussion of ethics issues will be given in Lecture 2. Animal experiments are not allowed. Ethics Clearance Forms must be completed on the web by 5pm on Friday, March 17th.

You are expected to carry out the study early in semester, maintaining a weekly weblog about how you developed your experiment, and then submit your data by Friday, March 31st. You can then make use of PASS to discuss your results and their analysis as the course progresses. Your paper reporting on the study is due on Friday, May 26th.

Submission

This project is to be completed individually. The weblog and scientific paper are to be prepared via the web, though any word processor can be used for making drafts. Details will be available on the Resource Page.

The completed paper should then be finalized before 5pm on the due dates listed above. More precisely, you can edit your report on the web page up until 5pm on the due date, when the current version will be taken as your submission.

Assessment

The initial work is worth 5% and will be marked using the following criteria:

- Data submitted in appropriate format (1 mark)
- Weblog entries of at least 100 words each submitted in 3 different weeks (4 marks)

The final paper is worth 15% and will be marked using the following criteria:

- Clear description of the topic and aims
- Discussion of the design of the experiment
- Discussion of the measurement process
- Appropriate graphical summaries
- Appropriate numerical summaries
- Description of the data distributions
- Appropriate confidence interval or significance test
- Check of assumptions underlying inference
- Conclusion relating the results to the aims
- Overall concise and logical presentation
Scientific Paper Review (10%)

The aim of this project is to find a scientific paper through the library that uses statistical inference, illustrating a confidence interval or a test of significance. You will then critically review the article’s use of these statistical methods in relation to the aims of their study. Most articles will actually involve many uses of statistics. You only need to identify one confidence interval or significance test and discuss it.

While this sheet is handed out at the start of semester, the required material for this project will not be covered in the course until mid April.

Examples will be given in the lectures to show you how to access journal databases and electronic journals. There are also other courses running in the libraries throughout the year, as listed on www.library.uq.edu.au/training/session2.html

Most papers in medical journals or other biological journals will use statistics. Avoid actual statistics journals as these mostly won’t have applications! The paper you obtain must have page numbers.

Note that each paper can only be reviewed by one student. Once you have found the paper you want to review, follow the ‘Paper Review’ link on the Resource Page and check that it is not already listed by another student. If it is okay then register it for yourself.

Submission

The paper review is to be prepared and submitted via the web, though any word processor can be used for making drafts. Details will be available on the Resource Page. The report must be finalized by 5pm on Friday, May 19th.

As part of the submission, you must print or photocopy the first page of the paper and submit it in the STAT1201 assignment box outside Room 67-646 before the due date. Write your name and student number at the top of the page.

Assessment

Your report of no more than 500 words on the paper should include

- a summary of the paper’s topic and objective (2 marks)
- a description of the experimental or survey protocol used, with comments on design aspects, if any, that may limit the study (2 marks)
- a summary of a statistical conclusion, including a note on what statistical methods were used (2 marks)
- an explanation in layman’s terms of what the statistical conclusion suggests (2 marks)
- a bibliographic reference for the article (1 mark)
- a copy of the first page of the paper, submitted separately (1 mark)
Laboratory Book (10%)

At the start of semester you will be given a small exercise book to use as a laboratory book for this course. Write your name and student number on your book immediately.

This book will function like a traditional scientific notebook where you describe experiments and discuss their results. In this setting you will not have to actually carry out the experiments you write up. You can obtain data to use from the experiments in Section 45 of the textbook, from the student survey and other data on the web, or from suitable experiments you have done in other courses. Observational studies or surveys are also acceptable.

For each experiment your write-up should include

- A brief description of the experiment and its possible limitations.
- A summary of results in the form of a neatly drawn plot or appropriate statistics.
- A discussion of the results, supported by appropriate tests and confidence intervals.

During the semester you should write up at least 8 experiments in your book. The settings should be taken from the following list and you should not write up the same type of setting more than once. Place the setting number at the top of the relevant pages in your book.

1. Using side-by-side plots to compare distributions.
2. Using sample means and standard deviations to compare distributions.
3. Describing the relationship between two quantitative variables.
4. Computing a confidence interval for a single mean.
5. Computing a confidence interval for a single proportion.
6. Testing for a difference between two means.
7. Testing for a difference between two proportions.
8. Testing for an association between two continuous variables.
9. Testing for a difference between two means using ANOVA.
10. Testing for differences between more than two means.
11. Comparing an observed distribution against a theoretical one.
13. Using a nonparametric test.

Examples already analyzed in the textbook should not be used, unless your analysis differs from the one given.

The laboratory books are not directly related to the computer practicals, but you can use any software you like to do calculations, or for producing plots to stick into your book. However, your discussions should all be hand-written.

You can complete the books individually or in groups. Some PASS groups may use laboratory book work as part of the weekly activities.

The laboratory books are to be submitted in the box outside Room 67-646 by 5pm on Friday, June 2nd. They will be marked on a pass/fail basis and will be worth 10% to your final grade. Your books will be returned to you at the Final Exam.
Final Exam (45%)

A two-hour practical exam will be held in the June examination period, covering methods learnt in the practicals as well as the rest of the course material. The practical exam will be multiple-choice and is worth 45% of your final grade. Sample exams will be made available on the Resource Page early in semester.

You will need a calculator and a pen/pencil during the exam. No other material may be taken into the exam room.

Note that your exam timetable on mySI-net later in semester will only tell you on which day the STAT1201 exam will be held. You should ignore any time or venue given by mySI-net. Instead visit the Resource Page to check your time and room allocation.
Assessment Guidelines

Assessment Timetable

Below is a summary of the assessment during the semester.

<table>
<thead>
<tr>
<th>Week</th>
<th>Assessment Item</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Survey due</td>
<td>1%</td>
</tr>
<tr>
<td>Mar 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hundred Word Project due</td>
<td>3%</td>
</tr>
<tr>
<td>Mar 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Project Data due</td>
<td>5%</td>
</tr>
<tr>
<td>Mar 31</td>
<td>Weblog closes</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Paper Review due</td>
<td>10%</td>
</tr>
<tr>
<td>May 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Project Paper due</td>
<td>15%</td>
</tr>
<tr>
<td>May 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Laboratory Book due</td>
<td>10%</td>
</tr>
<tr>
<td>June 2</td>
<td>Evaluation</td>
<td>1%</td>
</tr>
<tr>
<td>Exams</td>
<td>Practical Exam</td>
<td>45%</td>
</tr>
<tr>
<td>Ongoing</td>
<td>Practical</td>
<td>10%</td>
</tr>
</tbody>
</table>

Late Assessment

Late hundred word projects, experiment weblogs and data, paper review reports, project papers, and laboratory books will not be accepted unless arrangements have been made with the course coordinator. This will typically require evidence of an illness or bereavement.

Assessment Policy

Students should be familiar with the rules which relate to assessment in their degrees as well as general university policy such as found in the General Award Rules. These are all set out on the Program and Course Information page on the UQ website www.uq.edu.au/student/courses
Assessment Criteria

To earn a Grade of 7, you must achieve a final mark between 85-100% by demonstrating an excellent understanding of the course material. You will be able to analyse a broad range of data settings, providing insight and thoroughness in the form of necessary assumptions and other factors that might affect the analysis. You will demonstrate excellent proficiency in communicating statistical ideas in writing and a high level of accuracy in graphical and numerical work.

To earn a Grade of 6, you must achieve a final mark between 75-84% by demonstrating a comprehensive understanding of the course material. You will be able to analyse most data settings, identifying important assumptions and other factors that might affect the analysis. You will demonstrate proficiency in communicating statistical ideas in writing and a high level of accuracy in graphical and numerical work.

To earn a Grade of 5, you must achieve a final mark between 65-74% by demonstrating an adequate understanding of the course material. You will be able to analyse many data settings, identifying the key assumptions that might affect the analysis. You will demonstrate the ability to write statistical reports and show accuracy in graphical and numerical work.

To earn a Grade of 4, you must achieve a final mark between 50-64% by demonstrating an understanding of the basic concepts of the course. You will be able to analyse the important data settings, identifying some key assumptions that might affect the analysis. You will demonstrate the ability to write statistical reports and show accuracy in graphical and numerical work.

To earn a Grade of 3, you must achieve a final mark between 45-49% by demonstrating some knowledge of the basic concepts of the course. You will be able to analyse the important data settings. You will demonstrate the ability to write statistical reports and show accuracy in graphical and numerical work.

To earn a Grade of 2, you must achieve a final mark between 20-44% by demonstrating some knowledge of the basic concepts of the course. You will be able to partially analyse a few important data settings. Written reports may be poor and accuracy in graphical and numerical work may be low.

To earn a Grade of 1, you must achieve a final mark between 0-19%. You will be able partially analyse very few data settings. Written reports will be poor and accuracy in graphical and numerical work will be low.
Graduate Attributes

The University has a statement of Graduate Attributes which describes core attributes to be developed in an undergraduate program. The following graduate attributes, taken from the University statement, will be emphasized in this course. Brief comments on how these will be developed are given. The full University statement is at www.uq.edu.au/hupp/index.html?policy=3.20.5

In-Depth Knowledge of the Field of Study

Through theory and applications in lectures and through hands-on work in projects and practicals you will develop

- A comprehensive and well-founded knowledge of the field of study.
- An understanding of how other disciplines relate to the field of study.

Effective Communication

Communication skills will be developed through informal interactions in tutorials and practicals. Written communication will be emphasised in reviewing scientific papers and writing project reports, which will also require the use of information resources. Through these activities you should develop

- The ability to collect, analyse, and organise information and ideas, and to convey those ideas clearly and fluently, in both written and spoken forms.
- The ability to interact effectively with others in order to work towards a common outcome.
- The ability to select and use the appropriate level, style and means of communication.
- The ability to engage effectively and appropriately with information and communication technologies.

Independence and Creativity

Project work is designed to encourage independence and creativity and develop

- The ability to identify problems, create solutions, innovate and improve current practices.

Critical Judgement

Analytical and critical thinking will be illustrated in lectures and in textbook readings. Activities in tutorials and project work will build on this to develop

- The ability to define and analyse problems
- The ability to apply critical reasoning to issues through independent thought and informed judgement
- The ability to evaluate opinions, make decisions and to reflect critically on the justifications for decisions.

Ethical And Social Understanding

An important part of statistics is the design of experiments within a social and ethical context. This will be emphasized in lecture examples and project work to help develop

- An appreciation of the philosophical and social contexts of a discipline.
Other Policies and Procedures

Assessment policy

An overview of the University’s assessment-related policies can be found on myAdvisor link

Students should refer to section 3.30 Assessment in the University Handbook of Policies and Procedures
for full details on all assessment-related policies:

Students should be familiar with the rules which relate to assessment in their degrees as well as general
university policy such as found in the General Award Rules. These are all set out on the myAdvisor page on the UQ website

Academic Integrity and Plagiarism

Below is the University’s definition of plagiarism:

Plagiarism is the action or practice of taking and using as one’s own the thoughts or writings of an-
other (without acknowledgement). The following practices constitute acts of plagiarism and are a major
infringement of the University’s academic values:

- where paragraphs, sentences, a single sentence or significant part of a sentence which are copied
directly, are not enclosed in quotation marks and appropriately footnoted;
- where direct quotations are not used, but are paraphrased or summarised, and the source of the
material is not acknowledged either by footnoting or other simple reference within the text of the
paper;
- where an idea which appears elsewhere in print, film or electronic medium is used or developed
without reference being made to the author or the source of that idea.

When a student knowingly plagiarises someone’s work, there is intent to gain an advantage and this
may constitute misconduct.

Students are encouraged to study together and to discuss ideas, but this should not result in students
handing in the same or similar project work. Do not allow another student to copy your work. While
students may discuss approaches to tackling an assignment problem, care must be taken to submit indi-
vidual and different reports. Submitting the same or largely similar reports for a project may constitute
misconduct.

For more information on the University policy on academic integrity and plagiarism, please refer to

Supplementary Examinations

A supplementary examination may be awarded in one course to students who obtain a grade of 2 or 3 in
the final semester of their program and require this course to finish their degree. You should check the
rules for your degree program for information on the possible award of supplementary examinations.
Applications for supplementary examinations must be made to the Director of Studies in the Faculty.
Special Examinations

If a student is unable to sit a scheduled examination for medical or other adverse reasons, she/he can and should apply for a special examination. Applications made on medical grounds should be accompanied by a medical certificate; those on other grounds must be supported by a personal declaration stating the facts on which the application relies.

Applications for special examinations for central and end-of-semester exams must be made through the Student Centre. Applications for special examinations in school exams are made to the course coordinator.

More information on the University’s assessment policy may be found at www.uq.edu.au/hupp/index.html?policy=3.30.1

Feedback on Assessment

You may request feedback on assessment in this course progressively throughout the semester from the course coordinator. Feedback on assessment may include discussion, written comments on work, model answers, lists of common mistakes and the like.

Students may peruse examinations scripts and obtain feedback on performance in a final examination provided that the request is made within twelve months of the release of final course results. After a period of twelve months following the release of results, examination scripts may be destroyed.

Information on the University’s policy on access to feedback on assessment may be found at www.uq.edu.au/hupp/index.html?policy=3.30.6

Students with Disabilities

Any student with a disability who may require alternative academic arrangements in the course is encouraged to seek advice at the commencement of the semester from a Disability Adviser at Student Support Services.

More information on the University’s disability action plan may be found at www.uq.edu.au/hupp/index.html?policy=3.40.6

A large-print edition of the textbook can also be arranged. Please contact Michael Bulmer if needed.

Assistance for Students

Students with English language difficulties should contact the course coordinator or tutors for the course.

Students with English language difficulties who require development of their English skills should contact the Institute for Continuing and TESOL Education on extension 56565.

The Learning Assistance Unit located in the Relaxation Block in Student Support Services. You may consult learning advisers in the unit to provide assistance with study skills, writing assignments and the like. Individual sessions are available. Student Support Services also offers workshops to assist students. For more information, phone 51704 or on the web at www.sss.uq.edu.au.
Student Liaison Officer

The School of Physical Sciences has a Student Liaison Officer as an independent source of advice to assist students with resolving academic difficulties. The Student Liaison officer during 2005 will be Professor Peter Adams (pa@maths.uq.edu.au), Room 67-547, Extension 53276.

Library Contact

The liaison librarian for the physical sciences disciplines is located in the Physical Sciences and Engineering Library in the Hawken Building and may be consulted for assistance in the course. The liaison librarian for 2005 is Leith Woodall (l.woodall@library.uq.edu.au), Extension 52367.