MATH4401: Advanced Analysis

6/4/2005

Assignment Number 3

Problem 1 Let (X, d) be a complete metric space, and let $T: X \to X$ be a contraction mapping, i.e., there exists $\theta \in [0,1)$ with

$$d(T(x), T(y)) \le \theta d(x, y)$$
 for all $(x, y \in X)$.

(Note: T is not necessarily linear.) Show that there exists precisely one $x \in X$ with T(x) = x. Does the statement reamain true if the completeness requirement is omitted?

- **Problem 2 a)** For $p=1,\frac{2}{3},2,3,10,\infty$, sketch the "unit p-ball" w.r.t. $\|\cdot\|_p$ in \mathbb{R}^2 . **b)** Let $x\mapsto |x|$ und $x\mapsto |x|'$ be two norms on a \mathbb{K} -vectorspace V, $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$. Show the equivalence of the following statements:
- (i) There exist c and C with $0 < c < C < \infty$, such that: $c|x| \le |x|' \le C|x|$.
- (ii) In every open $|\cdot|$ -ball there is a $|\cdot|$ '-ball, and vice versa.
- (iii) The topologies induced by $|\cdot|$ and $|\cdot|'$ coincide.
- (iv) A sequence $\{x_i\}$ converges to a point x w.r.t. $|\cdot|$ iff $\{x_i\}$ converges to x w.r.t. $|\cdot|'$.

Problem 3 Let $\Omega \subseteq \mathbb{R}^n$ be open and bounded (and nonempty), with smooth boundary, and let $\alpha \in (0,1]$ be fixed. A function $f:\Omega \to \mathbb{R}$ is called uniformly Hölder continuous on Ω (with exponent α), if there exists $K < \infty$ with

$$\sup_{x,y\in\Omega,\ x\neq y}\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}\leq K \tag{*}.$$

The space of all such functions is denoted by $C^{\alpha}(\overline{\Omega})$. If (*) only holds on every compact subset $\Omega' \subseteq \Omega$, then f is called locally Hölder continuous on Ω (with exponent α), denoted $f \in C^{\alpha}(\Omega)$; note that here, K may depend on Ω' .

- a) Show: $C^{\alpha}(\overline{\Omega}) \subset C^{0}(\overline{\Omega})$. Show by virtue of an example that the inclusion is strict.
- **b)** Prove: $C^{\alpha}(\overline{\Omega}) \subset C^{\beta}(\overline{\Omega})$, but $C^{\alpha}(\overline{\Omega}) \neq C^{\beta}(\overline{\Omega})$ for $0 < \beta < \alpha \leq 1$. (The analogous statements hold for $C^{\alpha}(\Omega)$ and $C^{\beta}(\Omega)$.
- c) We define:

$$[f]_{\Omega,\alpha} := \sup_{x,y \in \Omega, \ x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

Is $[\cdot]_{\Omega,\alpha}$ a norm on $C^{\alpha}(\overline{\Omega})$? A seminorm?

Due: Thursday, 21/4/2005 before the tutorial

Current assignments will be available at

http://www.maths.uq.edu.au/courses/MATH4401/Tutorials.html