Assignment Number 2

Problem 1 Let X be a metric space. Show that there holds:

- a) $|d(x,z) d(y,z)| \le d(x,y)$ (the reverse triangle inequality).
- **b)** $\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}$ defines a metric on X which is equivalent to d (i.e., \tilde{d} is a metric on X, and $x_i \to x$ with respect to d is equivalent to $x_i \to x$ with respect to \tilde{d}). What happens if d is an extended metric?

Problem 2 Let (X, τ) be a compact topological space. Show:

- a) If Y is Hausdorff and $f: X \to Y$ is continuous, then f(X) is a compact subset of Y.
- **b)** If $f: X \to \mathbb{R}$ is continuous, then there exists $x_0 \in X$ with $f(x) \leq f(x_0)$ for every $x \in X$ (i.e., f attains its maximum).
- c) If Y is Hausdorff and $f: X \to Y$ is continuous and bijective, then f^{-1} is continuous (and hence f is a homeomorphism).

Problem 3 Let X be the set of all functions $f:[0,1]\to\mathbb{R}^n$ which satisfy f(0)=0 and $|f(x)-f(y)|\leq |x-y|$. Given $\varphi\in C(\mathbb{R}^n,\mathbb{R})$, define $\Phi:X\to\mathbb{R}$ via

$$\Phi(f) := \int_0^1 \varphi(f(t)) dt.$$

Show:

- a) X is a compact subset of $C([0,1],\mathbb{R}^n)$ (Hint: Arzela-Ascoli).
- **b**) $\Phi: X \to \mathbb{R}$ is continuous.
- c) Use Problem 2b) to show that there exists at least one function $f_0 \in X$ with $\Phi(f) \ge \Phi(f_0)$ for every $f \in X$.

Due: Thursday, 7/4/2004 before the tutorial

Current assignments will be available at

http://www.maths.uq.edu.au/courses/MATH4401/Tutorials.html