MATH4401: Advanced Analysis

2/3/2004

Assignment Number 1

Problem 1 Let X be a topological space, $A \subseteq X$. Show that there holds:

- a) A is open iff Int A = A;
- **b)** A is closed iff $\overline{A} = A$.

Problem 2 Let X and Y be topological spaces, I = [0, 1]. Functions $f, g \in C(X, Y)$ are called homotopic (i.e., $f \simeq g$) if there exists a homotopy between f and g, i.e., $F \in C(I \times X, Y)$ with $F(0, \cdot) = f(\cdot)$, $F(1, \cdot) = g(\cdot)$.

- a) Show that \simeq is an equivalence relationship on C(X,Y), the space of continuous maps from X to Y.
- **b)** Let $A \subseteq X$. Maps f and g in C(X,Y) with $f|_A = g|_A$ are called homotopic relative to A (written: $f \simeq_A g$, or $f \simeq g$ rel A), if there is a homotopy F between f and g that further satisfies: $F(\cdot,a) = f(a)$ (= g(a)) for every $a \in A$. Show that \simeq_A is also an equivalence relation on C(X,Y).
- c) Now consider X = I, $A = \partial I$. A path in Y is a map in C(I, Y). The composition of two paths from f and g in Y is defined by:

$$(f * g)(t) = \begin{cases} f(2t) & \text{for } 0 \le t < \frac{1}{2} \\ g(2t-1) & \text{for } \frac{1}{2} \le t \le 1. \end{cases}$$

The composition f * g is obviously a path iff f(1) = g(0). Now consider paths f_1 , f_2 , g_1 und g_2 in Y with $f_1 \simeq_{\partial I} f_2$, $g_1 \simeq_{\partial I} g_2$. Show that $f_1(1) = g_1(0)$ implies: $f_1 * g_1 \simeq_{\partial I} f_2 * g_2$.

Problem 3 Let (X, d) be a metric space, $A \subseteq X$. Let d(x, A) denote the distance from a point $x \in X$ to A, i.e. $d(x, A) = \inf_{a \in A} d(x, a)$. Show:

x is an accumulation point of $A \Leftrightarrow d(x, A \setminus \{x\}) = 0 \Leftrightarrow$ there exists a sequence $\{x_i\}$ in A with limit x and $x_i \neq x$ for all $i \in \mathbb{N}$.

Due: Thursday, 17/3/2004 before the tutorial

Current assignments will be available at

 $\verb|http://www.maths.uq.edu.au/courses/MATH4401/Tutorials.html|$