If $u \in C^{2}(\Omega)$ then $u_{x y}=u_{y x}$ ie. $D_{12} u=D_{21} u$.
If $u \in C^{4}(\Omega)$, then
$D_{1337} u=D_{3137^{4}}=D_{7331} u$ etc.
If $\Omega \subset \mathbb{R}^{8}$, these derivatives are written as

$$
D^{(1,0,2,0,0,0,1,0)} u .
$$

Cla

Classifying DDE.

$$
f\left(x, u, D_{u}, D_{u}^{2}, \ldots, D_{u}^{k}\right)=O_{0}
$$

The order is the order of
tc. the highest partial occurring:
s in (0), Chis is k.
(A) The PDE (1) is called linear if it has the form

$$
\sum_{1 \times\{k} a_{k}(x)
$$

(ie the o

$$
L=\sum_{|=| \in S K}
$$

If $f \equiv 0$,
homogony in hamgenean eg. $x^{2} 4+5$

$$
\left.\sum_{|\alpha| \leq \mid k} a_{x}(x)\right)^{\circ} u=f(x)
$$

(ie. the operator

$$
L=\sum_{|\alpha| \leqslant k} a_{k}(x) D^{\alpha} \text { is (ines). }
$$

arsing:
If $f \equiv 0$, the eq. is eel homogeneons, otherwise in homogeneous.

$$
x^{2} D^{(6)} u+1 \cdot D^{(2,0)} u+1 D^{(0,2)} u=0 \cdot \theta \cdot g: x^{2} u
$$

Ind order linear:

$$
u_{x x x}+x^{7} \sin x u=0 \text { is }
$$

3rcourder linear.
(B) O is called semilineer if it has the form:

$$
\begin{aligned}
& \text { it has the form: } \\
& \sum_{|A|=k} a_{2}(x) D^{\alpha} u+b\left(x, u, D u, \cdot D^{k-1} u\right)=0
\end{aligned}
$$

- $e \cdot g: \cdot x^{2} u \operatorname{six} x+\left(u_{x x}\right)^{2} u^{7}+\sin ^{2} x=0$ 3rd order semilineer.
(C) (O) is called quasiLnear if it has the form

$=0$
is Brd order quasi-liner.
(D) (0) is called Pully nowlineer : it depends
m on the highestorder de vatives in a nonlmear
=0. fashion
$u_{x x}^{2}+u_{y y}^{2}-2\left(u_{x y}\right)^{2}+7 u u^{2}=0$ 2ndorder fillynonliner.

Warm-up $\Omega=\mathbb{R}^{n}$:put AIM $u(x)=v(r)$, where $r=|x|$ i.e. = distance from zero to x : can also write as $(\mathrm{r} \|)$.
note $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$;
$V:[0, \infty) \rightarrow \mathbb{R}$.

$$
r=|x|=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}
$$

find

$$
\begin{aligned}
& =\frac{1}{2}\left(x_{1}\right. \\
& =x_{i} / r
\end{aligned}
$$

A $|x|$ ie. $\sum_{i=1}^{n} D_{i} u=0$, ie.,

Chainrul x : find a radially symmetric harmonic function.

$$
\begin{aligned}
& \text { note : Dir }=\frac{\partial r}{\partial x_{i}} \\
& =\frac{1}{2}\left(x_{i}^{2}+\cdots+x_{i}^{2}\right) \cdot 2 x_{i} \\
& =x_{i} / r \quad(r \neq 0)
\end{aligned}
$$

$$
D_{i} u=\frac{\partial u}{\partial x}
$$

$D_{i i} u=D$

$$
=1
$$

$$
=1
$$

using Di. ff,
Chainrule \Rightarrow

$$
\begin{aligned}
& D_{i} u=\frac{\partial u}{\partial x_{i}}=\frac{\partial v}{\partial r} \frac{\partial r}{\partial x_{i}} \\
&=v^{\prime}(r) x_{i} / r \\
& \begin{aligned}
& D_{i i} u=D_{i}\left(D_{i} u\right) \\
&=D_{i}\left(v^{\prime}(r) \frac{x_{i}}{r}\right) v i a \oplus \\
&=D_{i}\left(v^{\prime}(r)\right) \cdot \frac{x_{i}}{r}+v^{\prime}(r) \cdot D_{i}\left(\frac{x_{i}}{r}\right) \\
& \text { using } D_{i}(f g)=\left(D_{i} \cdot f\right) g+f \cdot D_{i} \cdot
\end{aligned}
\end{aligned}
$$

To evaluate $D_{i}\left(v^{\prime}(r)\right)$, use ($)$, but with V^{\prime} in place of V.

$$
\begin{aligned}
& \Rightarrow D_{i i}=\left(\left(v^{\prime}\right)^{\prime}(r) \frac{x_{i}}{r}\right) \frac{x_{i}}{r} \\
& \quad+v^{\prime}(r) \cdot\left(\frac{r 1-x_{i} x_{i} / r}{r^{2}}\right) \\
& =v^{\prime \prime}(r) \frac{x_{i}^{2}}{r^{2}}+v^{\prime}(r) \cdot\left(\frac{1}{r}-x_{i}^{2} / r^{3}\right)
\end{aligned}
$$

