Aim: well/iM-posedness.
Topology basics

$$
\begin{aligned}
& x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \quad n \geqslant 1 \\
& |x|(=\|x\|)=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2} \\
& B_{r}(x)=\text { ball of radius r }
\end{aligned}
$$

centred at x

$$
\begin{aligned}
& d \text { at } x \\
& =\left\{y \in \mathbb{R}^{n}:|x-y|<r\right\} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \Omega \subset \mathbb{R}^{n} \\
& \text { Int } \Omega=\text { in } \\
& =\left\{x \in \mathbb{R}^{n}\right. \\
& \left.: B_{\varepsilon}(x) \subset\right\} \\
& E x+\Omega=\{ \\
& : B_{\varepsilon}(x) \cap \Omega \\
& \partial \Omega=b_{\text {our }} \\
& =\left\{x \in \mathbb{R}^{n}: t\right. \\
& B_{\varepsilon}(x) \cap \Omega \neq
\end{aligned}
$$

s. $\Omega \subset \mathbb{R}^{n}(\varsigma)$

$$
\begin{aligned}
& \text { Int } \Omega=\text { interior of } \Omega \\
& \quad=\left\{x \in \mathbb{R}^{n}: \exists \Sigma>0\right. \\
& \left.: B_{\Sigma}(x) \subset \Omega\right\} .
\end{aligned}
$$

$$
\begin{gathered}
E x t \Omega=\left\{x \in \mathbb{R}^{n}: \exists \varepsilon x 0\right. \\
\left.: B_{\varepsilon}(x) \cap \Omega=\phi\right\} .
\end{gathered}
$$

$\partial \Omega=$ boundary of Ω
$=\left\{x \in \mathbb{R}^{n}:\right.$ for any $\varepsilon>0$, $B_{\varepsilon}(x) \cap \Omega \neq \varnothing \quad \&$

$$
B_{\varepsilon}(x) \cap(\underbrace{}_{\Omega} \mathbb{R}^{n}-\Omega) \neq \phi\} .
$$

$\Omega^{2}=$ complement of Ω

$$
x \in \operatorname{In}+\Omega
$$

$$
y \in E x t \Omega
$$

$$
z \in \partial l .
$$

$\mathbb{R}^{n} \cdot \Omega$
Ω is open $\Leftrightarrow \operatorname{In} t \Omega=\Omega$.
Ω is closed $\Leftrightarrow \Omega^{c}$ is open.

Easy to show:
$\otimes \Omega$ is open $\Leftrightarrow \partial \Omega \cap \Omega=\phi$
$\Theta \Omega$ is closed $\Leftrightarrow \partial \Omega \subset \Omega$
Rok:
(1) a set may neither open nor closed $\Rightarrow \rightleftharpoons_{2}(1,2)$
(2) \mathbb{R}^{n} is both open $\&$ closed (clopen), as is \varnothing. These are the only clopen sets in \mathbb{R}^{n} Ω is called path(wise) connected if any two points un Ω can be connected by
a path in Ω
connected
(2) connected.
Ω is connected \Leftrightarrow if Ω is $\Omega \subset \Omega_{1} \cup \Omega_{2}$ with Ω_{1}, Ω_{2} open \& disjoint, then

$$
\Omega_{1}=\phi \text { or } \Omega_{2}=\varnothing
$$

In general, path connected \Rightarrow connected.
Path connected \Leftrightarrow connected for open sets in \mathbb{R}^{n}.
Ω is bounded if $\exists_{r>0}$ $\Omega \subset B_{r}(0) .,=(0, \cdots, 0) \in \mathbb{R}^{n}$.

Note:
boded \Rightarrow finite volume (vol($\Omega) \leqslant$
$\left.\mathrm{Vol}\left(\operatorname{Br}_{r}(0)\right)<\infty\right)$.
unbded
in $y=e^{-x}$
Area of Ω
Example of

Finite volume \Rightarrow ? boded.
No. Egg. $\Omega=x$ axis in \mathbb{R}^{3}. Has zero volume, , but is
$\rightarrow 0$: 'Inbred.

$$
y=e^{-x} \quad \text { in } \mathbb{R}^{2}
$$

rite \quad Area of $\Omega=\int_{0}^{\infty} e^{-x} d x=1$
Example of well /ill poschness : Friday.
\mathbb{R}^{3}

