Examples of well posedness: for later
Examples of ill posedness:
(1) Any domain Ω :

$$
\Delta u=0 \text { in } \Omega \text {. }
$$

for any $G \in \mathbb{R}, u \equiv C$ (i.e., u(x) = C $\forall x \in \Omega$) is a sol?.
(indeed, $u=\sum_{j=1}^{n} a_{j} x_{j}+C$, $a_{j} \in \mathbb{R}_{\text {, }}$ is a sol?. . * non-uniqueness.
(2) $\Omega=B_{1}(0)$ in \mathbb{R}^{n}.
F) $\left\{\begin{array}{l}\Delta u=0 \\ u=0 \text { on } \partial \Omega \\ \frac{\partial u}{\partial n}=1 \text { on } \partial \Omega .\end{array}\right.$
$n=$ external unit normal (vector field).

$$
\frac{\partial u}{\partial \underline{n}}=\nabla u \cdot \underline{\underline{n}} .
$$

No sol? *non-e sistence.
(P) is called overdetermined.
 P) $\left\{\begin{array}{l}\Delta u=0 \text { in } \\ u\left(x_{0}\right)=\varepsilon \sin x \\ \frac{\partial u}{\partial y}(x, 0)=0 .\end{array}\right.$

$$
\Omega=u_{p F}
$$

Half Plane
$\varepsilon \in \mathbb{R}$ fixed. in \mathbb{R}^{2}.

Note on $\partial \Omega$

$$
\begin{aligned}
& |u| \leqslant \varepsilon \quad \& \\
& u_{y}=0
\end{aligned}
$$

But $\lim _{y \rightarrow \alpha}|u(x, y)|=\infty$ any $\varepsilon \neq 0$.

So: a small change in the dat a (change from $\Sigma=0$ to some $\varepsilon \neq 0$) leads to a big (qualitative) change in the son: identically zero to unbounded.

