Partial Differential Eq?s (PDE) : a PDE is an eq? involving an unknown fin. \& 1 or more of its partial derivatives. (System: >1 equation, >1 unknown $f=$. $)$.

Ego: $\Delta u=$ Laplace's eq (sometimes) (in 2-D: μ Here $u=u(x)$ the unknown on some region

un genera, in n dimensions,

$$
\begin{aligned}
& u_{x_{1} x_{1}}+\cdots+u_{x_{n} x_{n}}=0 \\
& \text { or } \\
& u_{11}+\cdots+u_{m}=0
\end{aligned}
$$

Here $\left(x_{1}, \ldots, x_{n}\right)$ are the domain \checkmark ariables.
Fined E.g.(2) $u_{t t}=\Delta u$ wave eq?. Defined on $\mathbb{R}^{n} \times \mathbb{R}$, i.e.

$$
\begin{aligned}
& u=u(x, t) \\
& G=\underline{x}=\left(x_{1}, \ldots, x_{0}\right)
\end{aligned}
$$

Indeed, often defined only on $\mathbb{R}^{n} \times(0, \infty)$
E.g.(3): $u_{t}=\Delta u$ heat $\frac{e q n}{n}$
E.g.(4) $u_{t}+c u u_{x}+u_{x c x}=0$

$$
u=u(x, t)
$$

$$
\begin{aligned}
& \left(x_{1} t\right) \\
& \mathbb{R} \mathbb{R}^{+}=(0 \infty) \\
& \text { in Vries }
\end{aligned}
$$

Kortewey de Vries en
models shallow wat waves

$$
\text { E.g(5) }\left\{\begin{array}{l}
u_{x}=v_{y} \\
u_{y}=-v_{x}
\end{array}\right.
$$

$u(x, y), v(x, y)$ defined on $\mathbb{R} \times \mathbb{R}$.
Cauchy Riernanneqis:
\Rightarrow " $f=u+i v$ is analytic.

So, given a PDE

$$
f(x, u \text {, some partials of } u)=
$$

What questions do we want to consider for (0)?

* Existence/uniquoness of sol"sto.(0, subject to suitable initial \& or boundary conditions;
*numerical so of solis; * sanity teds mathematical physical expo Consider so initial/bdyd $\Omega \subset \mathbb{R}^{n}, n \geqslant$ $x \in \Omega, u: \Omega=$
*numerical / soln/approxmation / Aim a well-posed
of solis;
* Sanity test: compare mathematical sol? to physical expectations. Con side solving (0) + initial/bdy cond.l's m some $\Omega \subset \mathbb{R}^{n}, n \geqslant 2$, where $x \in \Omega, u: \Omega \rightarrow \mathbb{R}$.
problem (Hadamord, 1902). Want:
(i) sol. to exist;
(ii) so ln to be uniqué;
(iii) small change in data (initial conditions, paly cons domain, coefficient's) \longrightarrow small change in sol?
proximation |Aim a well-posed problem (Hadamord,
ompare
to
mons.
(0) +
m some where
1902). Want:
(i) sol. to exist
(ii) soln. To be unique;
(iii) small change in data Cinitial conditions, body condos domain, coefficients) \leadsto small change in sol?

Tighten this up:
*what ae suitable bay/ initial cond?s?

* (i), (ii) in what spare of functions?.
* what does small" mean?

