(H) $\left\{\begin{array}{l}u_{t}=\Delta u \\ + \text { initial/boly cond"-s. }\end{array}\right.$

Examples: phypical evolution models/ problums, e.g. heat flow, reachion/diffusion.
(H) is well posed for suitable Ω \& u.
(w) $\left\{\begin{array}{l}u_{t t}=1 \\ u_{1}(x, 0)= \\ M_{t}(x, 0)\end{array}\right.$
(v) mode/s:
$n=1$: vibrat

snapshot a
(w) $\begin{cases}u_{t t}=\Delta u \text { on } \mathbb{R}^{n} \times(0, \alpha) & n=2: \text { vibratin } \\ u_{(}(x, 0)=u_{0}(x) & x \in \mathbb{R}^{n} \\ M_{t}(x, 0)=g_{0}(x) & x \in \mathbb{R}^{n}\end{cases}$
(v) models:
W) is well
flow, $n=1$: vibrating string.

Each of (D),
linear.
(D) prototypiral
5) $\mid n=2$: vibrating membrane, surface water waves, earthqualas.
$n=3$: sound waves, light waves.
(W) is well posed for "nice" us $4 g$. Each of (D), W) \& (H) is Ind order linear.
(D) prototypical elliptic eq.?
(H)
(w)

* Korteweg de Vies $u_{t}+u_{x x x}+6 u u_{r}=0$
$u: \mathbb{R} \times(0, \alpha) \rightarrow \mathbb{R}$.
Bro order, semilineer. models shallow water waves (1895).
(A) Mange $\operatorname{det}\left(D^{2}\right.$

$$
\text { for } n=2 \text { : }
$$

$$
u_{x x} u_{y y}-u
$$

and order nontinew.
(1) Monge-Ampere
$\operatorname{det}\left(D_{u}^{2}(x)\right)=f(x)$
for $n=2$:

$$
u_{x x} u_{y y}-u_{z y}^{2}=f .
$$

2nd order, fully nontinew. mex
patikals

Stuff modets n a cost Monge
modet's mass transport. (minimize
a cost functimal." Monge 1784, Ampère 1820

Transport eq..

$$
u_{t}+b u_{x}=0
$$

b constant $\neq 0$.

$$
u: \mathbb{R} \times(0, \infty) \rightarrow \mathbb{R}
$$

models transter of "tuff",
e.g. heat, fluid, mass, information in 1-space dim.

Suppose of (0).
Define

$$
z(s)=1
$$

$$
z^{\prime}(s)=
$$

$$
=
$$

$$
\Rightarrow z \text { in } a
$$

Suppose we have a sol? of \oplus.
Define $z: \mathbb{R} \rightarrow \mathbb{R}$
tuff.'

$$
\begin{aligned}
& z(s)=u(x+b s, t+s) \\
& z^{\prime}(s)=b u_{x}(x+b s, t+s)+ \\
& u_{t}(x+b s, t+s) \\
&=0 \text { by (T). } \\
& \Rightarrow z \text { is a constant f of } s .
\end{aligned}
$$

So given a u is constant slope $1 / 6 t$ ${ }_{\mathrm{t}}^{1}{ }^{(x t)}$ \prod_{b} So, given mitral value problem
oI? So given any $(x, t) \in \mathbb{R} x(0, \infty)$ u is constant on the lime of slope $1 / b$ through (x, t) $t \uparrow(x, t) \quad u$ is constant $=u(x, t)$ ${ }_{b} 1$ on this line.

So, given a solution of the mitial value (I) $\left\{\begin{array}{c}T \\ (x, 0)=g(x) \\ x \in \mathbb{R}\end{array}\right.$ problem initial condition,

The above shows:

$$
u(x, t)=g(x-b t)
$$

(i)

Conversely, if we have $g \in C^{1}(\mathbb{R})^{\prime}$ (for example: can get away, with less), then u given by © solves (I)

What if ge It may st sense for by (i) to a weak sol" Woaksols abs commethor with

What if $g \notin c^{1}(\mathbb{R})$? It may shill makes
sense for u given by (i) to be called a weak sol li of (I)
Weak sol's a koarize in connection with Laplace'san"

To solve 1 by trying t.

$$
E(u)=\frac{1}{2}
$$

Minimize E points $d E$.

$$
\Rightarrow \frac{d}{d \varepsilon} E(u
$$

ke
on
$16 d$
I)
e in
essen

To solve $\Delta_{u}=0$, canstart by trying to minimize" energy"

$$
E(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x \text {. }
$$

Minimize $E \Rightarrow$ lock for critical - perturbation,
points of E.
$\Rightarrow \frac{d}{d \varepsilon} \sum_{\varepsilon=0} E(u+\Sigma \phi)=$ O on o. subset deign
t mad ism ant of work $\Rightarrow \Delta u=0$.

