ORDINARY DIFFERENTIAL EQUATIONS

[CHAP. 2

the solution of the initial-value problem

$$x' = f(t,x,\mu)$$
 $x(\tau) = \xi$

was continuous in (t,μ) . Actually, the requirement of a Lipschitz condition is too strong; its consequence, the uniqueness of the solution, is sufficient for this important result. The x space is n-dimensional and the μ space is k-dimensional, as in Theorem 7.4.

Theorem 4.1. Let D be a domain of (t,x) space, I_{μ} the domain $|\mu - \mu_0|$ < c, c > 0, and D_{μ} the set of all (t,x,μ) satisfying $(t,x) \in D$, $\mu \in I_{\mu}$. Suppose f is a continuous function on D_{μ} bounded by a constant M there. For (4.1) $\mu = \mu_0 let$

 $x(\tau) = \xi$ $x' = f(t,x,\mu)$

have a unique solution φ_0 on the interval [a,b], where $\tau \in [a,b]$. Then there exists a $\delta>0$ such that, for any fixed μ satisfying $|\mu-\mu_0|<\delta$, every solution φ_{μ} of (4.1) exists over [a,b] and as $\mu \to \mu_0$

Note: Though (4.1) need not have a unique solution for $\mu \neq \mu_0$, neveruniformly over [a,b]. theless its solutions are continuous in μ at μ_0 .

Proof of Theorem 4.1. The proof will be carried out for the case $\tau \in (a,b)$. The result will first be proved over $|t-\tau| \leq \alpha$ for some $\alpha > 0$. Choose α small enough so that the region $R: |t - \tau| \leq \alpha, |x - \xi| \leq M\alpha$ is in D. All solutions of (4.1) with $\mu \in I_{\mu}$ exist over $[\tau - \alpha, \tau + \alpha]$ and remain in R. Let φ_{μ} denote a solution. Then the set of functions $\{\varphi_{\mu}\}$, $\mu \in I_{\mu}$, is a uniformly bounded and equicontinuous set in $|t - \tau| \leq \alpha$. This follows from the integral equation

$$\varphi_{\mu}(t) = \xi + \int_{\tau}^{t} f(s, \varphi_{\mu}(s), \mu) \ ds \qquad (|t - \tau| \le \alpha)$$

$$(4.2)$$

and the inequality $|f| \leq M$.

Suppose $\varphi_{\mu}(\tilde{t})$ does not tend to $\varphi_{0}(\tilde{t})$ for some $\tilde{t} \in [\tau - \alpha, \tau + \alpha]$. there exists a sequence $\{\mu_k\}$, $k=1,2,\ldots$, for which $\mu_k\to\mu_0$, and corresponding solutions φ_{μ_k} such that φ_{μ_k} converges uniformly over $[\tau - \alpha,$ $\tau + \alpha$] as $k \to \infty$ to a limit function ψ but $\psi(\tilde{t}) \neq \varphi_0(\tilde{t})$. From the fact that $f \in C$ on D_{μ} , that $\psi \in C$ on $[\tau - \alpha, \tau + \alpha]$, and that $\varphi_{\mu_{k}}$ converges uniformly to ψ , (4.2) for the solutions φ_{μ_k} yields

$$\psi(t) = \xi + \int_{\tau}^{t} f(s, \psi(s), \mu_0) ds \qquad (|t - \tau| \leq \alpha)$$

Thus ψ is a solution of (4.1) with $\mu = \mu_0$. By the uniqueness hypothesis, it follows that $\psi(t) = \varphi_0(t)$ on $|t - \tau| \le \alpha$. Thus $\psi(\tilde{t}) = \varphi_0(\tilde{t})$. Thus all solutions φ_{μ} on $|t-\tau| \leq \alpha$ tend to φ_0 as $\mu \to \mu_0$. Because of the equicontinuity, the convergence is uniform.