for a contradiction seppox G is a

Since K has G it has a 4 colours. The configuration:

Let K be the planar triangulation formed from G by resowing v la wd its incident edges) and adding an edge from r to g (or y to b)

Since K has fever vertices than G it has a proper vertex colounnig with 4 colours. This indues a partial proper venter colouring of G with 4 colours where only v is not coloured.
We may assume that δ, b, g, y are coloured red, blue, green, yellow for else there is a colour available for v, as radiation!
Let $G_{r, g}$ be the subgraph of G indeed by withes colowed red ad green

$$
G_{b-y}
$$

Let H be the convected component of $G_{p g}$. catting r. If H does not contemn g then we can interchange the colours $m \mathrm{H}$ col colour v red. a cur $\begin{array}{l}\text { Thus assume } H \text { contains } g \text {. } \\ \text { There is a red-green path } r \text { to } ~ \\ \end{array}$, which together with $\left.[r, u, g]\right]$ Since exactly one of b and y is inside the cycle C, b and y are in different convected components of They.
Thus we can interchange the colors in the component containg b ad colour v blue - a cantradictoron!
nu!
wite coloured red and green blue ad yellow.

$$
\begin{aligned}
& u_{t}=u_{x x} \quad \text { for } u(x, t) \text { on } \mathbb{R} \\
& \text { * } u(x, t)=v(z), z=\frac{x}{\sqrt{t}}
\end{aligned}
$$

(i) Show u solves $(1) \Leftrightarrow$ V solves $V^{\prime \prime}+\frac{z}{2} v^{\prime}=0$.

$$
\begin{aligned}
u_{t} & =V^{\prime} \cdot \frac{\partial z}{\partial t} & \frac{\partial z}{\partial t}=\frac{-x}{2 t^{3 / 2}} \\
& =V^{\prime} \cdot \frac{-x}{2 t^{3 / 2}} & \frac{\partial z}{\partial x}=1 / \sqrt{t} \\
u_{x} & =V^{\prime} \frac{\partial z}{\partial x}=V^{\prime} / \sqrt{s t} &
\end{aligned}
$$

(1)

$$
\begin{aligned}
& 2 u_{x x}=v^{\prime \prime} \cdot \frac{1}{t} \\
& u_{t}=u_{x x} \Rightarrow \frac{-x v^{\prime}}{2 t^{\prime}}=\frac{v^{\prime \prime}}{t} \\
& x t(>0) \Rightarrow \frac{-x}{2 t^{\prime}} v^{\prime}=v^{\prime \prime} \\
& \Rightarrow v^{\prime \prime}+\frac{z}{2} v^{\prime}=0, i e
\end{aligned}
$$

Since $t>0$, we can rove thiscrgument to shore (2) $\Rightarrow 1$.
(1) $\& u_{x x}=v^{\prime \prime} \cdot \frac{1}{t}$

$$
u_{t}=u_{x, x} \Rightarrow \frac{-x v^{\prime}}{2 t^{\prime 2_{2}}}=\frac{v^{\prime \prime}}{t}
$$

$$
\Rightarrow v^{\prime \prime}+\frac{z}{2} v^{\prime}=0 \text {, i.e.(2). }
$$

Slaw genro so $v(z)=$

$$
x t(>0) \Rightarrow \frac{-x}{2 \sqrt{t}} v^{\prime}=v^{\prime \prime}
$$ $c_{1} C_{i} \in \mathbb{R}$. Males all $c, C \in R$ can

$$
w=v^{\prime}:(2) \Rightarrow
$$

Since $t>0$, we can reverse t his argument to show

$$
\begin{aligned}
& w^{\prime}+\frac{z}{2} w=0 \\
& \frac{w^{\prime}}{w}=-\frac{2}{2} .
\end{aligned}
$$

(2) \Rightarrow (1).

Show general sol? of (z)
$=\frac{V^{\prime \prime}}{t}$
$V^{\prime \prime}$
ie. (2).
verse
on
is $v(z)=\int_{0}^{z} e^{-3^{2} / 4} d s+C_{1}$
$c, G_{1} \in \mathbb{R}$. Make sue you show all $c, Q_{1} \in \mathbb{R}$ can occur.
$w-v^{\prime}:$ (2) \Rightarrow

$$
w^{\prime}+\frac{z}{2} w=0
$$

$$
\frac{w^{\prime}}{w}=-\frac{z}{2} \quad \quad \underline{w \neq 0}
$$

integrate:

$$
\int \frac{d w}{w}=\int
$$

$$
\ln |v|=-z \mid
$$

$\Rightarrow w= \pm e$
ie. $V^{\prime}=c e$

$$
v=c\}
$$

This give
integrate:

$$
\int \frac{d w}{w}=\int \frac{-z d z}{2}
$$

we you show
occur.

$$
\ln |w|=-z^{2} / 4+1
$$

$$
X \in \mathbb{R}
$$

$w \neq 0$
This gives any $C \in \mathbb{R} \backslash\{0\}$:

$$
\Rightarrow w= \pm e^{\gamma} e^{-z^{2} / 4}
$$

ie. $V^{\prime}=c e^{-2^{2} / 4} \quad c= \pm e^{\gamma}$

$$
V=c \int_{0}^{z} e^{-s^{2} / 4}+G \quad G \in \mathbb{R}
$$

\square

$$
\begin{aligned}
& w=0 \Rightarrow V=G \text {, ie. } \\
& \text { we also get the cage } c=
\end{aligned}
$$

For a contradiction suppose
minimal courter-ex containing now of a The configurations:

$$
12
$$

$\Rightarrow G$ has

- no whines of $\operatorname{deg} 1$ or 2
* ". " " deg 3
- "
- ho vertex of deg 5 adjaunt to
 a vertex of $\operatorname{deg} 5$
- no vertex of deg S adjacent to a vertex of $\operatorname{deg} 6$.

Define the charge Then since the wait charge Redistribute charge on exch and adding its wighbour
\Rightarrow The nett chore is still 12.

