MATH3404, Tutorial Problems 2 (week 3)

Question 1*. Find the critical points of the following constrained optimization problems

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1} \quad \text { subject to } x_{1}+x_{2}+x_{3}=1
$$

and check that they are non-degenerate. Determine the local minima and maxima.
Question 2*. Find the local maxima and minima of the following problem by introducing two Lagrange multipliers

$$
f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}+2 x_{2}+x_{3}
$$

subject to $x_{1}^{2}+2 x_{2}^{2}+4 x_{3}^{2}=1$ and $\left(x_{1}-1\right)^{2}+2 x_{2}^{2}+4 x_{3}^{2}=2$.
Question 3. The following constrained problem has four critical points, two of which are non-degenerate. Show that one of these is a local maximum and the other local minimum:

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}+3 x_{1}^{2}-3 x_{2}^{2}-8 \text { subject to } x_{1}^{2}+x_{2}^{2}=16 .
$$

(If f has a local minimum with constraints, we have the fundamental inequality

$$
f(\mathbf{a}+\epsilon \mathbf{h})-f(\mathbf{a}) \geq 0
$$

for all tangent vector h to the constraint) Show that neither of the degenerate points can be maximum or a minimum.

