MATH3404 Tutorial Sheet 9 (week 11)

Question 1. Solve the problem of time-optimal control to the origin for each of the following systems

$$
\begin{array}{lll}
\left(i^{*}\right) & \dot{x}_{1}=-3 x_{1}+2 x_{2}, & \dot{x}_{2}=2 x_{1}-3 x_{2}+u, \\
\text { (ii) } & \text { where }|u| \leq 1 \\
\dot{x}_{1}=x_{2}, & \dot{x}_{2}=-3 x_{1}-4 x_{2}+u, & \text { where }|u| \leq 1 \\
(i i i) & \dot{x}_{1}=x_{2}, & \dot{x}_{2}=-x_{2}+u,
\end{array} \quad \text { where }|u| \leq 1
$$

Question 2*. Let $\dot{x}_{1}=x_{2}$ and $\dot{x}_{2}=u$ where $|u| \leq 2$ (compare with that given in Example 2 from lectures).
(a) Find the time-optimal control from $(2,2)$ to $(-2,0)$ and calculate the minimum time. Find also the time-optimal control and minimum time from $(-2,0)$ to $(2,2)$. Comment!
(b) Suppose that the constraint is changed to $0 \leq t \leq 2$. Show that there is a time-optimal control to the origin only if $x_{2}<0$ and $x_{1} \geq x_{2}^{2} / 4$.

Question 3. The system $\dot{x}_{1}=x_{2}, \dot{x}_{2}=x_{1}+u,|u| \leq 2$ is to be controlled from x^{0} to x^{1} in minimum time. Show that the time optimal control can only take the values +2 or -2 and that it can switch at most once. Given that ${\underset{\sim}{x}}^{0}=(-1,0)$ and ${\underset{\sim}{x}}^{1}=(1,0)$ show that the switch takes place at $(0, \sqrt{3})$ and find the time at which the switch takes place. Show that the minimum transfer time is $2 \sinh ^{-1} \sqrt{3}$.

Question 4. Solve the problem of time-optimal control to the origin for the system

$$
\begin{equation*}
\dot{x}_{1}=x_{1}+x_{2}+\alpha u, \quad \dot{x}_{2}=4 x_{1}+x_{2}+u, \text { where }|u| \leq 1 \tag{1}
\end{equation*}
$$

in the cases (i) $\alpha=0$ and (ii) $\alpha=-1 / 2$.

