MATH3404 Tutorial Sheet 8 (week 9)

1*. Let $\dot{x}_{1}=x_{2}=f_{1}$ and $\dot{x}_{2}=u=f_{2}$ where $|u| \leq K / m$. Suppose that the initial state is $x^{0}=\left(x_{1}^{0}, x_{2}^{0}\right)=(a, b)$. Control the system to the origin in minimum time. Suppose the initial state (a, b) lies above the switching curve POQ and $t=\eta$ is the time at which the optimal control switches from $-K / m$ to K / m.
(i) Show that at $t=\eta$ the system is at $\left(x_{1}^{0}, x_{2}^{0}\right)=(l, s)$ where

$$
\begin{equation*}
l=a+m\left(b^{2}+2 K a / m\right) /(4 K), \quad s=-(2 K l / m)^{1 / 2} \tag{1}
\end{equation*}
$$

(ii) Apply the condition $H=0$ at $t=0, t=\eta$ and $t=t_{1}$ and deduce that

$$
\begin{array}{rlrl}
A & =1 / s & B & =m(b-s) /(K s), \tag{2}\\
\eta & =m(b-s) / K, t_{1} & =m(b-2 s) / K
\end{array}
$$

(iii) Calculate H as a function of t in the two time intervals $[0, \eta]$ and $\left[\eta, t_{1}\right]$. Hence verify that $H=0$ for all t in $\left[0, t_{1}\right]$.
2^{*}. The system $\dot{x}_{1}=-x_{1}+u$, where $u=u(t)$ is not subject to any constraint, is to be controlled from $x_{1}(0)=1$ to $x_{1}\left(t_{1}\right)=2$ where t_{1} is unspecified, in such as way that

$$
\begin{equation*}
J=\frac{1}{2} \int_{0}^{t_{1}}\left(x_{1}^{2}+u^{2}\right) d t \tag{3}
\end{equation*}
$$

is minimized. Find the optimal control.
3. The system $\dot{x}_{1}=x_{1}+u$, where $u=u(t)$ is not subject to any constraint, is to be controlled from $x_{1}(0)=a$ to $x_{1}\left(t_{1}\right)=b$ where t_{1} is unspecified, in such as way that

$$
\begin{equation*}
J=\frac{1}{2} \int_{0}^{t_{1}}\left(2 x_{1}^{2}+2 u x_{1}+u^{2}\right) d t \tag{4}
\end{equation*}
$$

is minimized. Find the optimal control.

