MATH3404 Tutorial Sheet 8 (week 9)

1*. Let \(\dot{x}_1 = x_2 = f_1 \) and \(\dot{x}_2 = u = f_2 \) where \(|u| \leq K/m \). Suppose that the initial state is \(x^0 = (x^0_1, x^0_2) = (a, b) \). Control the system to the origin in minimum time. Suppose the initial state \((a, b)\) lies above the switching curve POQ and \(t = \eta \) is the time at which the optimal control switches from \(-K/m\) to \(K/m\).

(i) Show that at \(t = \eta \) the system is at \((x^0_1, x^0_2) = (l, s)\) where
\[
l = a + m(b^2 + 2Ka/m)/(4K), \quad s = -(2Kl/m)^{1/2}
\]

(ii) Apply the condition \(H = 0 \) at \(t = 0, \ t = \eta \) and \(t = t_1 \) and deduce that
\[
A = 1/s \quad B = m(b - s)/(Ks), \quad \eta = m(b - s)/K, \ t_1 = m(b - 2s)/K
\]

(iii) Calculate \(H \) as a function of \(t \) in the two time intervals \([0, \eta]\) and \([\eta, t_1]\). Hence verify that \(H = 0 \) for all \(t \) in \([0, t_1]\).

2*. The system \(\dot{x}_1 = -x_1 + u \), where \(u = u(t) \) is not subject to any constraint, is to be controlled from \(x_1(0) = 1 \) to \(x_1(t_1) = 2 \) where \(t_1 \) is unspecified, in such a way that
\[
J = \frac{1}{2} \int_0^{t_1} (x_1^2 + u^2) \, dt
\]
is minimized. Find the optimal control.

3. The system \(\dot{x}_1 = x_1 + u \), where \(u = u(t) \) is not subject to any constraint, is to be controlled from \(x_1(0) = a \) to \(x_1(t_1) = b \) where \(t_1 \) is unspecified, in such a way that
\[
J = \frac{1}{2} \int_0^{t_1} (2x_1^2 + 2ux_1 + u^2) \, dt
\]
is minimized. Find the optimal control.