MATH3404 TUTORIAL SHEET 7 (Week 8)

Question 1.

(A^{*}) Let

$$
J(x)=\int_{t_{0}}^{t_{1}}\left(s(t) \dot{x}^{2}+q(t) x^{2}\right) d t
$$

where $s(t)$ and $q(t)$ are C^{1}. Show that the extremals of J must satisfy

$$
\begin{equation*}
\frac{d}{d t}(s(t) \dot{x})=q(t) x \tag{1}
\end{equation*}
$$

Show that if $s(t)$ and $q(t)$ are positive on $\left[t_{0}, t_{1}\right]$ with $x\left(t_{0}\right)=x_{0}$ and $x\left(t_{1}\right)=x_{1}$, then any curve $x=\phi(t)$ satisfying equation (1) and passing through the end - points gives J a strong local minimum by the Weierstrass's sufficient Theorem. Show that the minimum value of J is

$$
J_{\min }=[s(t) \phi(t) \dot{\phi}(t)]_{t_{0}}^{t_{1}} .
$$

(B) to find the minimizing curve and the value of $J_{\min }$ for the cases

$$
\int_{1}^{2}\left(\dot{x}^{2}+\frac{2}{t^{2}} x^{2}\right) d t, \text { where } x(1)=1, x(2)=4
$$

(This is a very challenging question.)

Question 2. Let Ω be a bounded open domain. Suppose that $u: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a C^{2} function and consider the graph of the function u

$$
G_{u}=\{(x, y, u(x, y)):(x, y) \in \Omega\}
$$

Then the area of the surface by the graph is

$$
\operatorname{Area}\left(G_{u}\right)=\int_{\Omega} \sqrt{1+u_{x}^{2}+u_{y}^{2}} d x d y=\int_{\Omega} \sqrt{1+|\nabla u|^{2}} d x d y
$$

If the graph G_{u} is minimizing, you verify that u satisfies the following the Euler-Lagrange equation:

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 .
$$

The equation can be written as

$$
0=\left(1+u_{y}^{2}\right) u_{x x}+\left(1+u_{x}^{2}\right) u_{u} u-2 u_{x} u_{y} u_{x y} .
$$

