MATH3404 TUTORIAL SHEET 5 (Week 7)

To encourage your participation, the course coordinator introduce a peer assessment in tutorials.

Question 1*. By considering an admissible variation $y=x^{*}(t)+\eta(t)$, where $\eta(t)$ is C^{1} and not necessarily small, show that the extremals found in Tutorial Problem 2: 1.) (i) and (iii) are minimizing curves: i.e. for

$$
\begin{align*}
& \int_{1}^{2} \frac{\dot{x}^{2}}{t^{3}} d t \text { with } x(1)=2, x(2)=17 \tag{i}\\
& \int_{0}^{\pi}\left(\dot{x}^{2}+2 x \sin t\right) d t \text { with } x(0)=x(\pi)=0 \tag{iii}
\end{align*}
$$

Question 2. Find the extremals of $\int_{0}^{\pi} \dot{x}^{2} d t$ with $x(0)=0, x(\pi)=0$ subject to $\int_{0}^{\pi} x^{2} d t=$ $\frac{\pi}{2}$. Show that there is an infinite set of extremals. Evaluate the functional on a typical extremal.
Question 3. Find the extremal of $\int_{0}^{2}\left(\dot{x}^{2}+x\right) d t$, where $x(0)=1, x(2)=48$ subject to the constraint $\int_{0}^{2} t x d t=43$.

