MATH3404, Tutorial problem 3 (at Week 5)

Question 1. Find the extremal for each of the following fix-end point problems:

$$
\begin{equation*}
\int_{1}^{2} \frac{\dot{x}^{2}}{t^{3}} d t \text { with } x(1)=2, x(2)=17 \tag{*}
\end{equation*}
$$

(ii)

$$
\int_{0}^{\frac{\pi}{2}}\left(x^{2}-\dot{x}^{2}-2 x \sin t\right) d t \text { with } x(0)=1, x\left(\frac{\pi}{2}\right)=2
$$

$$
\begin{equation*}
\int_{0}^{\pi}\left(\dot{x}^{2}+2 x \sin t\right) d t \text { with } x(0)=x(\pi)=0 \tag{iii}
\end{equation*}
$$

Question 2. Find the extremal for each of the following:

$$
\begin{align*}
& \int_{0}^{2} \frac{\dot{x}^{2}}{x^{3}} d t \text { with } x(0)=1, x(2)=4 \tag{i*}\\
& \int_{0}^{2}\left(\frac{1}{2} \dot{x}^{2}+x \dot{x}+x+\dot{x}\right) d t \text { with } x(0)=0, x(2)=2
\end{align*}
$$

(ii)

$$
\begin{equation*}
\int_{0}^{1} \frac{\left(1+\dot{x}^{2}\right)^{\frac{1}{2}}}{x} d t \text { with } x(0)=0, x(1)=\sqrt{3} . \tag{iii}
\end{equation*}
$$

