MATH3404 Assignment 3. Due on Friday, 10 October, 2014

1. (3 marks) Use the Weierstrass condition, find the (Strongly) minimizing curve and the value of $J_{\text {min }}$ for the cases

$$
\int_{1}^{2}\left(t^{2} \dot{x}^{2}+2 x^{2}\right) d t
$$

where $x(1)=0, x(2)=7$.
2. (4 marks) The system $\dot{x}=x+u$, where $u=u(t)$ is not subject to any constraint, is to be controlled from $x_{1}(0)=3$ to $x_{1}\left(t_{1}\right)=2$ where t_{1} is unspecified, in such as way that

$$
J=\int_{0}^{t_{1}}\left(x^{2}+u x+\frac{1}{2} u^{2}\right) d t
$$

is minimized. Find the optimal control.
3. (3 marks) Solve the problem of time-optimal control to the origin for the system $\dot{x}_{1}=-3 x_{1}+x_{2}$ and $\dot{x}_{2}=x_{1}-3 x_{2}+u$ where $|u| \leq 1$.

