MATH3404, Assignment 2 (due on 19 September 2014)
Submission: At the tutorial or at the Assignment Box on Level 4 of the Priestley Building 67.

Question 1. (2 Marks)
Find the extremal for the following:

$$
\int_{1}^{2} \frac{2 t \dot{x}+\dot{x}^{2}}{t^{2}} d t \text { with } x(1)=1.5, x(2)=14
$$

Question 2. (2 Marks)
Find the extremal for

$$
\int_{0}^{T}\left(\dot{x}^{2}+2 x \dot{x}+x^{2}\right) d t
$$

with $x(0)=1$ and for $T>0, x(T)$ lies on a given curve $x=c(t)=3$.
Question 3. (3 Marks)
Find the extremals of $\int_{0}^{1}\left[\frac{1}{2} \dot{x}^{2}+2 x\right] d t$ with $x(0)=0$ and $x(1)=5$ subject to the constraint $\int_{0}^{1} 6 t x d t=\frac{11}{2}$.
Question 4. (3 Marks) Let $x=x(t):\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ be a curve in C^{2} with boundary conditions $x\left(t_{0}\right)=x_{0}$ and $x\left(t_{1}\right)=x_{1}$. Consider a functional

$$
J[x]=\int_{t_{0}}^{t_{1}}\left[a(t) \dot{x}^{2}+b(t) x^{2}\right] d t
$$

where $a(t)$ is a C^{2}-function and $a(t) \geq 1$ and $b(t) \geq 0$ for all $t \in\left[t_{0}, t_{1}\right]$.
Assume that $x^{*}=x^{*}(t)$ be an extremal for $J[x]$ and x^{*} also satisfies the boundary conditions $x^{*}\left(t_{0}\right)=x_{0}$ and $x^{*}\left(t_{1}\right)=x_{1}$. Prove that $x^{*}=x^{*}(t)$ must be a minimizer of $J[x]$ for all C^{2}-curve $x\left(t_{0}\right)=x_{0}$ and $x\left(t_{1}\right)=x_{1}$.

Hints:
i) Let $y=x^{*}+\eta$ for any $\eta \in C^{2}\left[t_{0}, t_{1}\right]$ with $\eta\left(t_{0}\right)=\eta\left(t_{1}\right)=0$.
ii) compute

$$
\Delta J=J[y]-J\left[x^{*}\right] .
$$

iii) Using integration by parts, you can show that $\Delta J \geq 0$.

