Costate equations

OH

¢1:_a—%:3$1—|—¢1

(Optimal) State equation &1 = —x1 + ¥y

T1 = —$'1+¢1 =11 — Y1+ 3x1 + Y1
= 4x,
= 1, = Ae* + Be ™
V) = 11+ 24
— 24e* —2Be * 4 Ae*' + Be
= 3Ae* — Be ™

= u”.

End conditons:

1 = 0 att =0

x1 = 2 at t =1



0=A+1EB = B=-A
2 = Ae* + Be ? = A(e* — e?) = 2A5inh 2
A = 1/sinh?2.

Optimal control is

1
~ sinh?2

u*

(3e* + )
(Considerably simpler because we knew ;).

Time Optimal Control of Linear Systems

# |u(t)| < 1, piecewise continuous.

7
a’? b?C7d7
r1 = axr] + bry + lu
[,m
T9 = cxr1 + dry + mu
constant
[
z=Azxz+ lu [ = ( )
~ ~ o~ ~ m

# Control system from z(to) = 2" to z(t;) = ! by



an admissible control, minimizing

]
J:/lﬁ:m—m (fo=1)

to

# Solutions will involve PHASE PLANE ANALYSIS.

det(A — X)) = 0.
Revision:
_ a b T
x=Ar, A= , T =
~ ~ c d - T
Solution
T = QU et 4 Qo €>\2t,
~ ~1 ~2

where A, Ay are eigenvalues of A and v ,v are the
~1 2

corresponding eigenvectors.
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# Case 1. Real nonzero eigenvalues or same sign.

(a) A2 < A <O0; (b) 0< A1 < o
STABLE NODE UNSTABLE NODE

# Case 2. Real, nonzero eigenvalues, of opposite sign

)\1<O<)\2

Saddle,
Unstable
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# Will do Case 3, imaginary and complex eigenval-
ues later if time permits

Returntox = Az + lu, fy=1

(1)
H =) i

= —1+(axy + bxo + lu)
+1Ps(czy + dxy + mu)
= —1 4+ Yi(ax; + bxa) + o(cxy + dxo)
+u(lypy + mapy)
= —ar —
| Wy = —bipy — diby
(1) =2

(2) MAXIMIZE H (as a function of u)
Linear in u, so u* = =1, depending on the sign of

lwl + mwgi

u* = sgn(lpy + may).
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Piecewise continuous controls, switch when {1y + ma)s

changes sign (i.e. at zeros of li) + mabs)

S = l1(t) + maps(t)
SWITCHING FUNCTION.
Between any two adjacent zeros of .S, u* is constant:

State .
T=Ax+ lu", u' =+1or —1.

~Y

Equation
If det A # 0, trajectories for ©* = 1 have an isolated

singularity (equilibrium points) at the solution of

ary +bxo+1 = 0

crx1+dro+m = 0.
For u* = —1, the equilibrium is at the solution of

ary +bxro —1 = 0

cry1 +dxo —m = 0.

Behaviour of both families of trajectories is governed

by the eigenvalues of the “system matrix” A. The pat-
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tern is the same as that of £ = Ax, translated to the

equilibrium point.

If A has real eigenvalues, —A’ has real eigenvalues
also:
A M —(a+dX+det A=0
AT XN+ (a+d)N+det A =0.

Solution of costate equations has the form
= he™ + ke®!
q1, ¢ eigenvalues of —A”
h, k corresponding eigenvectors.
Hence, switching function is of the form
S = I + myhy
= Le®' 4 Me®!

has at most one zero.

Lemma. (i) If eigenvalues of A are real, the switch-

ing function has at most one zero.



VS

ii)  Only possible optimal control sequences are
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ut =< T 18 a zero of S.

#oou = o

Remark. It can be shown that PMP is both necessary
and sufficient for linear time-optimal control problems.
Hence, if we can find a control sequence of the type on

the lemma, it must be an optimal control.

Example.

r1 = —3x1+ 229 + du

j?g — 2$1 — 3.%‘2

to control from any initial state to the origin in mini-

mum time, |u| < 1. Find the optimal control «* mini-



mizing

t1
J:/ 1dt =t — tg

to
Solution.

fo=1, fi = =3x1 4+ 229+ du
fo = 221 — 329

H = —1+ ¥1(—3x1 + 229 + Hu)
+102(221 — 315)
— —1 4 hy (=321 + exs) + Yo(21) — 312)
+u(5hr)

¢1=—§—£=3¢1—2¢2 b 3 —2
¢2 = —g—g — _2¢1 + 3¢2 ~ —2 3

Arx +lu, A=

! 8
|
|
w
DO
{ ™~
|
/\
o O

Y =AY
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(2) H is maximized (wrt u) when
u* = sgn(dyhy) = +1

(3) Optimal solutions of the state eqns are given by

-3 2 5
T = T+ ut, ut = =+1
~ 2 =3 )~ \U
# Eigenvalues of
—3—-X 2 )
A = 3+ XN —14
2 —3—=A
= AN +6\A+5=0
A=—1, -5,

The lemma means that there is at most one switch.
Since both eigenvalues are negative, the trajectories

are a stable node at the equilibrium point.

# u* =1, eqlbrm given by
—332'1—|—2£L’2—|-5:O 331:3

2[131—35132:0 33222



# u* = —1, eqlbrm:

—3ZC1—|-2£C2—5:O
2331—3332:0

# Eigenvectors of A are:

—3 2 U
2 —3 v
—3 2 U
= -5
2 =3 v
uw =1
C™ paths

561:—3
1’2:—2
) v =1u,
, U= —U,

11

z(t) =av et + Bv e + (J)
~ ~1 ~9




12

# To get to 0 in minimum time, the phase point x(t)
must travel along a C* path or a C~ path and can
switch from one to another at most once. There is

only one C~ path going to 0.

# Must arrive at 0
on these two paths.

Slope of these curves at 0 is
CZ:EQ 0
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# Put these together:

e Initial state w on PTO or )~ O, optimal control is

u* =1 or u* = —1 respectively.

o IV above PTOQ~, cannot go to 0 on a C* path
(these go to P). So go on a C~ path until PO is

reached, then switch

—1  until it reaches PO

+1  afterwards
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o IV below PTOQ~, cannot go to 0 on a C~ path
(these go to Q). So to on a C* path until Q~O,

then switch to u* = —1.

+1  until QO reached

u =
—1  afterwards
Summary.
)
1 below PTOQ~
& on PO
ut = 3
—1 above PTOQ~
\ & on Q0.
Example 1.

LAST

# Stable Node

# Find Eigenvectors
o u'= 1 P, C"
o u'=-1 Q;C
# On C* curve — 0, PO

# Find EQLBRM for



On C™ curve — 0, QO

e C"curve — P

o C curve — PTO

# Above PTOQ:

o C curve — ()

e Ctcurve — QO

# Below PTOQ~:

)
1 below PTOQ~ & on PO
Optimal
u* =4 —1 above PTOQ~
Control
\ &on Q0
Example 2.

r1 = 31 + 279 + du

To = 2x1 + 379, lu| <1

Control to 0 in minimum time.

15
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Solution.

=

(2)

3 2 5
r+u

23 )" 0

8-
]

= —1+ Y1321 + 229 + du) + Y221 + 39)
= —1+1(3x1 + 222) + ¥2(221 + 322) + u(5))

—3 —2

= —ATy = v

H is linear in u, |u| <1
= H max at u* = sgn(dy) = £1
Optimal trajectories satisty

| 39 5
T = x+u" Cut = =+l
- 23 0

Eigenvalues of A are 1, 5 UNSTABLE NODE



(3)
# Eqlbrm point for u* =1
3r1+ 229 +5=0
201+ 319 =10
# Eqn for u* = —1
3r1+ 29 — 5 =0
201 + 3x9 =0

17

51312—3
To = +2
1’1—3
332:—2
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(4) Try to construct time-optimal paths by finding
routes to 0 (which we can do, even though P, @) are

unstable)

C*: only states lying on PO get to 0. If we choose
uw* =1, the C* curve through W (outside controllabil-

ity region) cannot meet QO and cannot control to 0.

C~: control to 0 has to intersect PO, cannot do this

for V' outside control region.

For most initial states, the trajectory will not get to 0

under any control.

# Small finite region of controllability.
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# Larger K| |u| < K, larger region of controllability.

Example 3.

T1=x1+ 3x9 — Tu

o Juf <1

To = 31 + T2 — du
control to origin in minimum time.
Solution.

13 —7
T = T+ (7
~ 31/~ —5

(1)
H=-1+ wl(ilfl + 3:132> + ¢2<3ZC1 + CCQ)

+u(—7¢1 — 5¢2)
(2) Maximized (for |u| < 1) if
ut = sgn(—TyY — dihy) = +1.
Optimal trajectories satisfy

13 —7
31 —5
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(3) Eigenvalues of A:

I1—-XA 3
3 1—A

=(1-A)?—9=X—-2\-8=0

(A—=4)(A+2)=0
A = —2, 4 saddle point (unstable)

Eigenvectors: A\ = —2
13 (o] ——2U1
31 () ——202

A= —2 v1 + 3vy = —2vq, ’UQZ—U;(l):U
Eigenvectors: \ =4

13 U1 4@1
31 (%)) 4@2
A=4 v1 + vy = 4vy, vy = vy; (1):1}



(4) Eqlbrm at u* =1,
r1+3xo—7=0
31+ 2o —95=0
3r1+ 92, — 21 =0

$2—2
8xry = 16, P
331—1
Eqlbrm at v* = —1
r1+3x,+7=0
31+ 2x9+5=0 To = —2

333‘1—|-9£IZ'2—|-21:O 33'1:—1

21



22

Region of controllability is an infinite strip. Outside

the strip, control to 0 is impossible. Inside,

—1 below Q~OP* & on Q- O
+1 above Q~OPT & on OP.



