Costate equations

$$
\dot{\psi}_{1}=-\frac{\partial H}{\partial x_{1}}=3 x_{1}+\psi_{1}
$$

(Optimal) State equation $\dot{x}_{1}=-x_{1}+\psi_{1}$

$$
\begin{aligned}
\ddot{x}_{1} & =-\dot{x}_{1}+\dot{\psi}_{1}=x_{1}-\psi_{1}+3 x_{1}+\psi_{1} \\
& =4 x_{1} \\
\Rightarrow \quad x_{1} & =A e^{2 t}+B e^{-2 t} \\
\psi_{1} & =\dot{x}_{1}+x_{1} \\
& =2 A e^{2 t}-2 B e^{-2 t}+A e^{2 t}+B e^{-2 t} \\
& =3 A e^{2 t}-B e^{-2 t} \\
& =u^{*}
\end{aligned}
$$

End conditons:

$$
\begin{array}{ll}
x_{1}=0 & \text { at } t=0 \\
x_{1}=2 & \text { at } t=1
\end{array}
$$

$$
\begin{aligned}
& 0=A+B \quad \Rightarrow \quad B=-A \\
& 2=A e^{2}+B e^{-2}=A\left(e^{2}-e^{-2}\right)=2 A \sinh 2 \\
& A=1 / \sinh 2
\end{aligned}
$$

Optimal control is

$$
u^{*}=\frac{1}{\sinh 2}\left(3 e^{2 t}+e^{-2 t}\right)
$$

(Considerably simpler because we knew t_{1}).

Time Optimal Control of Linear Systems

$\#|u(t)| \leq 1$, piecewise continuous.
\#

$$
\begin{aligned}
& \left.\begin{array}{l}
\dot{x}_{1}=a x_{1}+b x_{2}+l u \\
\dot{x}_{2}=c x_{1}+d x_{2}+m u
\end{array}\right\} \begin{array}{l}
a, b, c, d, \\
l, m \\
\text { constant }
\end{array} \\
& \underset{\sim}{\dot{x}}=A \underset{\sim}{x}+\underset{\sim}{l u} u \quad \underset{\sim}{l}=\binom{l}{m}
\end{aligned}
$$

\# Control system from $\underset{\sim}{x}\left(t_{0}\right)=\underset{\sim}{x}{ }^{0}$ to $\underset{\sim}{x}\left(t_{1}\right)=\underset{\sim}{x}{ }^{1}$ by
an admissible control, minimizing

$$
J=\int_{t_{0}}^{t_{1}} 1 d t=t_{1}-t_{0} . \quad\left(f_{0}=1\right)
$$

\# Solutions will involve PHASE PLANE ANALYSIS.

$$
\operatorname{det}(A-\lambda I)=0
$$

Revision:

$$
\underset{\sim}{\dot{x}}=A \underset{\sim}{x}, \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad \underset{\sim}{x}=\binom{x_{1}}{x_{2}}
$$

Solution

$$
\underset{\sim}{x}=\alpha_{1} \underset{\sim}{v} e^{\lambda_{1} t}+{\underset{\sim}{2}}_{2}^{v} e_{2} e^{\lambda_{2} t},
$$

where λ_{1}, λ_{2} are eigenvalues of A and $\underset{\sim}{v}, \underset{\sim_{2}}{v}$ are the corresponding eigenvectors.
\# Case 1. Real nonzero eigenvalues or same sign.
(a) $\lambda_{2}<\lambda_{1}<0$;
(b) $0<\lambda_{1}<\lambda_{2}$. STABLE NODE
UNSTABLE NODE
\# Case 2. Real, nonzero eigenvalues, of opposite sign $\lambda_{1}<0<\lambda_{2}$

Saddle,
Unstable
\# Will do Case 3, imaginary and complex eigenvalues later if time permits

Return to $\underset{\sim}{\dot{x}}=A \underset{\sim}{x}+\underset{\sim}{l u} u, \quad f_{0}=1$
(1)

$$
\begin{aligned}
H= & \sum \psi_{i} f_{i} \\
= & -1+ \\
\quad & \psi_{1}\left(a x_{1}+b x_{2}+l u\right) \\
& \quad+\psi_{2}\left(c x_{1}+d x_{2}+m u\right) \\
= & -1+\psi_{1}\left(a x_{1}+b x_{2}\right)+\psi_{2}\left(c x_{1}+d x_{2}\right) \\
& \quad+u\left(l \psi_{1}+m \psi_{2}\right)
\end{aligned}
$$

$$
\dot{\psi}_{1}=-a \psi_{1}-c \psi_{2}
$$

$$
\dot{\psi}_{2}=-b \psi_{1}-d \psi_{2}
$$

$\binom{\dot{\psi}_{1}}{\dot{\psi}_{2}}=\underset{\sim}{\dot{\psi}}=-A^{T} \underset{\sim}{\underset{\sim}{\psi}}$.
(2) MAXIMIZE H (as a function of u)

Linear in u, so $u^{*}= \pm 1$, depending on the sign of $l \psi_{1}+m \psi_{2}:$

$$
u^{*}=\operatorname{sgn}\left(l \psi_{1}+m \psi_{2}\right)
$$

Piecewise continuous controls, switch when $l \psi_{1}+m \psi_{2}$ changes sign (i.e. at zeros of $l \psi_{1}+m \psi_{2}$)

$$
S=l \psi_{1}(t)+m \psi_{2}(t)
$$

SWITCHING FUNCTION.

Between any two adjacent zeros of S, u^{*} is constant:
State
Equation $\underset{\sim}{\dot{x}}=A \underset{\sim}{x}+\underset{\sim}{l} u^{*}, \quad u^{*}=+1$ or -1 .
Equation
If $\operatorname{det} A \neq 0$, trajectories for $u^{*}=1$ have an isolated singularity (equilibrium points) at the solution of

$$
\begin{aligned}
a x_{1}+b x_{2}+l & =0 \\
c x_{1}+d x_{2}+m & =0
\end{aligned}
$$

For $u^{*}=-1$, the equilibrium is at the solution of

$$
\begin{aligned}
a x_{1}+b x_{2}-l & =0 \\
c x_{1}+d x_{2}-m & =0
\end{aligned}
$$

Behaviour of both families of trajectories is governed by the eigenvalues of the "system matrix" A. The pat-
tern is the same as that of $\underset{\sim}{x}=A \underset{\sim}{x}$, translated to the equilibrium point.

If A has real eigenvalues, $-A^{T}$ has real eigenvalues also:

$$
\begin{array}{ll}
A: & \lambda^{2}-(a+d) \lambda+\operatorname{det} A=0 \\
A^{T}: & \lambda^{2}+(a+d) \lambda+\operatorname{det} A=0
\end{array}
$$

Solution of costate equations has the form

$$
\underset{\sim}{\psi}=\underset{\sim}{h} e^{q_{1} t}+\underset{\sim}{k} e^{q_{2} t}
$$

q_{1}, q_{2} eigenvalues of $-A^{T}$
$\underset{\sim}{h}, \underset{\sim}{k}$ corresponding eigenvectors.
Hence, switching function is of the form

$$
\begin{aligned}
S & =l \psi_{1}+m \psi_{2} \\
& =L e^{q_{1} t}+M e^{q_{2} t}
\end{aligned}
$$

has at most one zero.
Lemma. (i) If eigenvalues of A are real, the switching function has at most one zero.
(ii) Only possible optimal control sequences are
$\# \quad u^{*}=1, \quad t_{0} \leq t \leq t_{1}$
$\# \quad u^{*}=-1, \quad t_{0} \leq t \leq t_{1}$
$\begin{array}{ll}\# & u^{*}=\left\{\begin{array}{ll}+1, & t_{0} \leq t \leq \tau \\ -1, & \tau \leq t \leq t_{1} \\ \# & u^{*}= \begin{cases}-1, & t_{0} \leq t \leq \tau \\ +1, & \tau \leq t \leq t_{1}\end{cases} \end{array} \text { is a zero of } S .\right. \\ \end{array}$
Remark. It can be shown that PMP is both necessary and sufficient for linear time-optimal control problems. Hence, if we can find a control sequence of the type on the lemma, it must be an optimal control.

Example.

$$
\begin{aligned}
& \dot{x}_{1}=-3 x_{1}+2 x_{2}+5 u \\
& \dot{x}_{2}=2 x_{1}-3 x_{2}
\end{aligned}
$$

to control from any initial state to the origin in minimum time, $|u| \leq 1$. Find the optimal control u^{*} mini-
mizing

$$
J=\int_{t_{0}}^{t_{1}} 1 d t=t_{1}-t_{0}
$$

Solution.

$$
\begin{aligned}
& f_{0}=1, \quad f_{1}=-3 x_{1}+2 x_{2}+5 u \\
& f_{2}=2 x_{1}-3 x_{2}
\end{aligned}
$$

(1)

$$
\begin{aligned}
H=-1 & +\psi_{1}\left(-3 x_{1}+2 x_{2}+5 u\right) \\
& +\psi_{2}\left(2 x_{1}-3 x_{2}\right) \\
= & -1 \\
+ & \psi_{1}\left(-3 x_{1}+e x_{2}\right)+\psi_{2}\left(2 x_{1}-3 x_{2}\right) \\
& +u\left(5 \psi_{1}\right) \\
\dot{\psi}_{1}=-\frac{\partial H}{\partial x_{1}}= & 3 \psi_{1}-2 \psi_{2} \quad \dot{\psi}=\left(\begin{array}{rr}
3 & -2 \\
-2 & 3
\end{array}\right) \underset{\sim}{\sim} \\
\dot{\psi_{2}}=- & \frac{\partial H}{\partial x_{2}}=-2 \psi_{1}+3 \psi_{2} \quad \underset{\sim}{\sim} \\
\dot{\sim}=A \underset{\sim}{x} & +\underset{\sim}{l u} u, \quad A=\left(\begin{array}{rr}
-3 & 2 \\
2 & -3
\end{array}\right), \quad \underset{\sim}{l}=\binom{5}{0} \\
\dot{\psi}= & -A^{T} \psi
\end{aligned}
$$

(2) H is maximized (wrt u) when

$$
u^{*}=\operatorname{sgn}\left(5 \psi_{1}\right)= \pm 1
$$

(3) Optimal solutions of the state eqns are given by

$$
\underset{\sim}{\dot{x}}=\left(\begin{array}{rr}
-3 & 2 \\
2 & -3
\end{array}\right) \underset{\sim}{x}+\binom{5}{0} u^{*}, u^{*}= \pm 1
$$

\# Eigenvalues of

$$
\begin{aligned}
A\left|\begin{array}{cc}
-3-\lambda & 2 \\
2 & -3-\lambda
\end{array}\right| & =(3+\lambda)^{2}-4 \\
& =\lambda^{2}+6 \lambda+5=0
\end{aligned}
$$

$\lambda=-1,-5$.
The lemma means that there is at most one switch.
Since both eigenvalues are negative, the trajectories are a stable node at the equilibrium point.
$\# u^{*}=1$, eqlbrm given by

$$
\left.\begin{array}{r}
-3 x_{1}+2 x_{2}+5=0 \\
2 x_{1}-3 x_{2}=0
\end{array}\right\} \quad \begin{aligned}
& x_{1}=3 \\
& x_{2}=2
\end{aligned}
$$

$\# u^{*}=-1$, eqlbrm:

$$
\left.\begin{array}{r}
-3 x_{1}+2 x_{2}-5=0 \\
2 x_{1}-3 x_{2}=0
\end{array}\right\} \quad \begin{aligned}
& x_{1}=-3 \\
& x_{2}=-2
\end{aligned}
$$

\# Eigenvectors of A are:

$$
\begin{aligned}
& \left(\begin{array}{rr}
-3 & 2 \\
2 & -3
\end{array}\right)\binom{u}{v}=-\binom{u}{v}, \quad v=u,\binom{1}{1}=\underset{\sim_{1}}{v} \\
& \left(\begin{array}{rr}
-3 & 2 \\
2 & -3
\end{array}\right)\binom{u}{v}=-5\binom{u}{v}, v=-u,\binom{1}{-1}=\underset{\sim}{v} \\
& v_{2}
\end{aligned} u^{*}=1 \quad \mathcal{C}^{+} \text {paths } \quad l
$$

$$
\underset{\sim}{x}(t)=\alpha \underset{\sim}{v} e^{-t}+\underset{\sim}{v} e_{2} e^{-5 t}+\binom{3}{2}
$$

$$
\begin{gathered}
u^{*}=-1 \\
\mathcal{C}^{+} \text {paths }
\end{gathered}
$$

\# To get to $\underset{\sim}{0}$ in minimum time, the phase point $\underset{\sim}{x}(t)$ must travel along a \mathcal{C}^{+}path or a \mathcal{C}^{-}path and can switch from one to another at most once. There is only one \mathcal{C}^{-}path going to $\underset{\sim}{0}$.
\# Must arrive at $\underset{\sim}{0}$ on these two paths.

Slope of these curves at 0 is
$\frac{d x_{2}}{d x_{1}}=\frac{0}{5 u^{*}}=0$
\# Put these together:

- Initial state w on $P^{+} O$ or $Q^{-} O$, optimal control is $u^{*}=1$ or $u^{*}=-1$ respectively.
- W above $P^{+} O Q^{-}$, cannot go to 0 on a \mathcal{C}^{+}path (these go to P). So go on a \mathcal{C}^{-}path until $P^{+} O$ is reached, then switch

$$
u^{*}= \begin{cases}-1 & \text { until it reaches } P^{+} O \\ +1 & \text { afterwards }\end{cases}
$$

- W below $P^{+} O Q^{-}$, cannot go to 0 on a \mathcal{C}^{-}path (these go to Q). So to on a \mathcal{C}^{+}path until $Q^{-} O$, then switch to $u^{*}=-1$.

$$
u^{*}= \begin{cases}+1 & \text { until } Q^{-} O \text { reached } \\ -1 & \text { afterwards }\end{cases}
$$

Summary.

$$
u^{*}=\left\{\begin{array}{rr}
1 & \text { below } P^{+} O Q^{-} \\
-1 & \& \text { on } P^{+} O \\
& \& \text { on } Q^{-} O
\end{array}\right.
$$

Example 1.

LAST

\# Stable Node
\# Find Eigenvectors
\# Find EQIBRM for • $u^{*}=1, P ; \mathcal{C}^{+}$ - $u^{*}=-1, Q ; \mathcal{C}^{-}$
$\#$ On \mathcal{C}^{+}curve $\rightarrow \underset{\sim}{0}, P^{+} O$

On \mathcal{C}^{-}curve $\rightarrow 0, Q^{-} O$
\# Above $P^{+} O Q^{-}$:

- \mathcal{C}^{-}curve $\rightarrow P^{+} O$
\# Below $P^{+} O Q^{-}: \quad \bullet \mathcal{C}^{-}$curve $\rightarrow Q$
$\# \begin{gathered}\text { Optimal } \\ \text { Control }\end{gathered} \quad u^{*}=\left\{\begin{array}{c}1 \text { below } P^{+} O Q^{-} \& \text { on } P^{+} O \\ -1 \text { above } P^{+} O Q^{-} \\ \& \text { on } Q^{-} O\end{array}\right.$
Example 2.

$$
\begin{aligned}
& \dot{x}_{1}=3 x_{1}+2 x_{2}+5 u \\
& \dot{x}_{2}=2 x_{1}+3 x_{2}, \quad|u| \leq 1
\end{aligned}
$$

Control to $\underset{\sim}{0}$ in minimum time.

Solution.

$$
\underset{\sim}{\dot{x}}=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right) \underset{\sim}{x}+u\binom{5}{0}
$$

(1)

$$
\begin{aligned}
H & =-1+\psi_{1}\left(3 x_{1}+2 x_{2}+5 u\right)+\psi_{2}\left(2 x_{1}+3 x_{2}\right) \\
& =-1+\psi_{1}\left(3 x_{1}+2 x_{2}\right)+\psi_{2}\left(2 x_{1}+3 x_{2}\right)+u\left(5 \psi_{1}\right) \\
\dot{\sim} & =-A^{T} \underset{\sim}{\sim}=\left(\begin{array}{rr}
-3 & -2 \\
-2 & -3
\end{array}\right) \underset{\sim}{\sim} .
\end{aligned}
$$

(2) H is linear in $u,|u| \leq 1$

$$
\Rightarrow H \max \text { at } u^{*}=\operatorname{sgn}\left(5 \psi_{1}\right)= \pm 1
$$

Optimal trajectories satisfy

$$
\underset{\sim}{\dot{x}}=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right) x+u^{*}\binom{5}{0}, u^{*}= \pm 1
$$

Eigenvalues of A are 1, 5
(3)
\# Eqlbrm point for $u^{*}=1$

$$
\left.\begin{array}{r}
3 x_{1}+2 x_{2}+5=0 \\
2 x_{1}+3 x_{2}=0
\end{array}\right\} \quad \begin{aligned}
& x_{1}=-3 \\
& x_{2}=+2
\end{aligned}
$$

\# Eqn for $u^{*}=-1$

$$
\left.\begin{array}{r}
3 x_{1}+2 x_{2}-5=0 \\
2 x_{1}+3 x_{2}=0
\end{array}\right\} \quad \begin{aligned}
& x_{1}=3 \\
& x_{2}=-2
\end{aligned}
$$

(4) Try to construct time-optimal paths by finding routes to $\underset{\sim}{0}$ (which we can do, even though P, Q are unstable)
\mathcal{C}^{+}: only states lying on $P O$ get to $\underset{\sim}{0}$. If we choose $u^{*}=1$, the \mathcal{C}^{+}curve through W (outside controllability region) cannot meet $Q O$ and cannot control to $\underset{\sim}{0}$.
\mathcal{C}^{-}: control to $\underset{\sim}{0}$ has to intersect $P O$, cannot do this for V outside control region.

For most initial states, the trajectory will not get to $\underset{\sim}{0}$ under any control.
\# Small finite region of controllability.
\# Larger $K,|u| \leq K$, larger region of controllability.

Example 3.

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}+3 x_{2}-7 u \\
& \dot{x}_{2}=3 x_{1}+x_{2}-5 u
\end{aligned}, \quad|u| \leq 1
$$

control to origin in minimum time.

Solution.

$$
\underset{\sim}{\dot{x}}=\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right) \underset{\sim}{x}+\binom{-7}{-5} u
$$

(1)

$$
\begin{aligned}
H=-1+ & \psi_{1}\left(x_{1}+3 x_{2}\right)+\psi_{2}\left(3 x_{1}+x_{2}\right) \\
& +u\left(-7 \psi_{1}-5 \psi_{2}\right)
\end{aligned}
$$

(2) Maximized (for $|u| \leq 1$) if

$$
u^{*}=\operatorname{sgn}\left(-7 \psi_{1}-5 \psi_{2}\right)= \pm 1
$$

Optimal trajectories satisfy

$$
\underset{\sim}{\dot{x}}=\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right) x+u^{*}\binom{-7}{-5}, \quad u^{*}= \pm 1
$$

(3) Eigenvalues of A :

$$
\begin{gathered}
\left|\begin{array}{cc}
1-\lambda & 3 \\
3 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}-9=\lambda^{2}-2 \lambda-8=0 \\
(\lambda-4)(\lambda+2)=0 \\
\lambda=-2,4 \text { saddle point (unstable) }
\end{gathered}
$$

Eigenvectors: $\lambda=-2$

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{-2 v_{1}}{-2 v_{2}} \\
\lambda=-2 \quad v_{1}+3 v_{2}=-2 v_{1}, v_{2}=-v ; \quad\binom{1}{-1}=\underset{\sim}{v}
\end{gathered}
$$

Eigenvectors: $\lambda=4$

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{4 v_{1}}{4 v_{2}} \\
& \lambda=4 \quad v_{1}+3 v_{2}=4 v_{1}, v_{2}=v_{1} ; \quad\binom{1}{1}=\underset{\sim}{v}
\end{aligned}
$$

(4) Eqlbrm at $u^{*}=1$,

$$
\begin{aligned}
& x_{1}+3 x_{2}-7=0 \\
& 3 x_{1}+x_{2}-5=0 \\
& 3 x_{1}+9 x_{2}-21=0 \\
& \left.8 x_{2}=16, \begin{array}{l}
x_{2}=2 \\
x_{1}=1
\end{array}\right\} P
\end{aligned}
$$

Eqlbrm at $u^{*}=-1$

$$
\left.\left.\begin{array}{l}
x_{1}+3 x_{2}+7=0 \\
3 x_{1}+2 x_{2}+5=0 \\
3 x_{1}+9 x_{2}+21=0
\end{array}\right\} \quad \begin{array}{l}
x_{2}=-2 \\
x_{1}=-1
\end{array}\right\} Q
$$

Region of controllability is an infinite strip. Outside the strip, control to $0 \underset{\sim}{0}$ is impossible. Inside,

$$
u^{*}= \begin{cases}-1 & \text { below } Q^{-} O P^{+} \& \text { on } Q^{-} O \\ +1 & \text { above } Q^{-} O P^{+} \& \text { on } O P^{+}\end{cases}
$$

