So the minimum time path is constructed as follows:
\# Optimal control at each t must be K / m or $-K / m$; \# Control switches from one value to the other AT MOST ONCE.

To get to the origin, go until the trajectory cuts one of the parabolic arcs heading towards $\underset{\sim}{0}$; these are the only routes to $\underset{\sim}{0}$.

Optimal Control

$$
u^{*}(t)=\left\{\begin{array}{cc}
\frac{-K}{m} & \text { above POQ } \\
+\frac{K}{m} & \text { and on OP } \\
& \text { and on OQ POQ }
\end{array}\right.
$$

POQ is the switching curve.

The minimum time of transfer t_{1} could be determined by the condition $H=0$ (on optimal trajectory) for all t. There are 3 unknowns A, B and t_{1}. Compute $H(t)$ at $t=0, t=$ switch time $\eta, t=t_{1}$ (see Qn. 1 on Tute sheet). However, can avoid calculating A and B, just finding t_{1}, directly using the state equations. We consider the case (a, b) lies above the switching curve POQ.

$$
\begin{align*}
\dot{x}_{2}=-K / m \Rightarrow x_{2} & =-\frac{K}{m} t+\text { const. } \\
& =-\frac{K}{m} t+b, \quad 0 \leq t \leq \eta \tag{1}
\end{align*}
$$

since $x_{2}(0)=b$. At $t=\eta, x_{2}=s \Rightarrow$

$$
\begin{equation*}
\eta=m(b-s) / K \tag{2}
\end{equation*}
$$

by (1), where s is undetermined. For $t>\eta$,

$$
\begin{equation*}
\dot{x}_{2}=K / m \Rightarrow x_{2}=\frac{K}{m} t+\text { const. } \tag{3}
\end{equation*}
$$

Now $x_{2}=s$ at $t=\eta$ so

$$
\begin{equation*}
x_{2}=K t / m-b+2 s \tag{4}
\end{equation*}
$$

by (2) and (3). At $t=t_{1}, x_{2}=0$, so $t_{1}=m(b-2 s) / K$ by (4). Then s is determined by finding where the path through (a, b) intersects PO. Note that on PO $x_{2}^{2}=2(K / m) x_{1}$ so if we switch on PO at $t=\eta, x_{2}=s$ then $x_{1}=m s^{2} /(2 K)$. Now $\dot{x}_{1}=x_{2}=-\frac{K}{m} t+b$ for $0 \leq t \leq \eta$, so $x_{1}=-\frac{K}{2 m} t^{2}+b t+$ const $=-\frac{K}{2 m} t^{2}+b t+a$ since $x_{1}=a$ at $t=0$. At $t=\eta, x_{1}=m s^{2} /(2 K)$ so $m s^{2} /(2 K)=-\frac{K}{2 m} \eta^{2}+b \eta+a$ but $\eta=m(b-s) / K$ so we can solve for s.

Example 3. Glucose problem:

$$
\dot{x}_{1}=-\alpha x_{1}+u, \quad 0 \leq u \leq m
$$

controlled from $x_{1}=a$ at $t=0$ to $x_{1}=c$ at some time T such that

$$
J=\int_{0}^{T} u d t
$$

is minimized.
Solution. Assume $a, c \geq 0$ and $m \geq \alpha c$, otherwise the system is not controllable.

$$
H=-u+\psi_{1}\left(-\alpha x_{1}+u\right)=-\alpha x_{1} \psi_{1}+u\left(\psi_{1}-1\right)
$$

Since H is linear in u, max of H with respect to u is for

$$
u=\bar{u}= \begin{cases}0, & \text { when } \psi_{1}<1 \\ m, & \text { when } \psi_{1}>1\end{cases}
$$

The costate variable satisfies

$$
\dot{\psi}_{1}=-\partial H / \partial x_{1}=\alpha \psi_{1} \Rightarrow \psi_{1}=A e^{\alpha t}
$$

Since $\alpha>0$ it follows that $e^{\alpha t}>0$ for $t>0$, so the
switching function (coefficient of u in H,)

$$
\psi_{1}-1=A e^{\alpha t}-1
$$

can only have a zero in $t>0$ if $0<A<1$. For $A \geq 1$, it is $>0, \forall t>0$, giving $\bar{u}=m$; for $A \leq 0$, it is $<0 \forall t>0$, giving $\bar{u}=0$. In all 3 cases, the control maximizing H is piecewise constant. So at $t=0$, we have either $\bar{u}=0$ or $\bar{u}=m$.

There is no switch which can be seen as follows:

$$
\begin{aligned}
& \# u(0)=0, \quad H_{t=0}=-\alpha a A=0 \Rightarrow A=0 \\
& \quad \text { and } \psi_{1}-1=-1 \quad \forall t>0 \\
& \# u(0)=m ; \text { at } t=0, H=-m+A(m-\alpha a)=0 \\
& \Rightarrow \quad A=m /(m-\alpha a) .
\end{aligned}
$$

Note $m-\alpha=0$ leads to the contradiction $m=0$.
Thus either $m<\alpha a$ (and thus $A<0$)
or $m>\alpha a($ and thus $A>1)$.
In either case there is no switch.

Hence $\bar{u}=0 \forall t$, or $\bar{u}=m \quad \forall t$. Eqn

$$
\dot{x}_{1}=-\alpha_{1} x_{1}+\bar{u}
$$

integrates to

$$
x_{1}=B e^{-\alpha t}+\bar{u} / \alpha .
$$

End conditions: $x_{1}(0)=a, x_{1}(T)=c$ give

$$
a=B+\bar{u} / \alpha, \quad c=B e^{-\alpha T}+\bar{u} / \alpha
$$

So

$$
\begin{aligned}
B & =a-\bar{u} / \alpha \\
T & =\frac{1}{\alpha} \ln \left(\frac{\bar{u}-\alpha a}{\bar{u}-\alpha c}\right)
\end{aligned}
$$

Case:
$\# a>c, \bar{u}=0$ and exponential decay to $c, T=\frac{1}{\alpha} \ln \frac{a}{c}$, $J=0$.
$\# a<c, \bar{u}=m$ until glucose level increases to c :

$$
\begin{aligned}
T & =\frac{1}{\alpha} \ln \left(\frac{m-\alpha a}{m-\alpha c}\right) \\
J & =\frac{m}{\alpha} \ln \left(\frac{m-\alpha a}{m-\alpha c}\right) \\
& =\int_{0}^{T} u d t=\int_{0}^{T} m d t=m T
\end{aligned}
$$

Time of Arrival Fixed

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}, u\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}, u\right)
\end{aligned}
$$

to be controlled from $\underset{\sim}{x}{ }^{0}$ at $t=t_{0}$ to $\underset{\sim}{x}{ }^{1}$ at $t=t_{1}$, where t_{1} is fixed and known, so as to minimize

$$
J=\int_{t_{0}}^{t_{1}} f_{0}\left(x_{1}, x_{2}, u\right) d t
$$

Find the optimal control.
In previous examples, we needed " $H=0$ " + endpoint conditions to determine arbitrary constants (from solving DE) and t_{1}. But here we know t_{1} already, and
so the endpoint conditions are sufficient to solve the problem. In fact $H \equiv C$, a constant and $C \neq 0$ is a possibility.

Example 4. $\dot{x}_{1}=-x_{1}+u$ to be controlled from $x_{1}=0$ at $t=0$ to $x_{1}=2$ at $t=1$, minimizing

$$
J=\frac{1}{2} \int_{0}^{1}\left(3 x_{1}^{2}+u^{2}\right) d t
$$

(no constraint on $u(t)$). Find the optimal control.
Solution. Observe that t_{1} is known. Take $\psi_{0}=-1$.
Then

$$
\begin{aligned}
H & =\psi_{0} f_{0}+\psi_{1} f_{1}+\psi_{2} f_{2} \\
& =-\frac{1}{2}\left(3 x_{1}^{2}+u^{2}\right)+\psi_{1}\left(-x_{1}+u\right)
\end{aligned}
$$

No constraint on u, we maximinize H by considering

$$
\begin{aligned}
0=\partial H / \partial u & =-u+\psi_{1} \Rightarrow u=\psi_{1} \\
\partial^{2} H / \partial u^{2} & =-1<0, \text { so a maximum. }
\end{aligned}
$$

