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So the minimum time path is constructed as follows:

# Optimal control at each t must be K/m or −K/m;

# Control switches from one value to the other AT

MOST ONCE.

To get to the origin, go until the trajectory cuts one

of the parabolic arcs heading towards 0
∼
; these are the

only routes to 0
∼
.
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Optimal Control

u∗(t) =



−K
m above POQ

and on OP

+K
m below POQ

and on OQ

POQ is the switching curve.

The minimum time of transfer t1 could be determined

by the condition H = 0 (on optimal trajectory) for all

t. There are 3 unknowns A, B and t1. Compute H(t)

at t = 0, t = switch time η, t = t1 (see Qn.1 on

Tute sheet). However, can avoid calculating A and B,

just finding t1, directly using the state equations. We

consider the case (a, b) lies above the switching curve

POQ.

ẋ2 = −K/m⇒ x2 = −K
m
t + const.

= −K
m
t + b, 0 ≤ t ≤ η, (1)
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since x2(0) = b. At t = η, x2 = s⇒

η = m(b− s)/K (2)

by (1), where s is undetermined. For t > η,

ẋ2 = K/m⇒ x2 =
K

m
t + const. (3)

Now x2 = s at t = η so

x2 = Kt/m− b + 2s (4)

by (2) and (3). At t = t1, x2 = 0, so t1 = m(b−2s)/K

by (4). Then s is determined by finding where the path

through (a, b) intersects PO. Note that on PO

x2
2 = 2(K/m)x1 so if we switch on PO at t = η, x2 = s

then x1 = ms2/(2K). Now ẋ1 = x2 = −K
mt + b for

0 ≤ t ≤ η, so x1 = − K
2mt

2+bt+ const = − K
2mt

2+bt+a

since x1 = a at t = 0. At t = η, x1 = ms2/(2K) so

ms2/(2K) = − K
2mη

2 + bη + a but η = m(b− s)/K so

we can solve for s.
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Example 3. Glucose problem:

ẋ1 = −αx1 + u, 0 ≤ u ≤ m,

controlled from x1 = a at t = 0 to x1 = c at some time

T such that

J =

∫ T

0

u dt

is minimized.

Solution. Assume a, c ≥ 0 and m ≥ αc, otherwise

the system is not controllable.

H = −u + ψ1(−αx1 + u) = −αx1ψ1 + u(ψ1 − 1).

Since H is linear in u, max of H with respect to u is

for

u = ū =

 0 , when ψ1 < 1

m, when ψ1 > 1.

The costate variable satisfies

ψ̇1 = −∂H/∂x1 = αψ1 ⇒ ψ1 = Aeαt.

Since α > 0 it follows that eαt > 0 for t > 0, so the
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switching function (coefficient of u in H,)

ψ1 − 1 = Aeαt − 1

can only have a zero in t > 0 if 0 < A < 1. For A ≥ 1,

it is > 0 , ∀t > 0, giving ū = m; for A ≤ 0, it is

< 0 ∀t > 0, giving ū = 0. In all 3 cases, the control

maximizing H is piecewise constant. So at t = 0, we

have either ū = 0 or ū = m.

There is no switch which can be seen as follows:

# u(0) = 0, Ht=0 = −α aA = 0 ⇒ A = 0

and ψ1 − 1 = −1 ∀t > 0

# u(0) = m; at t = 0, H = −m + A(m− αa) = 0

⇒ A = m/(m− αa).

Note m− α = 0 leads to the contradiction m = 0.

Thus either m < αa (and thus A < 0)

or m > αa (and thus A > 1).

In either case there is no switch.
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Hence u = 0 ∀t, or u = m ∀t. Eqn

ẋ1 = −α1x1 + ū

integrates to

x1 = Be−αt + ū/α.

End conditions: x1(0) = a, x1(T ) = c give

a = B + ū/α , c = Be−αT + ū/α

So

B = a− ū/α

T =
1

α
ln

(
ū− αa

ū− αc

)
.

Case:

# a > c, ū = 0 and exponential decay to c, T = 1
αlnac ,

J = 0.
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# a < c, ū = m until glucose level increases to c:

T =
1

α
ln

(
m− αa

m− αc

)
J =

m

α
ln

(
m− αa

m− αc

)
.

=

∫ T

0

u dt =

∫ T

0

mdt = mT.

Time of Arrival Fixed

ẋ1 = f1(x1, x2, u)

ẋ2 = f2(x1, x2, u)

to be controlled from x
∼

0 at t = t0 to x
∼

1 at t = t1, where

t1 is fixed and known, so as to minimize

J =

∫ t1

t0

f0(x1, x2, u)dt.

Find the optimal control.

In previous examples, we needed “H = 0” + end-

point conditions to determine arbitrary constants (from

solving DE) and t1. But here we know t1 already, and
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so the endpoint conditions are sufficient to solve the

problem. In fact H ≡ C, a constant and C 6= 0 is a

possibility.

Example 4. ẋ1 = −x1 + u to be controlled from

x1 = 0 at t = 0 to x1 = 2 at t = 1, minimizing

J =
1

2

∫ 1

0

(3x2
1 + u2)dt

(no constraint on u(t)). Find the optimal control.

Solution. Observe that t1 is known. Take ψ0 = −1.

Then

H = ψ0f0 + ψ1f1 + ψ2f2

= −1

2
(3x2

1 + u2) + ψ1(−x1 + u).

No constraint on u, we maximinize H by considering

0 = ∂H/∂u = −u + ψ1 ⇒ u = ψ1

∂2H/∂u2 = −1 < 0, so a maximum.


