OPTIMAL CONTROL

Recall: Isoperimetric Problems included constraints. In control theory, functionals are minimized (or maximized) subject to:

- # constraints which are D E s;
- # the ADMISSIBLE FUNCTIONS are less well-behaved;
- # solutions satisfy necessary conditions which generalise the Euler-Lagrange equation.

Sample Problem 1: Level of glucose in bloodstream x(t) is metabolised at a rate $\alpha x(t)$. Change (control) the level of x from x = a at time 0 to x = c at a time T, by infusing at a rate u(t), while minimizing the total amount given to a patient,

$$J = \int_0^T u(t)dt.$$

That is, minimize $J = \int_0^T u \, dt$, subject to $\dot{x} = -\alpha x + u(t).$

SAMPLE PROBLEM 2: A particle moves in the plane, force $F_{\sim}(t) = {u_1 \choose u_2}$ (per unit mass)

$$\ddot{x} = u_1, \qquad \ddot{y} = u_2.$$

This gives a set of four, 1st order D E s by

$$egin{array}{rcl} x_1 &= x_1, & \dot{x}_1 = x_2, & x_3 = y, & \dot{x}_3 = x_4 \ \dot{x}_1 &= x_2, & \dot{x}_2 = u_1 & (*) \ \dot{x}_3 &= x_4, & \dot{x}_4 = u_2. \end{array}$$

STATE SPACE of the system is given by the vectors $\underset{\sim}{x} = (x_1, x_2, x_3, x_4)^T$; here the ^T stands for the transpose of the vector so $\underset{\sim}{x}$ is a column matrix. The state space variables specify the position and velocity of the system at t. The quantities $\underset{\sim}{u} = \binom{u_1}{u_2}$ are controls. Realistically, $\left| \underset{\sim}{F} \right| \leq K$, or $|u_i| \leq 1$, i = 1, 2, or $\underset{\sim}{u} \in U$ for some such subregion, U, in control space.

Control Problem: Given the DE (*), control the system from an initial state $\underset{\sim}{x}(t_0) = \underset{\sim}{x}_0$ to a given **TARGET STATE** $\underset{\sim}{x}(t_1) = \underset{\sim}{x}_1$ (t_1 usually free). If this is possible, say the system is CONTROLLABLE. If a system is controllable from $\underset{\sim}{x}_0$ to $\underset{\sim}{x}_1$ by $\underset{\sim}{u} \in U$, find the control $\underset{\sim}{u} = \underset{\sim}{u}(t)$ minimizing

$$J = \int_{t_0}^{t_1} f_0(\underline{x}, \underline{u}) dt \qquad (\text{cost of transfer}).$$

State Equations

$$\dot{x}_i = f_i(x, u), \quad i = 1, ..., 4.$$

Cost Functional

$$J = \int_{t_0}^{t_1} f_0(\underset{\sim}{x}, \underset{\sim}{u}) dt$$

One **General Class** of problem: Subject to the DE constraint

$$\dot{\underline{x}} = \underbrace{f(\underline{x}, \ \underline{u})}_{\sim} \overset{}{\underset{\sim}{\sim}} \overset{}{\underset{\sim}{\sim}}$$
} \overset{}{\underset{\sim}{\sim}} \overset{}{\underset{\sim}{\sim}} \overset{}{\underset{\sim}{\sim}} \overset{}{\underset{\sim}{\sim}} \overset{}{\underset{\sim

control x(t), an *n*-dimensional vector, from $\underset{\sim_0}{x}$ at $t = t_0$ to $\underset{\sim_1}{x}$ at $t = t_1$ so that the cost functional $\int_{1}^{t_1} f^{t_1}$

$$J = \int_{t_0}^{t_1} f_0(\underset{\sim}{x}, \underset{\sim}{u}) dt$$

is minimized.

$$x_{\sim 0}, x_{\sim 1}, t_0$$
 FIXED; t_1 UNSPECIFIED.

An admissible control $\underset{\sim}{u} = \underset{\sim}{u}^{*}(t)$ that transfers the system from $\underset{\sim}{x}$ to $\underset{\sim}{x}$ and minimizes J is called an OPTIMAL CONTROL. We assume that such a control exists. A first necessary condition analogous to the Euler-Lagrange equation, is needed. The idea is that any control failing this condition could not be optimal. Any control satisfying it *might be* optimal and needs to be looked at more closely.

Given

- State eqns $\dot{x} = \int_{\sim}^{\infty} (x, u);$
- Initial state $x(t_0) = x_{\sim 0};$
- Cost functional $J = \int_{t_0}^{t_1} f_0(\underline{x}, \underline{u}) dt;$
- Set of admissible controls $u(t) \in U$ (piecewise conts.)

Find $u^*(t)$ and path $x^*(t)$, transferring system from $x_{\sim 0}$ to $x_{\sim 1}$ such that J is minimized.

Pontryagin Maximum Principle

illustrated for a 2 - D state space. Consider

$$\dot{x}_1 = f_1(x_1, x_2, u)$$

 $\dot{x}_2 = f_2(x_1, x_2, u).$

Want to go from (x_1^0, x_2^0) at $t = t_0$ to (x_1^1, x_2^1) at time t_1 , using **(#) piecewise smooth**, **(##) bounded** admissible control functions u(t) so that

$$J = \int_{t_0}^{t_1} f_0(x_1, x_2, u) dt \quad \text{minimized.}$$

Hamiltonian

$$H = \psi_0 f_0(x_1, x_2, u) + \psi_1 f_1(x_1, x_2, u) + \psi_2 f_2(x_1, x_2, u)$$

where $\psi_i = \psi_i(t), i = 0, 1, 2$, satisfy

$$\psi_i = -\partial H / \partial x_i \,, \quad i = 0, 1, 2$$

 $(x_0 \text{ defined below})$

Theorem. Let $u^*(t)$ be an admissible control with corresponding path $x^*(t) = {\binom{x_1^*}{x_2^*}}$ that takes the system from (t_0, x^0) to (t_1, x^1) at some (unspecified) time t_1 . Then in order that u^* and x^* be optimal, it is necessary that \exists a non zero vector $\psi = (\psi_0, \psi_1, \psi_2)^T$ such that

(PMP)
$$\psi_{i} = -\partial H / \partial x_{i}, \quad i = 0, 1, 2$$
 Costate eqns

and a scalar function

$$H(\psi, x, u) = \psi_0 f_0 + \psi_1 f_1 + \psi_2 f_2$$

such that

(i) $\forall t \in [t_0, t_1]$, *H* attains its maximum as a function of *u* at $u = u^*(t)$;

(ii)
$$H(\psi^*, x^*, u^*) = 0$$
 and $\psi_0 \leq 0$ at $t = t_1$, where $\psi^*(t)$ is the solution of (PMP) for $u = u^*(t)$.

Furthermore, $H(\psi^*(t), \chi^*(t), u^*(t)) = \text{const.}$ and $\psi_0(t) = \text{const.}$, so that H = 0 and $\psi_0 \leq 0$ at each point on an optimal trajectory. This theorem called Pontryagin Maximum Princ.

DEFINITION of x_0 : Let x_0 be the solution of the DE

 $\dot{x}_0 = f_0(x_1, x_2, u), \, x_0(t_0) = 0.$

That is, $x_0(t)$ measures the cost incurred up to t.

Example 1. Let $\dot{x}_1 = -x_1 + u$. Control the system from $x_1 = a$ at t = 0 to $x_1 = b$ at t_1 , so that $J = \frac{1}{2} \int_0^{t_1} u^2 dt$ is minimized. We will consider the special cases a = 1, b = 2 and b = 2, a = 1.

Solution. Either write down the previous equations

omitting x_2 , f_2 , and ψ_2 or let x_2 be a constant by:

$$f_0(x_1, x_2, u) = \frac{1}{2}u^2$$

$$f_1(x_1, x_2, u) = -x_1 + u$$

$$f_2(x_1, x_2, u) = 0.$$

$$H = \psi_0 f_0 + \psi_1 f_1 + \psi_2 f_2 = \psi_0 u^2 / 2 + \psi_1 (-x_1 + u)$$
$$\dot{\psi}_0 = -\partial H / \partial x_0 = 0 \Rightarrow \psi_0 = \text{ const.}$$
$$\dot{\psi}_1 = -\partial H / \partial x_1 = \psi_1.$$

Always $\psi_0 = \text{const.}$ because H is not a function of x_0 So choose $\psi_0 = -1$

(as long as $\psi_0 < 0$ we can divide everything by ψ_0).

So
$$\psi = -1$$
, $\psi_1 = Ae^t$.

Now maximize H as a function of u:

$$\partial H/\partial u = \psi_0 u + \psi_1 = -u + \psi_1, \ \frac{\partial^2 H}{\partial u^2} = -1.$$

So H is minimized in u by

$$u = \psi_1,$$

That is $u = Ae^t$. The corresponding soln for x is

$$\dot{x}_1 = -x_1 + Ae^t$$
$$\Rightarrow \quad x_1(t) = Be^{-t} + \frac{1}{2}Ae^t$$

END CONDITIONS:

$$x_1(0) = a = B + A/2$$

$$x_1(t_1) = b = Be^{-t_1} + Ae^{t_1}/2$$

$$\Rightarrow \quad B = \frac{ae^{t_1} - b}{e^{t_1} - e^{-t_1}}, \quad \frac{A}{2} = \frac{b - ae^{-t_1}}{e^{t_1} - e^{-t_1}}$$

Now t_1 free so that $H(t_1) = 0$ and H does not depend explicitly on t so that $H \equiv K$, a constant. Thus H(t) = 0 for all t. Now $H = u^2/2 + \psi_1(-x_1 + u)$ so $H(0) = A^2/2 + A(-[A/2 + B] + A) = -AB$, since $u^*(0) = \psi_1(0) = A$ and $x_1(0) = A/2 + B$. a = 2, b = 1: Then $AB = 0 \implies A = 0$ or B = 0. If $B = 0, e^{t_1} = 1/2$, impossible for $t_1 > 0$. If A = 0, $e^{t_1} = 2$. Then the optimal control is u = 0, optimal path $x_1 = 2e^{-t}$, total cost J = 0. a = 1, b = 2: Then $AB = 0 \implies A = 0$ or B = 0. If B = 0, $e^{t_1} = 2$ and $t_1 = \ln 2$. Then A = 2 so the optimal control is $u = 2e^t$, optimal path is $x_1 = e^t/2$ total cost $J = \int_0^{\ln 2} 2e^{2t} dt = 3$. If A = 0, $e^{t_1} = 1/2$ impossible for $t_1 > 0$. So it costs less for the system to go from $x_0 = 2$ to $x_1 = 1$, by exponential decay, than from $x_0 = 1$ to $x_1 = 2$ by forcing. However, if $|u| \leq 1$, we could not get from $x_0 = 1$ to $x_1 = 2$ at all. In fact, keeping u = +1 just holds the system at the level $x_0 = 1$.

Example 2. $\dot{x}_1 = x_2$, $\dot{x}_2 = u$; control from given initial point (a, b) at $t_0 = 0$ to $\overset{\circ}{\underset{\sim}{0}}$ in as short a time as possible.

Solution. "Time-optimal control to the origin". Note

the system is just $\ddot{x} = u$, x = a, $\dot{x} = b$ at $t = t_0 = 0$. A physical model is a propelled truck $m\ddot{x} = F$, $|F| \le K$ $\ddot{x} = u(t)$, $|u| \le K/m$.

Cost is t_1 and has to be in the form

$$J = \int_0^{t_1} f_0(x_1, x_2, u) dt$$

to use the PMP. Choose $f_0 = 1$

$$f_0(x_1, x_2, u) = 1$$

$$f_1(x_1, x_2, u) = x_2$$

$$f_2(x_1, x_2, u) = u$$

$$H = -1 + \psi_1 x_2 + \psi_2 u$$

$$\dot{\psi}_1 = -\partial H / \partial x_1 = 0; \quad \dot{\psi}_2 = -\partial H / \partial x_2 = -\psi_1$$

$$\Rightarrow \quad \psi_1 = A, \quad \psi_2 = B - At.$$

Now maximize H as a function of u, where u is taken as bounded, $|u| \leq K/m$. The maximum value of H if $\psi_2 > 0$ is for u = K/m; if $\psi_2 < 0$, max value occurs when u = -K/m.

$$u(t) = \frac{K}{m}$$
 sqn $\psi_2(t)$

That is, the control *switches* from K/m to -K/mwhen ψ_2 goes from positive to negative; and switches from -K/m to K/m when ψ_2 changes from negative to positive.

But $\psi_2 = B - At$ can change sign once \Rightarrow only one switch.

Corresponding solution for x_1 and x_2 is as follows: let $u^*(t) = \frac{K}{m} \operatorname{sgn} \psi_2(t)$. This is constant between switches,

$$+K/m \text{ or } -K/m:$$

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = u^*,$$

$$u^* = \pm K/m$$

$$dx_2/dx_1 = u^*/x_2$$

$$\int x_2 dx_2 = \int u^* dx_1 + \text{ const}$$
i.e.
$$x_2^2 = 2u^* x_1 + \text{ const.}$$

To each of the allowed values of u^* there corresponds a family of parabolas.

$$u^* = K/m \qquad \qquad u^* = -K/m$$