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OPTIMAL CONTROL

Recall: Isoperimetric Problems included constraints.

In control theory, functionals are minimized (or maxi-

mized) subject to:

# constraints which are DE s;

# the ADMISSIBLE FUNCTIONS are less well-behaved;

# solutions satisfy necessary conditions which gener-

alise the Euler-Lagrange equation.

Sample Problem 1: Level of glucose in bloodstream

x(t) is metabolised at a rate αx(t). Change (control)

the level of x from x = a at time 0 to x = c at a time

T , by infusing at a rate u(t), while minimizing the total

amount given to a patient,

J =

∫ T

0

u(t)dt.
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That is, minimize J =

∫ T

0

u dt, subject to

ẋ = −αx + u(t).

SAMPLE PROBLEM 2: A particle moves in the

plane, force F
∼

(t) =
(
u1
u2

)
(per unit mass)

ẍ = u1 , ÿ = u2.

This gives a set of four, 1st order DE s by

x1 = x, ẋ1 = x2, x3 = y, ẋ3 = x4

ẋ1 = x2, ẋ2 = u1 (∗)

ẋ3 = x4, ẋ4 = u2.

STATE SPACE of the system is given by the vectors

x
∼

= (x1, x2, x3, x4)
T ; here the T stands for the trans-

pose of the vector so x
∼

is a column matrix. The state

space variables specify the position and velocity of the

system at t. The quantities u
∼

=
(
u1
u2

)
are controls. Re-

alistically,
∣∣∣F
∼

∣∣∣ ≤ K, or |ui| ≤ 1, i = 1, 2, or u
∼
∈ U for

some such subregion, U, in control space.
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Control Problem: Given the DE (∗), control the

system from an initial state x
∼
(t0) = x

∼0
to a given

TARGET STATE x
∼
(t1) = x

∼1
(t1 usually free). If

this is possible, say the system is CONTROLLABLE.

If a system is controllable from x
∼0

to x
∼1

by u
∼
∈ U , find

the control u
∼

= u
∼
(t) minimizing

J =

∫ t1

t0

f0(x∼
, u
∼
)dt (cost of transfer).

State Equations

ẋi = fi(x∼
, u
∼
) , i = 1, ..., 4.

Cost Functional

J =

∫ t1

t0

f0(x∼
, u
∼
)dt
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One General Class of problem: Subject to the DE

constraint

ẋ
∼

= f
∼
(x
∼
, u
∼
)

control x(t), an n-dimensional vector, from x
∼0

at

t = t0 to x
∼1

at t = t1 so that the cost functional

J =

∫ t1

t0

f0(x∼
, u
∼
)dt

is minimized.

x
∼0
, x
∼1
, t0 FIXED; t1 UNSPECIFIED.

An admissible control u
∼

= u
∼
∗(t) that transfers the sys-

tem from x
∼0

to x
∼1

and minimizes J is called an

OPTIMAL CONTROL. We assume that such a con-

trol exists. A first necessary condition analogous to the

Euler-Lagrange equation, is needed. The idea is that

any control failing this condition could not be optimal.

Any control satisfying it might be optimal and needs

to be looked at more closely.
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Given

• State eqns ẋ
∼

= f
∼
(x
∼
, u
∼
);

• Initial state x
∼
(t0) = x

∼0
;

• Cost functional J =

∫ t1

t0

f0(x∼
, u
∼
)dt;

• Set of admissible controls u
∼
(t) ∈ U (piecewise conts.)

Find u
∼
∗(t) and path x

∼
∗(t), transferring system from x

∼0

to x
∼1

such that J is minimized.

Pontryagin Maximum Principle

illustrated for a 2−D state space. Consider

ẋ1 = f1(x1, x2, u)

ẋ2 = f2(x1, x2, u).

Want to go from (x0
1, x

0
2) at t = t0 to (x1

1, x
1
2) at time

t1, using (#) piecewise smooth, (##) bounded

admissible control functions u(t) so that

J =

∫ t1

t0

f0(x1, x2, u)dt minimized.
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Hamiltonian

H = ψ0f0(x1, x2, u) +ψ1f1(x1, x2, u) +ψ2f2(x1, x2, u)

where ψi = ψi(t), i = 0, 1, 2, satisfy

ψ̇i = −∂H/∂xi , i = 0, 1, 2

(x0 defined below)

Theorem. Let u∗(t) be an admissible control with

corresponding path x
∼
∗(t) =

(x∗1
x∗2

)
that takes the system

from (t0, x∼
0) to (t1, x∼

1) at some (unspecified) time t1.

Then in order that u∗ and x
∼
∗ be optimal, it is necessary

that ∃ a non zero vector ψ
∼

= (ψ0, ψ1, ψ2)
T such that

(PMP) ψ
∼i

= −∂H/∂xi , i = 0, 1, 2 Costate eqns

and a scalar function

H(ψ
∼
, x
∼
, u) = ψ0f0 + ψ1f1 + ψ2f2

such that
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(i) ∀t ∈ [t0, t1], H attains its maximum as a function

of u at u = u∗(t);

(ii) H(ψ
∼

∗, x
∼
∗, u
∼
∗) = 0 and ψ0 ≤ 0 at t = t1, where

ψ
∼

∗(t) is the solution of (PMP) for u = u∗(t).

Furthermore, H(ψ
∼

∗(t), x
∼
∗(t), u∗(t)) = const. and

ψ0(t) = const., so that H = 0 and ψ0 ≤ 0 at each

point on an optimal trajectory. This theorem called

Pontryagin Maximum Princ.

DEFINITION of x0: Let x0 be the solution of the

DE

ẋ0 = f0(x1, x2, u), x0(t0) = 0.

That is, x0(t) measures the cost incurred up to t.

Example 1. Let ẋ1 = −x1 + u. Control the system

from x1 = a at t = 0 to x1 = b at t1, so that

J = 1
2

∫ t1

0

u2dt is minimized. We will consider the spe-

cial cases a = 1, b = 2 and b = 2, a = 1.

Solution. Either write down the previous equations
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omitting x2, f2, and ψ2 or let x2 be a constant by:

f0(x1, x2, u) =
1

2
u2

f1(x1, x2, u) = −x1 + u

f2(x1, x2, u) = 0.

H = ψ0f0 + ψ1f1 + ψ2f2 = ψ0 u
2/2 + ψ1(−x1 + u)

ψ̇0 = −∂H/∂x0 = 0 ⇒ ψ0 = const.

ψ̇1 = −∂H/∂x1 = ψ1.

Always ψ0 = const. because H is not a function of x0

So choose ψ0 = −1

(as long as ψ0 < 0 we can divide everything by ψ0).

So ψ = −1, ψ1 = Aet.

Now maximize H as a function of u:

∂H/∂u = ψ0u + ψ1 = −u + ψ1,
∂2H

∂u2
= −1.

So H is minimized in u by

u = ψ1,
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That is u = Aet. The corresponding soln for x is

ẋ1 = −x1 + Aet

⇒ x1(t) = Be−t +
1

2
Aet.

END CONDITIONS:

x1(0) = a = B + A/2

x1(t1) = b = Be−t1 + Aet1/2

⇒ B = aet1−b
et1−e−t1 ,

A
2 = b−ae−t1

et1−e−t1 .

Now t1 free so that H(t1) = 0 and H does not de-

pend explicitly on t so that H ≡ K, a constant. Thus

H(t) = 0 for all t. Now H = u2/2 + ψ1(−x1 + u)

so H(0) = A2/2 + A(−[A/2 + B] + A) = −AB,

since u∗(0) = ψ1(0) = A and x1(0) = A/2 + B.

a = 2, b = 1: Then AB = 0 ⇒ A = 0 or B = 0.

If B = 0, et1 = 1/2, impossible for t1 > 0. If A = 0,

et1 = 2. Then the optimal control is u = 0, optimal

path x1 = 2e−t, total cost J = 0. a = 1, b = 2:

Then AB = 0 ⇒ A = 0 or B = 0. If B = 0,
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et1 = 2 and t1 = ln2. Then A = 2 so the optimal con-

trol is u = 2et, optimal path is x1 = et/2 total cost

J =
∫ ln2

0 2e2td t = 3. If A = 0, et1 = 1/2 impossible

for t1 > 0. So it costs less for the system to go from

x0 = 2 to x1 = 1, by exponential decay, than from

x0 = 1 to x1 = 2 by forcing. However, if |u| ≤ 1,

we could not get from x0 = 1 to x1 = 2 at all. In

fact, keeping u = +1 just holds the system at the level

x0 = 1.

Example 2. ẋ1 = x2, ẋ2 = u; control from given

initial point (a, b) at t0 = 0 to 0
∼

in as short a time as

possible.

Solution. “Time-optimal control to the origin”. Note
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the system is just ẍ = u, x = a, ẋ = b at t = t0 = 0.

A physical model

is a propelled truck

mẍ = F, |F | ≤ K

ẍ = u(t), |u| ≤ K/m.

Cost is t1 and has to be in the form

J =

∫ t1

0

f0(x1, x2, u)dt

to use the PMP. Choose f0 = 1

f0(x1, x2, u) = 1

f1(x1, x2, u) = x2

f2(x1, x2, u) = u

H = −1 + ψ1x2 + ψ2u

ψ̇1 = −∂H/∂x1 = 0 ; ψ̇2 = −∂H/∂x2 = −ψ1

⇒ ψ1 = A, ψ2 = B − At.

Now maximize H as a function of u, where u is taken

as bounded, |u| ≤ K/m. The maximum value of H if
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ψ2 > 0 is for u = K/m; if ψ2 < 0, max value occurs

when u = −K/m.

u(t) =
K

m
sqn ψ2(t)

That is, the control switches from K/m to −K/m

when ψ2 goes from positive to negative; and switches

from −K/m to K/m when ψ2 changes from negative

to positive.

But ψ2 = B − At can change sign once

⇒ only one switch.

Corresponding solution for x1 and x2 is as follows: let

u∗(t) = K
m sgn ψ2(t). This is constant between switches,
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+K/m or −K/m:

ẋ1 = x2

ẋ2 = u∗,

u∗ = ±K/m

dx2/dx1 = u∗/x2∫
x2dx2 =

∫
u∗dx1 + const

i.e. x2
2 = 2u∗x1 + const.

To each of the allowed values of u∗ there corresponds a

family of parabolas.

u∗ = K/m u∗ = −K/m


