OPTIMAL CONTROL

Recall: Isoperimetric Problems included constraints. In control theory, functionals are minimized (or maximized) subject to:
\# constraints which are $D E s$;
\# the ADMISSIBLE FUNCTIONS are less well-behaved;
\# solutions satisfy necessary conditions which generalise the Euler-Lagrange equation.

Sample Problem 1: Level of glucose in bloodstream $x(t)$ is metabolised at a rate $\alpha x(t)$. Change (control) the level of x from $x=a$ at time 0 to $x=c$ at a time T, by infusing at a rate $u(t)$, while minimizing the total amount given to a patient,

$$
J=\int_{0}^{T} u(t) d t
$$

That is, minimize $J=\int_{0}^{T} u d t$, subject to

$$
\dot{x}=-\alpha x+u(t) .
$$

SAMPLE PROBLEM 2: A particle moves in the plane, force $\underset{\sim}{F}(t)=\binom{u_{1}}{u_{2}}$ (per unit mass)

$$
\ddot{x}=u_{1}, \quad \ddot{y}=u_{2}
$$

This gives a set of four, 1st order $D E s$ by

$$
\begin{array}{ll}
x_{1}=x, \quad \dot{x}_{1}=x_{2}, \quad x_{3}=y, & \dot{x}_{3}=x_{4} \\
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=u_{1} & (*) \\
\dot{x}_{3}=x_{4}, \quad \dot{x}_{4}=u_{2} . &
\end{array}
$$

STATE SPACE of the system is given by the vectors $\underset{\sim}{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}$; here the ${ }^{T}$ stands for the transpose of the vector so $\underset{\sim}{x}$ is a column matrix. The state space variables specify the position and velocity of the system at t. The quantities $\underset{\sim}{u}=\binom{u_{1}}{u_{2}}$ are controls. Realistically, $|\underset{\sim}{F}| \leq K$, or $\left|u_{i}\right| \leq 1, i=1,2$, or $\underset{\sim}{u} \in U$ for some such subregion, U, in control space.

Control Problem: Given the DE (*), control the system from an initial state $\underset{\sim}{x}\left(t_{0}\right)=\underset{\sim}{x} \underset{\sim}{x}$ to a given TARGET STATE $\underset{\sim}{x}\left(t_{1}\right)=\underset{\sim}{x}\left(t_{1}\right.$ usually free). If this is possible, say the system is CONTROLLABLE. If a system is controllable from $\underset{\sim}{x}$ to $\underset{\sim}{x}$ by $\underset{\sim}{u} \in U$, find the control $\underset{\sim}{u}=\underset{\sim}{u}(t)$ minimizing

$$
J=\int_{t_{0}}^{t_{1}} f_{0}(\underset{\sim}{x}, \underset{\sim}{u}) d t \quad \text { (cost of transfer). }
$$

State Equations

$$
\dot{x}_{i}=f_{i}(\underset{\sim}{x}, \underset{\sim}{u}), \quad i=1, \ldots, 4 .
$$

Cost Functional

$$
J=\int_{t_{0}}^{t_{1}} f_{0}(\underset{\sim}{x}, \underset{\sim}{u}) d t
$$

One General Class of problem: Subject to the $D E$ constraint

$$
\underset{\sim}{\dot{x}}=\underset{\sim}{f} \underset{\sim}{x} \underset{\sim}{x}, \underset{\sim}{u})
$$

control $x(t)$, an n-dimensional vector, from $\underset{\sim_{0}}{x}$ at $t=t_{0}$ to $\underset{\sim}{x}$ at $t=t_{1}$ so that the cost functional

$$
J=\int_{t_{0}}^{t_{1}} f_{0}(\underset{\sim}{x}, \underset{\sim}{u}) d t
$$

is minimized.

$$
\underset{\sim}{x},{\underset{\sim}{1}}_{1}^{x}, t_{0} \quad \text { FIXED; } \quad t_{1} \quad \text { UNSPECIFIED. }
$$

An admissible control $\underset{\sim}{u}=\underset{\sim}{u}{\underset{\sim}{u}}^{*}(t)$ that transfers the system from $\underset{\sim}{x}$ to $\underset{\sim}{x}$ and minimizes J is called an OPTIMAL CONTROL. We assume that such a control exists. A first necessary condition analogous to the Euler-Lagrange equation, is needed. The idea is that any control failing this condition could not be optimal. Any control satisfying it might be optimal and needs to be looked at more closely.

Given

- State eqns $\underset{\sim}{\dot{x}}=\underset{\sim}{f} \underset{\sim}{f} \underset{\sim}{x}, \underset{\sim}{u})$;
- Initial state

$$
\underset{\sim}{x}\left(t_{0}\right)=\underset{\sim}{x} ;
$$

- Cost functional $\quad J=\int_{t_{0}}^{t_{1}} f_{0}(\underset{\sim}{x} \underset{\sim}{u} \underset{\sim}{u}) d t$;
- Set of admissible controls $\underset{\sim}{u}(t) \in U$ (piecewise conts.)

Find $\underset{\sim}{u^{*}}(t)$ and path $\underset{\sim}{x}(t)$, transferring system from $\underset{\sim}{x}{ }_{0}^{x}$ to $\underset{\sim}{x}$ such that J is minimized.

Pontryagin Maximum Principle

illustrated for a $2-D$ state space. Consider

$$
\begin{aligned}
\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}, u\right) \\
\dot{x}_{2} & =f_{2}\left(x_{1}, x_{2}, u\right) .
\end{aligned}
$$

Want to go from $\left(x_{1}^{0}, x_{2}^{0}\right)$ at $t=t_{0}$ to $\left(x_{1}^{1}, x_{2}^{1}\right)$ at time t_{1}, using (\#) piecewise smooth, (\#\#) bounded admissible control functions $u(t)$ so that

$$
J=\int_{t_{0}}^{t_{1}} f_{0}\left(x_{1}, x_{2}, u\right) d t \quad \text { minimized } .
$$

Hamiltonian

$H=\psi_{0} f_{0}\left(x_{1}, x_{2}, u\right)+\psi_{1} f_{1}\left(x_{1}, x_{2}, u\right)+\psi_{2} f_{2}\left(x_{1}, x_{2}, u\right)$
where $\psi_{i}=\psi_{i}(t), i=0,1,2$, satisfy

$$
\dot{\psi}_{i}=-\partial H / \partial x_{i}, \quad i=0,1,2
$$

(x_{0} defined below)
Theorem. Let $u^{*}(t)$ be an admissible control with corresponding path $\underset{\sim}{x}(t)=\binom{x_{1}^{*}}{x_{2}^{*}}$ that takes the system from $\left(t_{0},{\underset{\sim}{x}}^{0}\right)$ to $\left(t_{1}, \underset{\sim}{x}\right)$ at some (unspecified) time t_{1}. Then in order that u^{*} and $\underset{\sim}{x}$ be optimal, it is necessary that \exists a non zero vector $\underset{\sim}{\psi}=\left(\psi_{0}, \psi_{1}, \psi_{2}\right)^{T}$ such that (PMP) $\quad \underset{\sim}{\sim}=-\partial H / \partial x_{i}, \quad i=0,1,2 \quad$ Costate eqns and a scalar function

$$
H(\underset{\sim}{\sim}, \underset{\sim}{x}, u)=\psi_{0} f_{0}+\psi_{1} f_{1}+\psi_{2} f_{2}
$$

such that
(i) $\forall t \in\left[t_{0}, t_{1}\right], H$ attains its maximum as a function of u at $u=u^{*}(t)$;
(ii) $H\left(\underset{\sim}{\psi}{\underset{\sim}{*}}^{*}, \underset{\sim}{x}, \underset{\sim}{u}\right)=0$ and $\psi_{0} \leq 0$ at $t=t_{1}$, where $\underset{\sim}{\psi^{*}}(t)$ is the solution of (PMP) for $u=u^{*}(t)$.

Furthermore, $\left.H \underset{\sim}{\psi^{*}}(t), \underset{\sim}{x}(t), u^{*}(t)\right)=$ const. and $\psi_{0}(t)=$ const., so that $H=0$ and $\psi_{0} \leq 0$ at each point on an optimal trajectory. This theorem called Pontryagin Maximum Princ.

DEFINITION of x_{0} : Let x_{0} be the solution of the DE $\dot{x}_{0}=f_{0}\left(x_{1}, x_{2}, u\right), x_{0}\left(t_{0}\right)=0$.

That is, $x_{0}(t)$ measures the cost incurred up to t.
Example 1. Let $\dot{x}_{1}=-x_{1}+u$. Control the system from $x_{1}=a$ at $t=0$ to $x_{1}=b$ at t_{1}, so that $J=\frac{1}{2} \int_{0}^{t_{1}} u^{2} d t$ is minimized. We will consider the special cases $a=1, b=2$ and $b=2, a=1$.

Solution. Either write down the previous equations
omitting x_{2}, f_{2}, and ψ_{2} or let x_{2} be a constant by:

$$
\begin{aligned}
f_{0}\left(x_{1}, x_{2}, u\right) & =\frac{1}{2} u^{2} \\
f_{1}\left(x_{1}, x_{2}, u\right) & =-x_{1}+u \\
f_{2}\left(x_{1}, x_{2}, u\right) & =0
\end{aligned}
$$

$$
\begin{aligned}
H & =\psi_{0} f_{0}+\psi_{1} f_{1}+\psi_{2} f_{2}=\psi_{0} u^{2} / 2+\psi_{1}\left(-x_{1}+u\right) \\
\dot{\psi}_{0} & =-\partial H / \partial x_{0}=0 \Rightarrow \psi_{0}=\text { const. } \\
\dot{\psi}_{1} & =-\partial H / \partial x_{1}=\psi_{1}
\end{aligned}
$$

Always $\psi_{0}=$ const. because H is not a function of x_{0} So choose $\psi_{0}=-1$ (as long as $\psi_{0}<0$ we can divide everything by ψ_{0}).

So $\psi=-1, \psi_{1}=A e^{t}$.
Now maximize H as a function of u :

$$
\partial H / \partial u=\psi_{0} u+\psi_{1}=-u+\psi_{1}, \frac{\partial^{2} H}{\partial u^{2}}=-1
$$

So H is minimized in u by

$$
u=\psi_{1}
$$

That is $u=A e^{t}$. The corresponding soln for x is

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+A e^{t} \\
\Rightarrow \quad x_{1}(t) & =B e^{-t}+\frac{1}{2} A e^{t}
\end{aligned}
$$

END CONDITIONS:

$$
\begin{gathered}
x_{1}(0)=a=B+A / 2 \\
x_{1}\left(t_{1}\right)=b=B e^{-t_{1}}+A e^{t_{1}} / 2 \\
\Rightarrow \quad B=\frac{a e^{t_{1}}-b}{e^{t_{1}}-e^{-t_{1}}}, \quad \frac{A}{2}=\frac{b-a e^{-t_{1}}}{e^{t_{1}}-e^{-t_{1}}} .
\end{gathered}
$$

Now t_{1} free so that $H\left(t_{1}\right)=0$ and H does not depend explicitly on t so that $H \equiv K$, a constant. Thus $H(t)=0$ for all t. Now $H=u^{2} / 2+\psi_{1}\left(-x_{1}+u\right)$ so $H(0)=A^{2} / 2+A(-[A / 2+B]+A)=-A B$, since $u^{*}(0)=\psi_{1}(0)=A$ and $x_{1}(0)=A / 2+B$. $a=2, b=1$: Then $A B=0 \quad \Rightarrow \quad A=0$ or $B=0$. If $B=0, e^{t_{1}}=1 / 2$, impossible for $t_{1}>0$. If $A=0$, $e^{t_{1}}=2$. Then the optimal control is $u=0$, optimal path $x_{1}=2 e^{-t}$, total cost $J=0 . a=1, b=2$: Then $A B=0 \Rightarrow A=0$ or $B=0$. If $B=0$,
$e^{t_{1}}=2$ and $t_{1}=\ln 2$. Then $A=2$ so the optimal control is $u=2 e^{t}$, optimal path is $x_{1}=e^{t} / 2$ total cost $J=\int_{0}^{\ln 2} 2 e^{2 t} d t=3$. If $A=0, e^{t_{1}}=1 / 2$ impossible for $t_{1}>0$. So it costs less for the system to go from $x_{0}=2$ to $x_{1}=1$, by exponential decay, than from $x_{0}=1$ to $x_{1}=2$ by forcing. However, if $|u| \leq 1$, we could not get from $x_{0}=1$ to $x_{1}=2$ at all. In fact, keeping $u=+1$ just holds the system at the level $x_{0}=1$.

Example 2. $\dot{x}_{1}=x_{2}, \dot{x}_{2}=u$; control from given initial point (a, b) at $t_{0}=0$ to $\underset{\sim}{0}$ in as short a time as possible.

Solution. "Time-optimal control to the origin". Note
the system is just $\ddot{x}=u, x=a, \dot{x}=b$ at $t=t_{0}=0$.
A physical model
is a propelled truck
$m \ddot{x}=F, \quad|F| \leq K$
$\ddot{x}=u(t),|u| \leq K / m$.
Cost is t_{1} and has to be in the form

$$
J=\int_{0}^{t_{1}} f_{0}\left(x_{1}, x_{2}, u\right) d t
$$

to use the PMP. Choose $f_{0}=1$

$$
\begin{aligned}
& f_{0}\left(x_{1}, x_{2}, u\right)=1 \\
& f_{1}\left(x_{1}, x_{2}, u\right)=x_{2} \\
& f_{2}\left(x_{1}, x_{2}, u\right)=u
\end{aligned}
$$

$$
H=-1+\psi_{1} x_{2}+\psi_{2} u
$$

$$
\dot{\psi}_{1}=-\partial H / \partial x_{1}=0 ; \quad \dot{\psi}_{2}=-\partial H / \partial x_{2}=-\psi_{1}
$$

$$
\Rightarrow \quad \psi_{1}=A, \quad \psi_{2}=B-A t .
$$

Now maximize H as a function of u, where u is taken as bounded, $|u| \leq K / m$. The maximum value of H if
$\psi_{2}>0$ is for $u=K / m$; if $\psi_{2}<0$, max value occurs when $u=-K / m$.

$$
u(t)=\frac{K}{m} \operatorname{sqn} \psi_{2}(t)
$$

That is, the control switches from K / m to $-K / m$ when ψ_{2} goes from positive to negative; and switches from $-K / m$ to K / m when ψ_{2} changes from negative to positive.

But $\psi_{2}=B-A t$ can change sign once
\Rightarrow only one switch.

Corresponding solution for x_{1} and x_{2} is as follows: let $u^{*}(t)=\frac{K}{m} \operatorname{sgn} \psi_{2}(t)$. This is constant between switches,
$+K / m$ or $-K / m:$

$$
\begin{gathered}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=u^{*}, \\
u^{*}= \pm K / m \\
d x_{2} / d x_{1}=u^{*} / x_{2} \\
\int x_{2} d x_{2}=\int u^{*} d x_{1}+\text { const } \\
\text { i.e. } x_{2}^{2}=2 u^{*} x_{1}+\text { const. }
\end{gathered}
$$

To each of the allowed values of u^{*} there corresponds a family of parabolas.

$$
u^{*}=K / m
$$

$$
u^{*}=-K / m
$$

