Chapter 7.
tremals

Calculus versus

Minimizing curves & field of ex-

Calculus of Variations

Local minima: Necessary conditions

Calculus in R?
Vix*)=0

r* € R?
CRITICAL POINT

Calculus of variations

ﬁ_i(ﬁ)zo

Oxr dt \ 0%
¥ e O
EXTREMAL

Local minima: Sufficient conditions

Let y = 2™ + en,
where z*, n, y € R?
0< fly) — f(z")

= eVi + 2V + O(e?)

Vi=Vf(z")n

Vo =n" Hn/2

H the Hessian of f at x*
Vi = 0, Vo >0

sufficient for a minimum

Let y = 2™ + en,
where z*, n, y € C!
0< Jly] - J[z"]

= eVi + 2V + O(e?)

t1 d
VlZ/tO U{fx—%fm}dt

1 [ .
Vo = 5/ (0° foz + 20 fra
to
+772fmx) dt.
Vi = 0, Vo >0

not sufficient for a minimum



2

1
1
Example 1. J[z] = / gdt, z(0) =0, z(1) = 1.
0

Solution. Extremal is x =t = z* & gives J = 1. Consider
y=t+en, n(0) =n(1) =0. Then

AJ = Jly| = Jlt]

1 1
:/ (Q4en)~"'-1) dt:/ (—en + &% —e’n -+ )dt
0 0

1
= 52/ n2dt + 0(e?).
0

satisfies

3t, 0
Thus, Vo > 0. But y = )
2

—t+2,

J[y]:/02%+/1 (—1)dt:—% < Tl

However, this is not a [J); minimizing curve because the
corner conditions are not satisfied. So, although V5 > 0,
x = x* =t is not a minimizing curve.

So we have to adopt a more sophisticated approach, using
the concept of Hilbert Integral and a Field of Extremals.
Want AJ = Jy] — J[z*] > 0 for all y = y(t) satisfying the
end conditions.

# ALL y = a*(t) + n(t);

# y(t) perhaps in D;.
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The trick is to express AJ in another form whose sign is
easier to determine. The solution to E-L equation involves
two arbitrary constants: two parameter family of curves.
Imposing the end conditions gives the constants.

E.g. example above

0 d ! =0=z= tant
—— | =] = = constan
7\ 72 T = consta

= x =kt +1.

Values k = 1, | = 0 give the extremal thro’ (0,0) and (1, 1).

Consider the 1-parameter family of extremals x =t +1. As
well as containing x = z* = t, this family is a simple cover
of the plane: one and only one curve passes through each
point. Call this a FIELD OF EXTREMALS.

Since only one extremal of the family passes through each
point, there is a unique value of slope

T = p(t, )

at each point (¢, x). Associated with the field of extremals
is a SLOPE FUNCTION p(t, x) satisfying at each (¢, x)

of(t,z,p) d (Of B
e (8—p(t,$u@)) = 0.

2

Example 2. Find a field of extremals for J|[x] = / L2t dt,
1

z(1) =0, z(2) = 3.
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Solution. General solution of the E-L eqn is x = k/t% + 1
and the extremal satisfying the end conditions is z = 4 —
4/t2. A 1- par. family of extremals comparing this is x =
| —4/t2. For t > 0 this gives a simple cover of the half plane
and so is a field with slope function

p(t,x) = 8/t°.
Now f(t,z,p) = p*t>, 0f /0x = 0 and Of /Op = 2pt>. Hence
of d (8f> d d

J— f— _—— 3 = —-—— p—
Oxr dx \ Op 0 dt(2pt) dt(16) 0

Example 3. Find a filed of extremals for
1
Jlr] = / "™ dr, m>1 an integer
0

with x(0) =1 and x(1) = 2.
Solution. The Euler-Lagrange equation is

0— %(ma}?m—l) = 0.

This implies that £ = constant, so
r=2x"(t) =kt +1
Using x(0) = 1 and x(2) = 3, we have

I=1 k+l=2=k=1
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Let p = p(t,z) = 2*(t) = 1 be the slop of fields of extremals
x =t+ 1. Then

0
ft,z,p)=p™ =1, a—f = 2mp*™ ' =2m
p

which satisfies obviously the equation

ﬁ_i<ﬂ —0
Oxr dt 8p)_

for all (¢,x) € R.
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Hilbert’s Invariant Integral.

C*:x=ux*(t) ex-
tremal in a field
of extremals, slope

p(t, x).

C : = = x(t) any other curve joining the endpoints and
covered by the field.

Kla] = / (o) + G -n 2 (0.0 | at

When C = C*, so & = p(t,z*), K[z*] = J[x*].
In K|z], let

ult,z) = f(t,2,p(t, 2)) — plt, x>g—§<t, v, p(t, 7)),

0
v(t,r) = 5’_]];

(t,x,p(t,x)).

ty
/ x’vdt:/vdx
to C

Then



and we get a line integral:
Klz] = /udt+vd:z:.
C

This integral is independent of C.

To see this, we need to show du/0x — dv/It = 0 at each
point (¢, ). But, as x,¢ vary on C

Ou_ 0\ bt plt ) - p@,x)g_;j

dr  Ox
~ Ox 01+ gy (1 2P0 )
2
- _(t, 33) a£ (tv CL‘,p(t, 513)) o p(t, ZE) (98 éf

- p(t.) 2 (1) (b, ()

(t,=,p(t, )
—(t,z,p(t,z)) + t,x)

(¢, z,p(t, x))

82

0xOp

= et 2)) — pt )2 (2, 2)

Ox
~p(t.7) g’p (t.2) pr (. p( )

_of o O f

(
~plta >§§<t VL it

(&, 2z, p(t, z7))
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and
v 9 [of
5 ot [a—p(t,«ﬂi,p(t>$))]
0? 0? 0
= St pltin)) + (bt ) S (1)

82f * * 2f * 8}9 *
— atap(tam ,p(t,fl? >)+W(t 2 ,p(t,CIZ »E(t’x )’

where we use the fact that (¢,x) = (¢, 2*(¢)) for an extremal
x*. Using above two identities, we have

Qu_ 9V )
Oor Ot

— %(t,x*,p(t, z*)) — plt, a:*)ajgp (t,z,p(t, 7))
a0 220,00 S L b, pt0,2°)

- bt - St x*»%(t,x*()G )

Since x = z*(t) is an extremal in the field of extremals,

(1) = p(t, o).



Using this equation, we have

o |Gt b))
_ g;gt(t, x*, p(t, x*)) d;* a(fa‘];(t,w*,p(taﬁ*))
b O] 9L 0 plt)
g;aft(t,x*,p(t,x*)) d;: 8825 (t, 2", p(t,z¥))
+ Lt )+ Pt 00| St pita)
g;gt (t,z*, p(t,z*)) + p(t, z*) 88192(;; (t, 2", p(t, ™))
+ [a—p(t,az () +p(t w*)%(t,x*(t))] %(t,w*,pu,g%

From (6.1) and (6.2), we have

ou Ov ,
%—a( )
of of

= Lt plea) - G | Gt pta) | =0

since p(t,z*) is the slope of the field of extremals.
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Since K[x*] = J[x*], this gives

Both integrals are evaluated along C, so:

AJ:/: {Ft..0) = 2.0~ = 9 P () |t

# x slope of C at (t,x);
# p slope of field of extremals at (t,x).

Let

of

E(t7x75bap) — f(t7x7jj) - f(t,:r:‘,p) - (33 _p)a_p(tamap)

denote the integrand in the integral defining AJ.
(Weierstrass Excess Function)

Theorem A (Weierstrass Conditions)
In order that the extremal C* : x = z*(t) give a strong
local minimum to J[z] it is sufficient that

# C* is a member of a field of extremals;

# E(t,z,z,p) > 0 V(t,x) close to C* and arbitrary
values of .
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Theorem B (Weierstrass Conditions)
In order that the extremal C* : x = x*(t) give a (global)
minimum to J|x| it is sufficient that

# C* is a member of a field of extremals and the field
of extremals cover the whole (¢, z)-plan R2.

# E(t,x,z,p) > 0V(t,z) € R

Example 4. Shortest distance between 2 points is a
straight line:

z(0) =0

1
minimize J:/O (1 + &2)Y2at, 2(1) = 1.

Solution. Extremals are x = kt + [, end conditions k = 1,
[ =0= x =t. First, embed x = t in a field of extremals.
Could do x =t + 1 (with p(t,z) =1) or z = kt (p = z/t).
Now

E(t,il},j},p) - f(taajvx) T f(taxvp)

—(a‘c—p%(t,x,p)

(p = p(t,x)).
Here,
E(t,x,d,p) = (1+&%)'/? = (14 p*)'/?
—p(& —p)(1+p*) 712
= (1+2%)"% — (1 +pd)(1+p*) /2
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At a point (¢,x) covered by the field, p = p(¢,z) has a
numerical value. We need to show that £ > 0, for all
possible values of x, at such a point.

o If 1+ pz <0, then £ > 0.
e 1+ px > 0; define

G=>0+HY2 4+ A +pi)1+p?)" V2 >0
GE = (1+4%) — (1 +pi)?/(1 4 p?)
#* +p° —2pi _ (& —p)?

= = > 0.
1+p2 1+p2 —

So E > 0 when 1+ pz > 0 and when 1 4+ pz < 0, and by
the theorem = = x*(t) = ¢, is a minimizing curve.
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# Field of extremals x(t):

e Solutions of E-L eqn;
e Contain extremal x*(¢) satisfying endpoints;
e Covers plane;

e Slope function

p(t, x) at each (¢, x).

4 WEIERSTRASS EXCESS FUNCTION z = z(¢)

E(t,x,ip) = f(t,x, &) — f(t,z,p)

—<¢—p>2—£<t,x,p>

1 = slope of z(t) at (¢, x)
p = slope function of field at (¢, z)

# E(t,x,z,p) >0 V(t,z) close to z = x*(t) and all =.
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This
+# EXAMPLES
# SEMIFIELDS & JACOBI CONDITIONS.

Example 2: (continue)

2
Minimizes J|x| = / *t3dt, x(1) = 0, z(2) = 3.
1

Solution. Extremal x = k/t? + [; satisfying end points,

r=4—4/t%
# Field of extremals z = [ — 4/t%; slope of field
p(t,z) = 8/t5.

# Excess function
f(t,.fl?,j?) o f(taxap) o ($ _p)g_;;(t?map)

E<t7$7j37p) — 5b2t3 _p2t3 o ('CU _p)2pt3
= 3(&2 — 2pi + p?)
=t3(z—p)*>0 t>0

at each (¢, x) for any value of . Hence the extremal satisfies
the conditions and x = x*(t) = 4 — 4/t* is a minimizing
curve.



