Chapter 7. Minimizing curves \& field of extremals

Calculus

versus
Calculus of Variations
Local minima: Necessary conditions

$$
\begin{array}{ll}
\text { Calculus in } \mathbb{R}^{2} & \text { Calculus of variations } \\
\nabla f\left(x^{*}\right)=\underset{\sim}{0} & \frac{\partial f}{\partial x}-\frac{d}{d t}\left(\frac{\partial f}{\partial \dot{x}}\right)=0 \\
x^{*} \in \mathbb{R}^{2} & x^{*} \in C^{1} \\
\text { CRITICAL POINT } & \text { EXTREMAL }
\end{array}
$$

Local minima: Sufficient conditions

$$
\text { Let } y=x^{*}+\varepsilon \eta \text {, }
$$

where $x^{*}, \eta, y \in \mathbb{R}^{2}$

$$
\begin{aligned}
& 0 \leq f(y)-f\left(x^{*}\right) \\
& =\varepsilon V_{1}+\varepsilon^{2} V_{2}+O\left(\varepsilon^{3}\right)
\end{aligned}
$$

$$
V_{1}=\nabla f\left(x^{*}\right) \eta
$$

$$
V_{2}=\eta^{T} H \eta / 2
$$

H the Hessian of f at x^{*}
$V_{1}=0, V_{2}>0$
sufficient for a minimum

Let $y=x^{*}+\varepsilon \eta$,
where $x^{*}, \eta, y \in C^{1}$

$$
\begin{aligned}
& 0 \leq J[y]-J\left[x^{*}\right] \\
& =\varepsilon V_{1}+\varepsilon^{2} V_{2}+O\left(\varepsilon^{3}\right)
\end{aligned}
$$

$$
V_{1}=\int_{t_{0}}^{t_{1}} \eta\left\{f_{x}-\frac{d}{d t} f_{\dot{x}}\right\} d t
$$

$$
V_{2}=\frac{1}{2} \int_{t_{0}}^{t_{1}}\left(\eta^{2} f_{x x}+2 \dot{\eta} \eta f_{x \dot{x}}\right.
$$

$$
\left.+\dot{\eta}^{2} f_{\dot{x} \dot{x}}\right) d t .
$$

$$
V_{1}=0, V_{2}>0
$$

not sufficient for a minimum

Example 1. $J[x]=\int_{0}^{1} \frac{1}{\dot{x}} d t, \quad x(0)=0, x(1)=1$.
Solution. Extremal is $x=t=x^{*} \&$ gives $J=1$. Consider $y=t+\varepsilon \eta, \eta(0)=\eta(1)=0$. Then
$\triangle J=J[y]-J[t]$

$$
\begin{aligned}
& =\int_{0}^{1}\left((1+\varepsilon \dot{\eta})^{-1}-1\right) d t=\int_{0}^{1}\left(-\varepsilon \dot{\eta}+\varepsilon^{2} \dot{\eta}^{2}-\varepsilon^{3} \dot{\eta}^{3} \cdots\right) d t \\
& =\varepsilon^{2} \int_{0}^{1} \dot{\eta}^{2} d t+0\left(\varepsilon^{3}\right)
\end{aligned}
$$

Thus, $V_{2}>0$. But $y=\left\{\begin{array}{ll}3 t, & 0 \leq t \leq \frac{1}{2} \\ -t+2, & \frac{1}{2} \leq t \leq 1\end{array}\right.$ satisfies

$$
J[y]=\int_{0}^{\frac{1}{2}} \frac{d t}{3}+\int_{\frac{1}{2}}^{1}(-1) d t=-\frac{1}{3}<J\left[x^{*}\right]
$$

However, this is not a D_{1} minimizing curve because the corner conditions are not satisfied. So, although $V_{2}>0$, $x=x^{*}=t$ is not a minimizing curve.

So we have to adopt a more sophisticated approach, using the concept of Hilbert Integral and a Field of Extremals.
Want $\triangle J=J[y]-J\left[x^{*}\right]>0$ for all $y=y(t)$ satisfying the end conditions.
$\# \mathrm{ALL} y=x^{*}(t)+\eta(t) ;$
$\# y(t)$ perhaps in D_{1}.

The trick is to express $\triangle J$ in another form whose sign is easier to determine. The solution to $\mathrm{E}-\mathrm{L}$ equation involves two arbitrary constants: two parameter family of curves. Imposing the end conditions gives the constants.
E.g. example above

$$
\begin{aligned}
0-\frac{d}{d t}\left(\frac{-1}{\dot{x}^{2}}\right)=0 & \Rightarrow \dot{x}=\text { constant } \\
& \Rightarrow x=k t+l
\end{aligned}
$$

Values $k=1, l=0$ give the extremal thro' $(0,0)$ and $(1,1)$. Consider the 1-parameter family of extremals $x=t+l$. As well as containing $x=x^{*}=t$, this family is a simple cover of the plane: one and only one curve passes through each point. Call this a FIELD OF EXTREMALS.
Since only one extremal of the family passes through each point, there is a unique value of slope

$$
\dot{x}=p(t, x)
$$

at each point (t, x). Associated with the field of extremals is a SLOPE FUNCTION $p(t, x)$ satisfying at each (t, x)

$$
\frac{\partial f(t, x, p)}{\partial x}-\frac{d}{d t}\left(\frac{\partial f}{\partial p}(t, x, p)\right)=0
$$

Example 2. Find a field of extremals for $J[x]=\int_{1}^{2} \dot{x}^{2} t^{3} d t$, $x(1)=0, x(2)=3$.

Solution. General solution of the $\mathrm{E}-\mathrm{L}$ eqn is $x=k / t^{2}+l$ and the extremal satisfying the end conditions is $x=4-$ $4 / t^{2}$. A 1- par. family of extremals comparing this is $x=$ $l-4 / t^{2}$. For $t>0$ this gives a simple cover of the half plane and so is a field with slope function

$$
p(t, x)=8 / t^{3}
$$

Now $f(t, x, p)=p^{2} t^{3}, \partial f / \partial x=0$ and $\partial f / \partial p=2 p t^{3}$. Hence

$$
\frac{\partial f}{\partial x}-\frac{d}{d x}\left(\frac{\partial f}{\partial p}\right)=0-\frac{d}{d t}\left(2 p t^{3}\right)=-\frac{d}{d t}(16)=0
$$

Example 3. Find a filed of extremals for

$$
J[x]=\int_{0}^{1} \dot{x}^{2 m} d x, \quad m>1 \quad \text { an integer }
$$

with $x(0)=1$ and $x(1)=2$.
Solution. The Euler-Lagrange equation is

$$
0-\frac{d}{d t}\left(2 m \dot{x}^{2 m-1}\right)=0
$$

This implies that $\dot{x}=$ constant, so

$$
x=x^{*}(t)=k t+l
$$

Using $x(0)=1$ and $x(2)=3$, we have

$$
l=1 \quad k+l=2 \Rightarrow k=1
$$

Let $p=p(t, x)=\dot{x}^{*}(t)=1$ be the slop of fields of extremals $x=t+l$. Then

$$
f(t, x, p)=p^{2 m}=1, \quad \frac{\partial f}{\partial p}=2 m p^{2 m-1}=2 m
$$

which satisfies obviously the equation

$$
\frac{\partial f}{\partial x}-\frac{d}{d t}\left(\frac{\partial f}{\partial p}\right)=0
$$

for all $(t, x) \in \mathbb{R}$.

Hilbert's Invariant Integral.

$$
\begin{aligned}
& \mathcal{C}^{*}: x=x^{*}(t) \text { ex- } \\
& \text { tremal in a field } \\
& \text { of extremals, slope } \\
& p(t, x) .
\end{aligned}
$$

$\mathcal{C}: x=x(t)$ any other curve joining the endpoints and covered by the field.

$$
K[x]=\int_{t_{0}}^{t_{1}}\left\{f(t, x, p)+(\dot{x}-p) \frac{\partial f}{\partial p}(t, x, p)\right\} d t
$$

When $\mathcal{C}=\mathcal{C}^{*}$, so $\dot{x}=p\left(t, x^{*}\right), K\left[x^{*}\right]=J\left[x^{*}\right]$.
In $K[x]$, let

$$
\begin{gathered}
u(t, x)=f(t, x, p(t, x))-p(t, x) \frac{\partial f}{\partial p}(t, x, p(t, x)) \\
v(t, x)=\frac{\partial f}{\partial p}(t, x, p(t, x))
\end{gathered}
$$

Then

$$
\int_{t_{0}}^{t_{1}} \dot{x} v d t=\int_{\mathcal{C}} v d x
$$

and we get a line integral:

$$
K[x]=\int_{\mathcal{C}} u d t+v d x
$$

This integral is independent of \mathcal{C}.
To see this, we need to show $\partial u / \partial x-\partial v / \partial t=0$ at each point (t, x). But, as x, t vary on \mathcal{C}

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial}{\partial x}\left[f(t, x, p(t, x))-p(t, x) \frac{\partial f}{\partial p}(t, x, p(t, x))\right] \\
= & \frac{\partial f}{\partial x}(t, x, p(t, x))+\frac{\partial p}{\partial x}(t, x) \frac{\partial f}{\partial p}(t, x, p(t, x)) \\
& -\frac{\partial p}{\partial x}(t, x) \frac{\partial f}{\partial p}(t, x, p(t, x))-p(t, x) \frac{\partial^{2} f}{\partial x \partial p}(t, x, p(t, x)) \\
& -p(t, x) \frac{\partial p}{\partial x}(t, x) \frac{\partial^{2} f}{\partial p^{2}}(t, x, p(t, x)) \\
= & \frac{\partial f}{\partial x}(t, x, p(t, x))-p(t, x) \frac{\partial^{2} f}{\partial x \partial p}(t, x, p(t, x)) \\
& -p(t, x) \frac{\partial p}{\partial x}(t, x) \frac{\partial^{2} f}{\partial p^{2}}(t, x, p(t, x)) \\
= & \frac{\partial f}{\partial x}\left(t, x^{*}, p\left(t, x^{*}\right)\right)-p\left(t, x^{*}\right) \frac{\partial^{2} f}{\partial x \partial p}\left(t, x, p\left(t, x^{*}\right)\right) \\
& -p\left(t, x^{*}\right) \frac{\partial p}{\partial x}\left(t, x^{*}\right) \frac{\partial^{2} f}{\partial p^{2}}\left(t, x^{*}, p\left(t, x^{*}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial v}{\partial t} & =\frac{\partial}{\partial t}\left[\frac{\partial f}{\partial p}(t, x, p(t, x))\right] \\
& =\frac{\partial^{2} f}{\partial t \partial p}(t, x, p(t, x))+\frac{\partial^{2} f}{\partial p^{2}}(t, x, p(t, x)) \frac{\partial p}{\partial t}(t, x) \\
& =\frac{\partial^{2} f}{\partial t \partial p}\left(t, x^{*}, p\left(t, x^{*}\right)\right)+\frac{\partial^{2} f}{\partial p^{2}}\left(t, x^{*}, p\left(t, x^{*}\right)\right) \frac{\partial p}{\partial t}\left(t, x^{*}\right)
\end{aligned}
$$

where we use the fact that $(t, x)=\left(t, x^{*}(t)\right)$ for an extremal x^{*}. Using above two identities, we have

$$
\begin{align*}
& \frac{\partial u}{\partial x}-\frac{\partial v}{\partial t}(t, x) \\
= & \frac{\partial f}{\partial x}\left(t, x^{*}, p\left(t, x^{*}\right)\right)-p\left(t, x^{*}\right) \frac{\partial^{2} f}{\partial x \partial p}\left(t, x, p\left(t, x^{*}\right)\right) \\
& -p\left(t, x^{*}\right) \frac{\partial p}{\partial x}\left(t, x^{*}\right) \frac{\partial^{2} f}{\partial p^{2}}\left(t, x^{*}, p\left(t, x^{*}\right)\right) \\
- & \frac{\partial^{2} f}{\partial t \partial p}\left(t, x^{*}, p\left(t, x^{*}\right)\right)-\frac{\partial^{2} f}{\partial p^{2}}\left(t, x^{*}, p\left(t, x^{*}\right)\right) \frac{\partial p}{\partial t}\left(t, x^{*}\right) \tag{6.1}
\end{align*}
$$

Since $x=x^{*}(t)$ is an extremal in the field of extremals,

$$
\frac{d x^{*}}{d t}(t)=p\left(t, x^{*}\right)
$$

Using this equation, we have

$$
\begin{aligned}
\frac{d}{d t} & {\left[\frac{\partial f}{\partial p}\left(t, x^{*}, p\left(t, x^{*}\right)\right)\right] } \\
= & \frac{\partial^{2} f}{\partial p \partial t}\left(t, x^{*}, p\left(t, x^{*}\right)\right)+\frac{d x^{*}}{d t} \frac{\partial^{2} f}{\partial p \partial x}\left(t, x^{*}, p\left(t, x^{*}\right)\right) \\
& +\frac{d}{d t}\left[p\left(t, x^{*}(t)\right)\right] \frac{\partial^{2} f}{\partial p^{2}}\left(t, x^{*}, p\left(t, x^{*}\right)\right) \\
= & \frac{\partial^{2} f}{\partial p \partial t}\left(t, x^{*}, p\left(t, x^{*}\right)\right)+\frac{d x^{*}}{d t} \frac{\partial^{2} f}{\partial p \partial x}\left(t, x^{*}, p\left(t, x^{*}\right)\right) \\
& +\left[\frac{\partial p}{\partial t}\left(t, x^{*}(t)\right)+\frac{d x^{*}}{d t} \frac{\partial p}{\partial x}\left(t, x^{*}(t)\right)\right] \frac{\partial^{2} f}{\partial p^{2}}\left(t, x^{*}, p\left(t, x^{*}\right)\right) \\
= & \frac{\partial^{2} f}{\partial p \partial t}\left(t, x^{*}, p\left(t, x^{*}\right)\right)+p\left(t, x^{*}\right) \frac{\partial^{2} f}{\partial p \partial x}\left(t, x^{*}, p\left(t, x^{*}\right)\right) \\
& +\left[\frac{\partial p}{\partial t}\left(t, x^{*}(t)\right)+p\left(t, x^{*}\right) \frac{\partial p}{\partial x}\left(t, x^{*}(t)\right)\right] \frac{\partial^{2} f}{\partial p^{2}}\left(t, x^{*}, p\left(t, x^{*}\right)\right)
\end{aligned}
$$

From (6.1) and (6.2), we have

$$
\begin{aligned}
& \frac{\partial u}{\partial x}-\frac{\partial v}{\partial t}(t, x) \\
= & \frac{\partial f}{\partial x}\left(t, x^{*}, p\left(t, x^{*}\right)\right)-\frac{d}{d t}\left[\frac{\partial f}{\partial p}\left(t, x^{*}, p\left(t, x^{*}\right)\right)\right]=0
\end{aligned}
$$

since $p\left(t, x^{*}\right)$ is the slope of the field of extremals.

Since $K\left[x^{*}\right]=J\left[x^{*}\right]$, this gives

$$
\begin{aligned}
\triangle J=J[x]-J\left[x^{*}\right] & =J[x]-K\left[x^{*}\right] \\
& =J[x]-K[x]
\end{aligned}
$$

Both integrals are evaluated along \mathcal{C}, so:

$$
\triangle J=\int_{t_{0}}^{t_{1}}\left\{f(t, x, \dot{x})-f(t, x, p)-(\dot{x}-p) \frac{\partial f}{\partial p}(t, x, p)\right\} d t
$$

$\# \dot{x}$ slope of \mathcal{C} at (t, x);
\# p slope of field of extremals at (t, x).
Let

$$
E(t, x, \dot{x}, p)=f(t, x, \dot{x})-f(t, x, p)-(\dot{x}-p) \frac{\partial f}{\partial p}(t, x, p)
$$

denote the integrand in the integral defining $\triangle J$. (Weierstrass Excess Function)

Theorem A (Weierstrass Conditions)

In order that the extremal $\mathcal{C}^{*}: x=x^{*}(t)$ give a strong local minimum to $J[x]$ it is sufficient that
$\# \mathcal{C}^{*}$ is a member of a field of extremals;
$\# E(t, x, \dot{x}, p) \geq 0 \forall(t, x)$ close to \mathcal{C}^{*} and arbitrary values of \dot{x}.

Theorem B (Weierstrass Conditions)

In order that the extremal $\mathcal{C}^{*}: x=x^{*}(t)$ give a (global) minimum to $J[x]$ it is sufficient that

$\# \mathcal{C}^{*}$ is a member of a field of extremals and the field

 of extremals cover the whole (t, x)-plan \mathbb{R}^{2}.$\# E(t, x, \dot{x}, p) \geq 0 \forall(t, x) \in \mathbb{R}^{2}$.
Example 4. Shortest distance between 2 points is a straight line:

$$
\operatorname{minimize} \quad J=\int_{0}^{1}\left(1+\dot{x}^{2}\right)^{1 / 2} d t, \quad \begin{aligned}
& x(0)=0 \\
& x(1)=1 .
\end{aligned}
$$

Solution. Extremals are $x=k t+l$, end conditions $k=1$, $l=0 \Rightarrow x=t$. First, embed $x=t$ in a field of extremals. Could do $x=t+l$ (with $p(t, x)=1$) or $x=k t(p=x / t)$. Now

$$
\begin{aligned}
E(t, x, \dot{x}, p)= & f(t, x, \dot{x})-f(t, x, p) \\
& -(\dot{x}-p) \frac{\partial f}{\partial p}(t, x, p)
\end{aligned}
$$

$$
(p=p(t, x)) .
$$

Here,

$$
\begin{aligned}
E(t, x, \dot{x}, p)= & \left(1+\dot{x}^{2}\right)^{1 / 2}-\left(1+p^{2}\right)^{1 / 2} \\
& -p(\dot{x}-p)\left(1+p^{2}\right)^{-1 / 2} \\
= & \left(1+\dot{x}^{2}\right)^{1 / 2}-(1+p \dot{x})\left(1+p^{2}\right)^{-1 / 2}
\end{aligned}
$$

At a point (t, x) covered by the field, $p=p(t, x)$ has a numerical value. We need to show that $E \geq 0$, for all possible values of \dot{x}, at such a point.

- If $1+p \dot{x} \leq 0$, then $E>0$.
- $1+p \dot{x}>0$; define

$$
\begin{aligned}
G & =\left(1+\dot{x}^{2}\right)^{1 / 2}+(1+p \dot{x})\left(1+p^{2}\right)^{-1 / 2}>0 . \\
G E & =\left(1+\dot{x}^{2}\right)-(1+p \dot{x})^{2} /\left(1+p^{2}\right) \\
& =\frac{\dot{x}^{2}+p^{2}-2 p \dot{x}}{1+p^{2}}=\frac{(\dot{x}-p)^{2}}{1+p^{2}} \geq 0 .
\end{aligned}
$$

So $E \geq 0$ when $1+p \dot{x}>0$ and when $1+p \dot{x} \leq 0$, and by the theorem $x=x^{*}(t)=t$, is a minimizing curve.
\# Field of extremals $x(t)$:

- Solutions of $\mathrm{E}-\mathrm{L}$ eqn;
- Contain extremal $x^{*}(t)$ satisfying endpoints;
- Covers plane;
- Slope function

$$
p(t, x) \text { at each }(t, x)
$$

\# WEIERSTRASS EXCESS FUNCTION $x=x(t)$

$$
\begin{aligned}
E(t, x, \dot{x} p)= & f(t, x, \dot{x})-f(t, x, p) \\
& -(\dot{x}-p) \frac{\partial f}{\partial p}(t, x, p)
\end{aligned}
$$

$$
\begin{aligned}
\dot{x} & =\text { slope of } x(t) \text { at }(t, x) \\
p & =\text { slope function of field at }(t, x)
\end{aligned}
$$

$\# \quad E(t, x, \dot{x}, p) \geq 0 \quad \forall(t, x)$ close to $x=x^{*}(t)$ and all \dot{x}.

This

\# EXAMPLES

\# SEMIFIELDS \& JACOBI CONDITIONS.
Example 2: (continue)
Minimizes $J[x]=\int_{1}^{2} \dot{x}^{2} t^{3} d t, x(1)=0, x(2)=3$.
Solution. Extremal $x=k / t^{2}+l$; satisfying end points, $x=4-4 / t^{2}$.
\# Field of extremals $x=l-4 / t^{2}$; slope of field $p(t, x)=8 / t^{3}$.
\# Excess function

$$
\begin{aligned}
& f(t, x, \dot{x})-f(t, x, p)-(\dot{x}-p) \frac{\partial f}{\partial p}(t, x, p) \\
& \begin{aligned}
E(t, x, \dot{x}, p) & =\dot{x}^{2} t^{3}-p^{2} t^{3}-(\dot{x}-p) 2 p t^{3} \\
& =t^{3}\left(\dot{x}^{2}-2 p \dot{x}+p^{2}\right) \\
& =t^{3}(\dot{x}-p)^{2} \geq 0 \quad t \geq 0
\end{aligned}
\end{aligned}
$$

at each (t, x) for any value of \dot{x}. Hence the extremal satisfies the conditions and $x=x^{*}(t)=4-4 / t^{2}$ is a minimizing curve.

