
Chapter 7. Minimizing curves & field of ex-

tremals

Calculus versus Calculus of Variations

Local minima: Necessary conditions

Calculus in R
2 Calculus of variations

∇f(x∗) = 0
∼

∂f

∂x
−

d

dt

(

∂f

∂ẋ

)

= 0

x∗ ∈ R
2 x∗ ∈ C1

CRITICAL POINT EXTREMAL

Local minima: Sufficient conditions

Let y = x∗ + εη, Let y = x∗ + εη,

where x∗, η, y ∈ R
2 where x∗, η, y ∈ C1

0 ≤ f(y) − f(x∗) 0 ≤ J [y] − J [x∗]

= εV1 + ε2V2 + O(ε3) = εV1 + ε2V2 + O(ε3)

V1 = ∇f(x∗)η V1 =

∫ t1

t0

η

{

fx −
d

dt
fẋ

}

dt

V2 = ηT Hη/2 V2 =
1

2

∫ t1

t0

(

η2fxx + 2η̇ηfxẋ

H the Hessian of f at x∗ +η̇2fẋẋ

)

dt.

V1 = 0, V2 > 0 V1 = 0, V2 > 0

sufficient for a minimum not sufficient for a minimum
1
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Example 1. J [x] =

∫

1

0

1

ẋ
dt, x(0) = 0, x(1) = 1.

Solution. Extremal is x = t = x∗ & gives J = 1. Consider
y = t + εη, η(0) = η(1) = 0. Then

4J = J [y] − J [t]

=

∫

1

0

(

(1 + εη̇)−1 − 1
)

dt =

∫

1

0

(−εη̇ + ε2η̇2 − ε3η̇3 · · · )dt

= ε2

∫

1

0

η̇2dt + 0(ε3).

Thus, V2 > 0. But y =

{

3t, 0 ≤ t ≤ 1

2

−t + 2, 1

2
≤ t ≤ 1

satisfies

J [y] =

∫ 1

2

0

dt

3
+

∫

1

1

2

(−1)dt = −
1

3
< J [x∗].

However, this is not a D1 minimizing curve because the
corner conditions are not satisfied. So, although V2 > 0,
x = x∗ = t is not a minimizing curve.

So we have to adopt a more sophisticated approach, using
the concept of Hilbert Integral and a Field of Extremals.

Want 4J = J [y] − J [x∗] > 0 for all y = y(t) satisfying the
end conditions.

# ALL y = x∗(t) + η(t);

# y(t) perhaps in D1.
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The trick is to express 4J in another form whose sign is
easier to determine. The solution to E–L equation involves
two arbitrary constants: two parameter family of curves.
Imposing the end conditions gives the constants.
E.g. example above

0 −
d

dt

(

−1

ẋ2

)

= 0 ⇒ ẋ = constant

⇒ x = kt + l.

Values k = 1, l = 0 give the extremal thro’ (0, 0) and (1, 1).

Consider the 1-parameter family of extremals x = t+ l. As
well as containing x = x∗ = t, this family is a simple cover
of the plane: one and only one curve passes through each
point. Call this a FIELD OF EXTREMALS.

Since only one extremal of the family passes through each
point, there is a unique value of slope

ẋ = p(t, x)

at each point (t, x). Associated with the field of extremals
is a SLOPE FUNCTION p(t, x) satisfying at each (t, x)

∂f(t, x, p)

∂x
−

d

dt

(

∂f

∂p
(t, x, p)

)

= 0.

Example 2. Find a field of extremals for J [x] =

∫

2

1

ẋ2t3dt,

x(1) = 0, x(2) = 3.
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Solution. General solution of the E–L eqn is x = k/t2 + l
and the extremal satisfying the end conditions is x = 4 −

4/t2. A 1- par. family of extremals comparing this is x =
l−4/t2. For t > 0 this gives a simple cover of the half plane
and so is a field with slope function

p(t, x) = 8/t3.

Now f(t, x, p) = p2t3, ∂f/∂x = 0 and ∂f/∂p = 2pt3. Hence

∂f

∂x
−

d

dx

(

∂f

∂p

)

= 0 −
d

dt
(2pt3) = −

d

dt
(16) = 0.

Example 3. Find a filed of extremals for

J [x] =

∫

1

0

ẋ2m dx, m > 1 an integer

with x(0) = 1 and x(1) = 2.

Solution. The Euler-Lagrange equation is

0 −
d

dt
(2mẋ2m−1) = 0.

This implies that ẋ = constant, so

x = x∗(t) = kt + l

Using x(0) = 1 and x(2) = 3, we have

l = 1 k + l = 2 ⇒ k = 1.
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Let p = p(t, x) = ẋ∗(t) = 1 be the slop of fields of extremals
x = t + l. Then

f(t, x, p) = p2m = 1,
∂f

∂p
= 2mp2m−1 = 2m

which satisfies obviously the equation

∂f

∂x
−

d

dt

(

∂f

∂p

)

= 0

for all (t, x) ∈ R.
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Hilbert’s Invariant Integral.

C∗ : x = x∗(t) ex-
tremal in a field
of extremals, slope
p(t, x).

C : x = x(t) any other curve joining the endpoints and
covered by the field.

K[x] =

∫ t1

t0

{

f(t, x, p) + (ẋ − p)
∂f

∂p
(t, x, p)

}

dt.

When C = C∗, so ẋ = p(t, x∗), K[x∗] = J [x∗].
In K[x], let

u(t, x) = f(t, x, p(t, x)) − p(t, x)
∂f

∂p
(t, x, p(t, x)),

v(t, x) =
∂f

∂p
(t, x, p(t, x)).

Then
∫ t1

t0

ẋv dt =

∫

C

v dx
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and we get a line integral:

K[x] =

∫

C

u dt + v dx.

This integral is independent of C.

To see this, we need to show ∂u/∂x− ∂v/∂t = 0 at each
point (t, x). But, as x, t vary on C

∂u

∂x
=

∂

∂x

[

f(t, x, p(t, x)) − p(t, x)
∂f

∂p
(t, x, p(t, x))

]

=
∂f

∂x
(t, x, p(t, x)) +

∂p

∂x
(t, x)

∂f

∂p
(t, x, p(t, x))

−
∂p

∂x
(t, x)

∂f

∂p
(t, x, p(t, x)) − p(t, x)

∂2f

∂x∂p
(t, x, p(t, x))

− p(t, x)
∂p

∂x
(t, x)

∂2f

∂p2
(t, x, p(t, x))

=
∂f

∂x
(t, x, p(t, x)) − p(t, x)

∂2f

∂x∂p
(t, x, p(t, x))

− p(t, x)
∂p

∂x
(t, x)

∂2f

∂p2
(t, x, p(t, x))

=
∂f

∂x
(t, x∗, p(t, x∗)) − p(t, x∗)

∂2f

∂x∂p
(t, x, p(t, x∗))

− p(t, x∗)
∂p

∂x
(t, x∗)

∂2f

∂p2
(t, x∗, p(t, x∗))
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and

∂v

∂t
=

∂

∂t

[

∂f

∂p
(t, x, p(t, x))

]

=
∂2f

∂t∂p
(t, x, p(t, x)) +

∂2f

∂p2
(t, x, p(t, x))

∂p

∂t
(t, x)

=
∂2f

∂t∂p
(t, x∗, p(t, x∗)) +

∂2f

∂p2
(t, x∗, p(t, x∗))

∂p

∂t
(t, x∗),

where we use the fact that (t, x) = (t, x∗(t)) for an extremal
x∗. Using above two identities, we have

∂u

∂x
−

∂v

∂t
(t, x)

=
∂f

∂x
(t, x∗, p(t, x∗)) − p(t, x∗)

∂2f

∂x∂p
(t, x, p(t, x∗))

− p(t, x∗)
∂p

∂x
(t, x∗)

∂2f

∂p2
(t, x∗, p(t, x∗))

−
∂2f

∂t∂p
(t, x∗, p(t, x∗)) −

∂2f

∂p2
(t, x∗, p(t, x∗))

∂p

∂t
(t, x∗)

(6.1)

Since x = x∗(t) is an extremal in the field of extremals,

dx∗

dt
(t) = p(t, x∗).
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Using this equation, we have

d

dt

[

∂f

∂p
(t, x∗, p(t, x∗))

]

=
∂2f

∂p∂t
(t, x∗, p(t, x∗)) +

dx∗

dt

∂2f

∂p∂x
(t, x∗, p(t, x∗))

+
d

dt
[p(t, x∗(t))]

∂2f

∂p2
(t, x∗, p(t, x∗))

=
∂2f

∂p∂t
(t, x∗, p(t, x∗)) +

dx∗

dt

∂2f

∂p∂x
(t, x∗, p(t, x∗))

+

[

∂p

∂t
(t, x∗(t)) +

dx∗

dt

∂p

∂x
(t, x∗(t))

]

∂2f

∂p2
(t, x∗, p(t, x∗))

=
∂2f

∂p∂t
(t, x∗, p(t, x∗)) + p(t, x∗)

∂2f

∂p∂x
(t, x∗, p(t, x∗))

+

[

∂p

∂t
(t, x∗(t)) + p(t, x∗)

∂p

∂x
(t, x∗(t))

]

∂2f

∂p2
(t, x∗, p(t, x∗))

(6.2)

From (6.1) and (6.2), we have

∂u

∂x
−

∂v

∂t
(t, x)

=
∂f

∂x
(t, x∗, p(t, x∗)) −

d

dt

[

∂f

∂p
(t, x∗, p(t, x∗))

]

= 0

since p(t, x∗) is the slope of the field of extremals.
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Since K[x∗] = J [x∗], this gives

4J = J [x] − J [x∗] = J [x] − K[x∗]

= J [x] − K[x].

Both integrals are evaluated along C, so:

4J =

∫ t1

t0

{

f(t, x, ẋ) − f(t, x, p) − (ẋ − p)
∂f

∂p
(t, x, p)

}

dt

# ẋ slope of C at (t, x);

# p slope of field of extremals at (t, x).

Let

E(t, x, ẋ, p) = f(t, x, ẋ) − f(t, x, p) − (ẋ − p)
∂f

∂p
(t, x, p)

denote the integrand in the integral defining 4J.

(Weierstrass Excess Function)

Theorem A (Weierstrass Conditions)

In order that the extremal C∗ : x = x∗(t) give a strong
local minimum to J [x] it is sufficient that

# C∗ is a member of a field of extremals;

# E(t, x, ẋ, p) ≥ 0 ∀(t, x) close to C∗ and arbitrary
values of ẋ.
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Theorem B (Weierstrass Conditions)
In order that the extremal C∗ : x = x∗(t) give a (global)
minimum to J [x] it is sufficient that

# C∗ is a member of a field of extremals and the field
of extremals cover the whole (t, x)-plan R

2.

# E(t, x, ẋ, p) ≥ 0 ∀(t, x) ∈ R
2.

Example 4. Shortest distance between 2 points is a
straight line:

minimize J =

∫

1

0

(1 + ẋ2)1/2dt,
x(0) = 0

x(1) = 1.

Solution. Extremals are x = kt + l, end conditions k = 1,
l = 0 ⇒ x = t. First, embed x = t in a field of extremals.
Could do x = t + l (with p(t, x) = 1) or x = kt (p = x/t).
Now

E(t, x, ẋ, p) = f(t, x, ẋ) − f(t, x, p)

− (ẋ − p)
∂f

∂p
(t, x, p)

(p = p(t, x)).

Here,

E(t, x, ẋ, p) = (1 + ẋ2)1/2 − (1 + p2)1/2

− p(ẋ − p)(1 + p2)−1/2

= (1 + ẋ2)1/2 − (1 + pẋ)(1 + p2)−1/2.
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At a point (t, x) covered by the field, p = p(t, x) has a
numerical value. We need to show that E ≥ 0, for all
possible values of ẋ, at such a point.

• If 1 + pẋ ≤ 0, then E > 0.

• 1 + pẋ > 0; define

G = (1 + ẋ2)1/2 + (1 + pẋ)(1 + p2)−1/2 > 0.

GE = (1 + ẋ2) − (1 + pẋ)2/(1 + p2)

=
ẋ2 + p2 − 2pẋ

1 + p2
=

(ẋ − p)2

1 + p2
≥ 0.

So E ≥ 0 when 1 + pẋ > 0 and when 1 + pẋ ≤ 0, and by
the theorem x = x∗(t) = t, is a minimizing curve.
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# Field of extremals x(t):

• Solutions of E–L eqn;

• Contain extremal x∗(t) satisfying endpoints;

• Covers plane;

• Slope function

p(t, x) at each (t, x).

# WEIERSTRASS EXCESS FUNCTION x = x(t)

E(t, x, ẋp) = f(t, x, ẋ) − f(t, x, p)

− (ẋ − p)
∂f

∂p
(t, x, p)

ẋ = slope of x(t) at (t, x)

p = slope function of field at (t, x)

# E(t, x, ẋ, p) ≥ 0 ∀(t, x) close to x = x∗(t) and all ẋ.
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This

# EXAMPLES
# SEMIFIELDS & JACOBI CONDITIONS.

Example 2: (continue)

Minimizes J [x] =

∫

2

1

ẋ2t3dt, x(1) = 0, x(2) = 3.

Solution. Extremal x = k/t2 + l; satisfying end points,
x = 4 − 4/t2.

# Field of extremals x = l − 4/t2; slope of field
p(t, x) = 8/t3.

# Excess function
f(t, x, ẋ) − f(t, x, p) − (ẋ − p)∂f

∂p (t, x, p)

E(t, x, ẋ, p) = ẋ2t3 − p2t3 − (ẋ − p)2pt3

= t3(ẋ2 − 2pẋ + p2)

= t3(ẋ − p)2 ≥ 0 t ≥ 0

at each (t, x) for any value of ẋ. Hence the extremal satisfies
the conditions and x = x∗(t) = 4 − 4/t2 is a minimizing
curve.


