## 5.1

- $x^{*}$ an extremum of $J[x]=\int_{t_{0}}^{t_{1}} f(t, x, \dot{x}) d t$
$\Leftrightarrow x^{*}$ satisfies Euler-Lagrange (E-L):

$$
\frac{\partial f}{\partial x}-\frac{d}{d t}\left(\frac{\partial f}{\partial \dot{x}}\right)=0
$$

If $f$ independent of $t$ then $\mathrm{E}-\mathrm{L} \Leftrightarrow$

$$
f-\dot{x} \frac{\partial f}{\partial \dot{x}}=\text { constant }
$$

- Solutions of $E-L$ (satisfying side conditions) called EXTREMALS. Seek minimizing curves among the extremals.
- Examples.

Ex 2. Minimize $\int \frac{\sqrt{1+\dot{x}^{2}}}{x^{1 / 2}} d t$.
Use the second form of the $E-L$ equ.

$$
\begin{align*}
& {\left[\frac{\left(1+\dot{x}^{2}\right)}{x}\right]^{1 / 2}-\dot{x} \frac{\dot{x}}{\left[x\left(1+\dot{x}^{2}\right)\right]^{1 / 2}}=\text { const. }}  \tag{5.1}\\
& \left\{x\left(1+\dot{x}^{2}\right)\right\}^{-1 / 2}\left\{\left(1+\dot{x}^{2}\right)-\dot{x}^{2}\right\}=\text { const. }
\end{align*}
$$

Hence

$$
\begin{gather*}
x\left(1+\dot{x}^{2}\right)^{1 / 2}=c .  \tag{5.2}\\
1
\end{gather*}
$$

\# Where $\left(1+\dot{x}^{2}\right)^{1 / 2}$ occurs, we use a parametric technique to solve the DE .
Substitute $\dot{x}=\tan \theta$.
Thus $\left(1+\dot{x}^{2}\right)=\left(1+\tan ^{2} \theta\right)=\sec ^{2} \theta=\frac{1}{\cos ^{2} \theta}$.
From (5.2),

$$
\begin{equation*}
x=c \cos ^{2} \theta \tag{5.3"}
\end{equation*}
$$

This gives $x$ in terms of $\theta$. What we will now do is obtain $t$ in terms of $\theta$.

Differentiate (5.3) and obtain

$$
\dot{x}=\frac{d}{d \theta}\left(c \cos ^{2} \theta\right) \frac{d \theta}{d t}=-2 c \cos \theta \sin \theta \dot{\theta} \text { but } \dot{x}=\tan \theta \text { so }
$$

$\tan \theta=-2 c \cos \theta \sin \theta \dot{\theta} \Leftrightarrow$

$$
\begin{aligned}
1 & =-2 c \dot{\theta} \cos ^{2} \theta=-c \dot{\theta}(1+\cos 2 \theta) \\
& =-c \dot{\theta}(1+\cos 2 \theta), \text { a first order separable equation for } \dot{\theta} \text { so } \\
\int d t & =-c \int(1+\cos 2 \theta) d \theta+K \\
t & =-c\left(\theta+\frac{1}{2} \sin 2 \theta\right)+K
\end{aligned}
$$

Finally, setting $k=c / 2, l=K$, and noting that $x=$ $c \cos ^{2} \theta=c(1+\cos 2 \theta) / 2$ we obtain

$$
\begin{aligned}
x & =k(1+\cos 2 \theta) \\
t & =l-k(2 \theta+\sin 2 \theta)
\end{aligned}
$$

$l, k$ to be found from end conditions.
Important features of this example:
$\# f-\dot{x} \frac{\partial f}{\partial \dot{x}}=$ const. $\Leftrightarrow E-L$ eqn;
$\#\left(1+\dot{x}^{2}\right)^{1 / 2}$ occurs $\Rightarrow$ substitute $\dot{x}=\tan \theta$ get a parametric form for $x^{*}(t)$.

Examples 3. Find the extremal of

$$
\begin{aligned}
J[x]=\int_{0}^{1}\left(t \dot{x}+\dot{x}^{2}\right) d t, \quad x(0) & =1 \\
x(1) & =2.75
\end{aligned}
$$

$E-L$ eqn:

$$
\begin{aligned}
\frac{\partial f}{\partial x}-\frac{d}{d t}\left[\frac{\partial f}{\partial \dot{x}}\right]= & 0 \\
& 0-\frac{d}{d t}(t+2 \dot{x})=0 \\
& \Rightarrow t+2 \dot{x}=2 c \quad \quad \text { (a constant) } \\
& \Rightarrow \dot{x}=c-\frac{1}{2} t \\
& \Rightarrow x=c t-\frac{1}{4} t^{2}+k \\
x(0)=1 & \Rightarrow k=1 ; \quad x(1)=2.75=c-.25+1 \\
c & =2
\end{aligned}
$$

## Extremal

$$
x=2 t-\frac{1}{4} t^{2}+1
$$

Example 4.

$$
\begin{aligned}
& J[x]=\int_{0}^{1}\left(1+t^{2}\right) \dot{x}^{2} d t, \\
& x(0)=\frac{\pi}{2}, \quad x(1)=\pi .
\end{aligned}
$$

$E-L$ eqn:

$$
\begin{gathered}
0-\frac{d}{d t}\left\{2\left(1+t^{2}\right) \dot{x}\right\}=0 \\
\left(1+t^{2}\right) \dot{x}=c \\
\int d x=\int \frac{c}{1+t^{2}} d t+D \\
x=c \arctan t+D \\
x(0)=\frac{\pi}{2}=D ; \\
=x(1)=\pi=c \arctan 1+\frac{\pi}{2} \\
=c \cdot \frac{\pi}{4}+\frac{\pi}{2} \\
c=2
\end{gathered}
$$

Extremal

$$
x(t)=2 \arctan t+\frac{\pi}{2}
$$

Ex. 5.

$$
\begin{array}{ll}
J[x]=\int_{0}^{t_{f}} x \dot{x}^{2} d t, & x(0)=x_{0} \\
(x>0) & x\left(t_{f}\right)=x_{f}
\end{array}
$$

Here $t_{f}$ is fixed.

Solution. $f=x \dot{x}^{2}$ does not involve $t$ explicitly.
So $E-L \Leftrightarrow$

$$
\begin{gathered}
f-\dot{x} \frac{\partial f}{\partial \dot{x}}=\text { const. } \\
x \dot{x}^{2}-\dot{x} .2 x \dot{x}=\text { const. } \\
x \dot{x}^{2}=c, \quad \dot{x}^{2}=\frac{c}{x}
\end{gathered}
$$

Let

$$
\begin{aligned}
\alpha=\sqrt{c}, \quad \dot{x} & =\alpha / \sqrt{x} \\
\int \sqrt{x} d x & =\int \alpha d t+\beta \\
\frac{2}{3} x^{3 / 2} & =\alpha t+\beta \\
t=0: \quad \frac{2}{3} x_{0}^{3 / 2} & =\beta \\
t=t_{f}: \quad \frac{2}{3} x_{f}^{2 / 3} & =\alpha t_{f}+\frac{2}{3} x_{0}^{3 / 2} \\
\alpha & =\frac{2}{3}\left[x_{f}^{3 / 2}-x_{0}^{3 / 2}\right] / t_{f}
\end{aligned}
$$

Fixed Endpoint Minimize $J[x]=\int_{t_{0}}^{t_{1}} f(t, x, \dot{x}) d t$ where $\left(t_{0}, x\left(t_{0}\right)\right)$ and $\left(t_{1}, x\left(t_{1}\right)\right)$ are fixed. Let $x^{*}(t)$ be a minimizing curve. Let

$$
y=x^{*}(t)+\varepsilon \eta(t)
$$

be a weak variation starting at $\left(t_{0}, x\left(t_{0}\right)\right)$ and ending at $\left(t_{1}, x\left(t_{1}\right)\right)$.

We write $0(s)$ for a term $T$ if $|T / s|=|O(s) / s| \leq k$ for some constant $k$ and $s$ small. In this case we say the term $T$ is of order big O of $s$ for small $s$. Thus $\lim _{s \rightarrow 0} O\left(s^{2}\right) / s=0$.

We will show that the Euler-Lagrange Equation must be satisfied. Consider

$$
\begin{aligned}
0 & \leq J[y]-J\left[x^{*}\right]=\triangle J \\
& =\int_{t_{0}}^{t_{1}} f\left(t, x^{*}+\varepsilon \eta, \dot{x}^{*}+\varepsilon \dot{\eta}\right) d t-\int_{t_{0}}^{t_{1}} f\left(t, x^{*}, \dot{x}^{*}\right) d t \\
& =\int_{t_{0}}^{t_{1}}\left(f\left(t, x^{*}+\varepsilon \eta, \dot{x}^{*}+\varepsilon \dot{\eta}\right)-f\left(t, x^{*}, \dot{x}^{*}\right)\right) d t \\
& =\int_{t_{0}}^{t_{1}}\left(f_{x}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \eta+f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \dot{\eta}\right) d t+0\left(\epsilon^{2}\right),
\end{aligned}
$$

by Taylor's Theorem below
$=\int_{t_{0}}^{t_{1}}\left(f_{x}\left(t, x^{*}, \dot{x}^{*}\right)-\frac{d}{d t} f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)\right) \epsilon \eta d t+\left[f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \eta\right]_{t_{0}}^{t_{1}}$ $+0\left(\epsilon^{2}\right)$ integrating by parts...see below
$=\int_{t_{0}}^{t_{1}}\left(f_{x}\left(t, x^{*}, \dot{x}^{*}\right)-\frac{d}{d t} f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)\right) \epsilon \eta d t+0\left(\epsilon^{2}\right)$
since $\eta\left(t_{0}\right)=0=\eta\left(t_{1}\right)$

Since this holds for any function $\eta$ satisfying
$\eta\left(t_{0}\right)=0=\eta\left(t_{1}\right)$ and any $\epsilon$ it follows that Euler Equation hold:

$$
f_{x}\left(t, x^{*}, \dot{x}^{*}\right)-\frac{d}{d t} f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)=0
$$

NOTE: By Taylor's Theorem

$$
\begin{aligned}
& f\left(t, x^{*}+\varepsilon \eta, \dot{x}^{*}+\varepsilon \dot{\eta}\right)-f\left(t, x^{*}, \dot{x}^{*}\right) \\
& =f_{x}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \eta+f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \dot{\eta}+0\left(\epsilon^{2}\right)
\end{aligned}
$$

NOTE: Integration by parts

$$
\int_{t_{0}}^{t_{1}} u \dot{v} d t=[u v]_{t_{0}}^{t_{1}}-\int_{t_{0}}^{t_{1}} v \dot{u} d t
$$

Setting $u=f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)$ and $\dot{v}=\epsilon \dot{\eta}$, so that $v=\epsilon \eta$ and $\dot{u}=\frac{d}{d t} f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)$, we obtain
$\int_{t_{0}}^{t_{1}} f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \dot{\eta} d t=\left[f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \eta\right]_{t_{0}}^{t_{1}}-\int_{t_{0}}^{t_{1}} \frac{d}{d t} f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) d t$

Lemma 5.1. If $m(t):\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ is a continuous function and if

$$
\int_{t_{0}}^{t_{1}} m(t) \eta(t) d t=0
$$

for all $C^{2}$-function $\eta(t)$ with $\eta\left(t_{0}\right)=\eta\left(t_{1}\right)=0$. Then $m(t)=0$ for all $t \in\left[t_{0}, t_{1}\right]$.

Proof. Assume that there is some $a \in\left(t_{0}, t_{1}\right)$ so that $m(a) \neq 0(>0)$. By the continuity of $m$, we can choose a sufficiently small $\varepsilon>0$ such that $m(t)>0($ or $m(t)<0)$ for all $t \in[a-\varepsilon, a+\varepsilon]$. Choose
$\eta(t)= \begin{cases}(t-a+\varepsilon)^{3}(a+\varepsilon-t)^{3} & \forall t \in[a-\varepsilon, a+\varepsilon] \\ 0 & \forall t \in\left[t_{0}, a-\varepsilon\right) \cup\left(a+\varepsilon, t_{1}\right]\end{cases}$

Then

$$
\int_{t_{0}}^{t_{1}} m(t) \eta(t) d t=\int_{a-\varepsilon}^{a+\varepsilon} m(t) \eta(t) d t>0
$$

This is impossible. $\square$

### 5.2 Variable Endpoint

Minimize $J[x]=\int_{t_{0}}^{t_{1}} f(t, x, \dot{x}) d t$
$\left(t_{0}, x\left(t_{0}\right)\right)$ is fixed, $\left(t_{1}, x\left(t_{1}\right)\right)$ lies on given curve $x=c(t)$ ( $t_{1}$ unknown)

Let $x^{*}(t)$ be a minimizing curve and suppose that it intersects the target curve at $t=t_{1}$. Let

$$
y=x^{*}(t)+\varepsilon \eta(t)
$$

be a weak variation starting at $\left(t_{0}, x\left(t_{0}\right)\right)$ and reaching the curve at

$$
t=t_{1}+\triangle \tau
$$

We will show that the following transversality condition must be satisfied.

$$
\begin{aligned}
& \text { Transversal } \\
& \text { condition }
\end{aligned} f\left(t_{1}\right)+\left(\dot{c}\left(t_{1}\right)-\dot{x}^{*}\left(t_{1}\right)\right) \frac{\partial f}{\partial \dot{x}}\left(t_{1}\right)=0
$$

Solving $E-L$ eqn, gives two unknown constants. Condition $x\left(t_{0}\right)=x_{0}$ gives one equation, the transversality condition gives another equation so arbitrary constants can be found.

$$
\begin{aligned}
y\left(t_{1}+\triangle \tau\right) & =x^{*}\left(t_{1}+\Delta \tau\right)+\epsilon \eta\left(t_{1}+\triangle \tau\right) \\
& =x^{*}\left(t_{1}\right)+\triangle \tau \dot{x}^{*}\left(t_{1}\right)+\epsilon \eta\left(t_{1}\right)+0\left(\epsilon^{2}\right) \\
& =c\left(t_{1}+\triangle \tau\right)=c\left(t_{1}\right)+\triangle \tau \dot{c}\left(t_{1}\right)+0\left(\epsilon^{2}\right)
\end{aligned}
$$

Noting $x^{*}\left(t_{1}\right)=c\left(t_{1}\right)$, ignoring $O\left(\epsilon^{2}\right)$ terms and using the previous equation we obtain

$$
\begin{equation*}
\epsilon \eta\left(t_{1}\right)=\left[\dot{c}\left(t_{1}\right)-\dot{x}^{*}\left(t_{1}\right)\right] \Delta \tau \tag{1}
\end{equation*}
$$

Consider

$$
\begin{aligned}
\triangle J & =J[y]-J\left[x^{*}\right] \\
& =\int_{t_{0}}^{t_{1}+\Delta \tau} f\left(t, x^{*}+\epsilon \eta, \dot{x}^{*}+\epsilon \dot{\eta}\right) d t-\int_{t_{0}}^{t_{1}} f\left(t, x^{*}, \dot{x}^{*}\right) d t \\
& =\int_{t_{1}}^{t_{1}+\Delta \tau} f\left(t, x^{*}+\epsilon \eta, \dot{x}^{*}+\epsilon \dot{\eta}\right) d t \\
& +\int_{t_{0}}^{t_{1}}\left(\frac{\partial f}{\partial x}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \eta+\frac{\partial f}{\partial \dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \dot{\eta}\right) d t+0\left(\epsilon^{2}\right)
\end{aligned}
$$

Noting

$$
\begin{aligned}
& \int_{t_{0}}^{t_{1}}\left(\frac{\partial f}{\partial x}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \eta+\frac{\partial f}{\partial \dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \dot{\eta}\right) d t \\
& =\int_{t_{0}}^{t_{1}} \frac{\partial f}{\partial x}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \eta d t+\left[\frac{\partial f}{\partial \dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \eta\right]_{t_{0}}^{t_{1}} \\
& -\int_{t_{0}}^{t_{1}} \frac{d}{d t} \frac{\partial f}{\partial \dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \eta d t \\
& =\int_{t_{0}}^{t_{1}}\left[\frac{\partial f}{\partial x}\left(t, x^{*}, \dot{x}^{*}\right)-\frac{d}{d t} \frac{\partial f}{\partial \dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)\right] \epsilon \eta d t+\left[f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \eta\right]_{t_{0}}^{t_{1}}
\end{aligned}
$$

and that

$$
\begin{aligned}
\triangle J & =\int_{t_{1}}^{t_{1}+\Delta \tau} f\left(t, x^{*}+\epsilon \eta, \dot{x}^{*}+\epsilon \dot{\eta}\right) d t \\
& +\int_{t_{0}}^{t_{1}}\left(\frac{\partial f}{\partial x}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \eta+\frac{\partial f}{\partial \dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \dot{\eta}\right) d t+0\left(\epsilon^{2}\right) \\
& =f\left(t_{1}, x^{*}, \dot{x}^{*}\right) \Delta \tau+\int_{t_{0}}^{t_{1}}\left[\frac{\partial f}{\partial x}\left(t, x^{*}, \dot{x}^{*}\right)-\frac{d}{d t} \frac{\partial f}{\partial \dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)\right] \epsilon \eta d t \\
& +\left[f_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) \epsilon \eta\right]_{t_{0}}^{t_{1}}+0\left(\epsilon^{2}\right) \\
& =f\left(t_{1}, x^{*}, \dot{x}^{*}\right) \triangle \tau+f_{\dot{x}}\left(t_{1}, x^{*}, \dot{x}^{*}\right) \epsilon \eta\left(t_{1}\right)+0\left(\epsilon^{2}\right)
\end{aligned}
$$

Here we used $x^{*}$ is a solution of $E-L$ eqn and $\eta\left(t_{0}\right)=0$.
Setting $f\left(t_{1}\right):=f\left(t_{1}, x^{*}\left(t_{1}\right), \dot{x}^{*}\left(t_{1}\right)\right)$ and substituting for $\epsilon \eta\left(t_{1}\right)$ from (1) we obtain

$$
\triangle J=\triangle \tau\left\{f\left(t_{1}\right)+\left[\dot{c}\left(t_{1}\right)-\dot{x}^{*}(t)\right] \frac{\partial f}{\partial \dot{x}}(t)\right\}+0\left(\epsilon^{2}\right)
$$

Note $\frac{d(\triangle J)}{d \varepsilon}=0$ is called the first variation in $J$. Noticing

$$
\triangle \tau=\frac{\epsilon \eta\left(t_{1}\right)}{\left[\dot{c}\left(t_{1}\right)-\dot{x}^{*}\left(t_{1}\right)\right]}
$$

we show that if $x^{*}(t)$ is a minimizer, then $x^{*}(t)$ satisfies transversality and Euler-Lagrange equation.

Definition. An extremal of minimizing $J[x]$ with variable endpoint $\Leftrightarrow$ transversality $+E-L$ equation.

Example 1. Find the extremal of $\int_{1}^{T} \dot{x}^{2} t^{3} d t, x(1)=0$, $T>1$ is finite and $x(T)$ lies on $x=c(t)=\frac{2}{t^{2}}-3$.

Solution. From Ex. 1 of the previous chapter 4, extremals have the form

$$
\begin{aligned}
x & =\frac{k}{t^{2}}+l . \\
x(1)=0 \Rightarrow l & =-k \Rightarrow x=\frac{k}{t^{2}}-k
\end{aligned}
$$

Use the transversality condition to find the 2 unknowns $k$, $T$. Now $\dot{x}=-\frac{2 k}{t^{3}}$ and $x(t)=c(t)=\frac{2}{t^{2}}-3$ when $t=T$, so $\dot{c}(t)=-\frac{4}{t^{3}}$.

Transversality Condition

$$
\begin{gathered}
f\left(t_{1}\right)+\left[\dot{c}\left(t_{1}\right)-\dot{x}^{*}\left(t_{1}\right)\right] \frac{\partial f}{\partial \dot{x}}\left(t_{1}\right)=0 \\
f(t)=\dot{x}^{2} t^{3}, \quad \text { replace } t_{1} \text { by } T: \\
\dot{x}(T)^{2} T^{3}+2 \dot{x}(T) T^{3}\left[-4 / T^{3}+2 k / T^{3}\right]=0 \\
-\frac{2 k}{T^{3}} T^{3}+2 T^{3}\left[-4 / T^{3}+2 k / T^{3}\right]=0 \\
2 k-8=0, \quad k=4 .
\end{gathered}
$$

Still have to determine $T$ :

$$
\begin{gathered}
x(T) \text { lies on } x=c(t)=\frac{2}{t^{2}}-3 \\
x(T)=2 / T^{2}-3=\frac{4}{T^{2}}-4 \\
\frac{2}{T^{2}}=1 \quad T=\sqrt{2} \quad(T>1, \text { so not }-\sqrt{t}) .
\end{gathered}
$$

Consequently $x^{*}(t)$ meets target curve at $T=\sqrt{2}$, when $x(T)=-2$.

Note that here there were 3 unknowns: 2 arb. constants and $T$.
Three conditions

- $x(1)=0$,
- Transversality condition,
- $x(T)=c(T)$.


## Special Forms of Transversality:

\# If $x\left(t_{1}\right)$ is fixed and $t_{1}$ is variable.

Target curve here is $x=c(t)=$ const. $\dot{c}(t)=0$ and the transversality cond- simplifies to

$$
\begin{gathered}
f\left(t_{1}\right)-\dot{x}^{*}\left(t_{1}\right) \frac{\partial f}{\partial \dot{x}}\left(t_{1}\right)=0 \\
x\left(t_{1}\right)=x_{1}
\end{gathered}
$$

Able to solve for 2 constants and $t_{1}$ \# $\quad t_{1}$ fixed and $x_{1}$ variable

Target curve is parallel to $x$-axis, $\dot{c}\left(t_{1}\right)$ is infinite.

If $\dot{c}\left(t_{1}\right)$ is infinite, trans. condn.

$$
\frac{1}{\dot{c}\left(t_{1}\right)} f\left(t_{1}\right)+\left[1-\frac{\dot{x}^{*}\left(t_{1}\right)}{\dot{c}\left(t_{1}\right)}\right] \frac{\partial f}{\partial \dot{x}}\left(t_{1}\right)=0
$$

Let $\dot{c}\left(t_{1}\right) \rightarrow \infty$ here, transversality condn. simplifies to

$$
\frac{\partial f}{\partial \dot{x}}\left(t_{1}\right)=0
$$

Example 2. Find the extremal of

$$
J=\int_{0}^{T}\left(x^{2}+\dot{x}^{2}\right) d t
$$

when

$$
\begin{array}{ll}
(1) x(0)=1, & T=2 ; \\
\text { (2) } x(0)=1, & x(T)=2 ; \\
(3) x(0)=0, & x(T)=2
\end{array}
$$

Solution. Since $f$ does not involve $t$ explicitly, we could use the other form, but this is easy with the E-L eqn

$$
\begin{gathered}
\frac{\partial f}{\partial x}-\frac{d}{d t}\left(\frac{\partial f}{\partial \dot{x}}\right)=0 \\
2 x-\frac{d}{d t}(2 \dot{x})=0, \quad \ddot{x}-x=0 \\
\lambda^{2}-1=0, \quad \lambda=-1,+1, \quad e^{-t}, e^{t} \\
x=A e^{t}+B e^{-t}
\end{gathered}
$$

(1) $x(0)=1 \Rightarrow A+B=1$. Transv. condn. is
$\frac{\partial f}{\partial \dot{x}}(T)=0 \Rightarrow 2 \dot{x}(T)=0$ i.e. $\dot{x}(2)=0$

$$
A e^{2}-B e^{-2}=0 \Rightarrow B=A e^{4}
$$

The extremal is $x=\frac{\cosh (t-2)}{\cosh 2}$,

$$
x(2)=1 / \cosh 2
$$

(2) $x(0)=1 \Rightarrow A+B=1$. Trans. Condn.

$$
\begin{gathered}
f(T)-\dot{x}(T) \frac{\partial f}{\partial \dot{x}}(T)=0 \\
\left(A e^{T}+B e^{-T}\right)^{2}+\left(A e^{T}-B e^{-T}\right)^{2}-2\left(A e^{T}-B e^{-T}\right)^{2}=0 \\
2 A B+2 A B=0 \Rightarrow A B=0
\end{gathered}
$$

So one of $A, B$ must be zero

$$
\Rightarrow x=e^{t} \quad \text { or } \quad x=e^{-t}
$$

But $x(T)=2 \Rightarrow 2=e^{T}$ or $2=e^{-T}$. However, if $2=e^{-T}$, $T<0$, which is impossible. Hence $2=e^{T}, T=\ln 2$. The extremal is $x=e^{t}$, which has $x=2$ at time $T=\ln 2$.

