
5.1

• x∗ an extremum of J [x] =

∫ t1

t0

f(t, x, ẋ)dt

⇔ x∗ satisfies Euler-Lagrange (E-L):

∂f

∂x
− d

dt

(

∂f

∂ẋ

)

= 0

If f independent of t then E-L ⇔

f − ẋ
∂f

∂ẋ
= constant

• Solutions of E−L (satisfying side conditions) called
EXTREMALS. Seek minimizing curves among the
extremals.

• Examples.

Ex 2. Minimize

∫

√
1 + ẋ2

x1/2
dt.

Use the second form of the E − L equ.

[

(1 + ẋ2)

x

]1/2

− ẋ
ẋ

[x(1 + ẋ2)]1/2
= const. (5.1)

{x(1 + ẋ2)}−1/2{(1 + ẋ2) − ẋ2} = const.

Hence
x(1 + ẋ2)1/2 = c. (5.2)

1
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# Where (1+ ẋ2)1/2 occurs, we use a parametric tech-
nique to solve the DE.
Substitute ẋ = tan θ.

Thus (1 + ẋ2) = (1 + tan2 θ) = sec2 θ = 1
cos2 θ .

From (5.2),
x = c cos2 θ. (5.3”)

This gives x in terms of θ. What we will now do is obtain
t in terms of θ.

Differentiate (5.3) and obtain

ẋ =
d

d θ

(

c cos2 θ
) d θ

d t
= −2c cos θ sin θθ̇ but ẋ = tan θ so

tan θ = −2c cos θ sin θθ̇ ⇔
1 = −2cθ̇ cos2 θ = −cθ̇(1 + cos 2θ)

= −cθ̇(1 + cos 2θ), a first order separable equation for θ̇ so
∫

dt = −c

∫

(1 + cos 2θ)dθ + K

t = −c(θ +
1

2
sin 2θ) + K.

Finally, setting k = c/2, l = K, and noting that x =
c cos2 θ = c(1 + cos 2θ)/2 we obtain

x = k(1 + cos 2θ)

t = l − k(2θ + sin 2θ)
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l, k to be found from end conditions.

Important features of this example:

# f − ẋ
∂f

∂ẋ
= const. ⇔ E − L eqn;

# (1 + ẋ2)1/2 occurs ⇒ substitute ẋ = tan θ
get a parametric form for x∗(t).

Examples 3. Find the extremal of

J [x] =

∫ 1

0

(tẋ + ẋ2)dt, x(0) = 1,

x(1) = 2.75

E − L eqn:

∂f

∂x
− d

dt

[

∂f

∂ẋ

]

= 0

0 − d

dt
(t + 2ẋ) = 0

⇒ t + 2ẋ = 2c (a constant)

⇒ ẋ = c − 1

2
t

⇒ x = ct − 1

4
t2 + k

x(0) = 1 ⇒ k = 1 ; x(1) = 2.75 = c − .25 + 1

c = 2

Extremal

x = 2t − 1

4
t2 + 1.
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Example 4.

J [x] =

∫ 1

0

(1 + t2)ẋ2dt,

x(0) =
π

2
, x(1) = π.

E − L eqn:

0 − d

dt
{2(1 + t2)ẋ} = 0

(1 + t2)ẋ = c
∫

dx =

∫

c

1 + t2
dt + D

x = c arctan t + D

x(0) =
π

2
= D ; x(1) = π = c arctan 1 +

π

2

= c.
π

4
+

π

2
c = 2

Extremal x(t) = 2 arctan t +
π

2

Ex.5.

J [x] =

∫ tf

0

xẋ2dt, x(0) = x0

(x > 0) x(tf ) = xf

Here tf is fixed.
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Solution. f = xẋ2 does not involve t explicitly.
So E − L ⇔

f − ẋ
∂f

∂ẋ
= const.

xẋ2 − ẋ.2xẋ = const.

xẋ2 = c, ẋ2 =
c

x

Let

α =
√

c , ẋ = α/
√

x
∫ √

xdx =

∫

αdt + β

2

3
x3/2 = αt + β

t = 0 :
2

3
x

3/2
0 = β

t = tf :
2

3
x

2/3
f = αtf +

2

3
x

3/2
0

α =
2

3

[

x
3/2
f − x

3/2
0

]

/tf .
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Fixed Endpoint Minimize J [x] =
∫ t1

t0
f(t, x, ẋ)dt where

(t0, x(t0)) and (t1, x(t1)) are fixed. Let x∗(t) be a minimiz-
ing curve. Let

y = x∗(t) + εη(t)

be a weak variation starting at (t0, x(t0)) and ending at
(t1, x(t1)).

We write 0(s) for a term T if |T/s| = |O(s)/s| ≤ k for
some constant k and s small. In this case we say the term
T is of order big O of s for small s. Thus lim

s→0
O(s2)/s = 0.

We will show that the Euler-Lagrange Equation must be
satisfied. Consider

0 ≤ J [y] − J [x∗] = 4J

=

∫ t1

t0

f(t, x∗ + εη, ẋ∗ + εη̇)dt −
∫ t1

t0

f(t, x∗, ẋ∗)dt

=

∫ t1

t0

(f(t, x∗ + εη, ẋ∗ + εη̇) − f(t, x∗, ẋ∗)) dt

=

∫ t1

t0

(fx(t, x∗, ẋ∗)εη + fẋ(t, x∗, ẋ∗)εη̇) dt + 0(ε2),

by Taylor’s Theorem below

=

∫ t1

t0

(

fx(t, x∗, ẋ∗) − d

dt
fẋ(t, x∗, ẋ∗)

)

εηdt + [fẋ(t, x∗, ẋ∗)εη]
t1
t0

+ 0(ε2) integrating by parts...see below

=

∫ t1

t0

(

fx(t, x∗, ẋ∗) − d

dt
fẋ(t, x∗, ẋ∗)

)

εηdt + 0(ε2)

since η(t0) = 0 = η(t1)
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Since this holds for any function η satisfying
η(t0) = 0 = η(t1) and any ε it follows that Euler Equation
hold:

fx(t, x∗, ẋ∗) − d

dt
fẋ(t, x∗, ẋ∗) = 0

NOTE: By Taylor’s Theorem

f(t, x∗ + εη, ẋ∗ + εη̇) − f(t, x∗, ẋ∗)

= fx(t, x∗, ẋ∗)εη + fẋ(t, x∗, ẋ∗)εη̇ + 0(ε2).

NOTE: Integration by parts

∫ t1

t0

uv̇dt = [uv]
t1
t0
−

∫ t1

t0

vu̇dt.

Setting u = fẋ(t, x∗, ẋ∗) and v̇ = εη̇, so that v = εη and
u̇ = d

dtfẋ(t, x∗, ẋ∗), we obtain

∫ t1

t0

fẋ(t, x∗, ẋ∗)εη̇dt = [fẋ(t, x∗, ẋ∗)εη]
t1
t0
−

∫ t1

t0

d

dt
fẋ(t, x∗, ẋ∗)dt
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Lemma 5.1. If m(t) : [t0, t1] → R is a continuous function

and if

∫ t1

t0

m(t)η(t) dt = 0

for all C2-function η(t) with η(t0) = η(t1) = 0. Then

m(t) = 0 for all t ∈ [t0, t1].

Proof. Assume that there is some a ∈ (t0, t1) so that
m(a) 6= 0 (> 0). By the continuity of m, we can choose
a sufficiently small ε > 0 such that m(t) > 0 (or m(t) < 0)
for all t ∈ [a − ε, a + ε]. Choose

η(t) =

{

(t − a + ε)3(a + ε − t)3 ∀t ∈ [a − ε, a + ε]

0 ∀t ∈ [t0, a − ε) ∪ (a + ε, t1]

Then

∫ t1

t0

m(t)η(t) dt =

∫ a+ε

a−ε

m(t)η(t) dt > 0

This is impossible. �
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5.2 Variable Endpoint

Minimize J [x] =
∫ t1

t0
f(t, x, ẋ)dt

(t0, x(t0)) is fixed, (t1, x(t1)) lies on given curve x = c(t)
(t1 unknown)

Let x∗(t) be a minimizing curve and suppose that it in-
tersects the target curve at t = t1. Let

y = x∗(t) + εη(t)

be a weak variation starting at (t0, x(t0)) and reaching the
curve at

t = t1 + 4τ.

We will show that the following transversality condition
must be satisfied.

Transversal

condition
f(t1) + (ċ(t1) − ẋ∗(t1))

∂f

∂ẋ
(t1) = 0

Solving E−L eqn, gives two unknown constants. Condition
x(t0) = x0 gives one equation, the transversality condition
gives another equation so arbitrary constants can be found.



10

y(t1 + 4τ) = x∗(t1 + 4τ) + εη(t1 + 4τ)

= x∗(t1) + 4τ ẋ∗(t1) + εη(t1) + 0(ε2)

= c(t1 + 4τ) = c(t1) + 4τ ċ(t1) + 0(ε2)

Noting x∗(t1) = c(t1), ignoring O(ε2) terms and
using the previous equation we obtain

εη(t1) = [ċ(t1) − ẋ∗(t1)]4τ. (1)

Consider

4J = J [y] − J [x∗]

=

∫ t1+4τ

t0

f(t, x∗ + εη, ẋ∗ + εη̇)dt −
∫ t1

t0

f(t, x∗, ẋ∗)dt

=

∫ t1+4τ

t1

f(t, x∗ + εη, ẋ∗ + εη̇)dt

+

∫ t1

t0

(

∂f

∂x
(t, x∗, ẋ∗)εη +

∂f

∂ẋ
(t, x∗, ẋ∗)εη̇

)

dt + 0(ε2)
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Noting
∫ t1

t0

(

∂f

∂x
(t, x∗, ẋ∗)εη +

∂f

∂ẋ
(t, x∗, ẋ∗)εη̇

)

dt

=

∫ t1

t0

∂f

∂x
(t, x∗, ẋ∗)εηdt +

[

∂f

∂ẋ
(t, x∗, ẋ∗)εη

]t1

t0

−
∫ t1

t0

d

dt

∂f

∂ẋ
(t, x∗, ẋ∗)εηdt

=

∫ t1

t0

[

∂f

∂x
(t, x∗, ẋ∗) − d

dt

∂f

∂ẋ
(t, x∗, ẋ∗)

]

εηdt + [fẋ(t, x∗, ẋ∗)εη]
t1
t0

and that

4J =

∫ t1+4τ

t1

f(t, x∗ + εη, ẋ∗ + εη̇)dt

+

∫ t1

t0

(

∂f

∂x
(t, x∗, ẋ∗)εη +

∂f

∂ẋ
(t, x∗, ẋ∗)εη̇

)

dt + 0(ε2)

= f(t1, x
∗, ẋ∗)4τ +

∫ t1

t0

[

∂f

∂x
(t, x∗, ẋ∗) − d

dt

∂f

∂ẋ
(t, x∗, ẋ∗)

]

εηdt

+ [fẋ(t, x∗, ẋ∗)εη]
t1
t0

+ 0(ε2)

= f(t1, x
∗, ẋ∗)4τ + fẋ(t1, x

∗, ẋ∗)εη(t1) + 0(ε2).

Here we used x∗ is a solution of E−L eqn and η(t0) = 0.

Setting f(t1) := f(t1, x
∗(t1), ẋ

∗(t1)) and substituting for
εη(t1) from (1) we obtain

4J = 4τ{f(t1) + [ċ(t1) − ẋ∗(t)]
∂f

∂ẋ
(t)} + 0(ε2).
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Note d(4J)
dε = 0 is called the first variation in J . Noticing

4τ =
εη(t1)

[ċ(t1) − ẋ∗(t1)]

we show that if x∗(t) is a minimizer, then x∗(t) satisfies
transversality and Euler-Lagrange equation.

Definition. An extremal of minimizing J [x] with variable

endpoint ⇔ transversality + E − L equation.

Example 1. Find the extremal of

∫ T

1

ẋ2t3dt, x(1) = 0,

T > 1 is finite and x(T ) lies on x = c(t) = 2
t2 − 3.

Solution. From Ex.1 of the previous chapter 4, extremals
have the form

x =
k

t2
+ l.

x(1) = 0 ⇒ l = −k ⇒ x =
k

t2
− k.

Use the transversality condition to find the 2 unknowns k,
T . Now ẋ = − 2k

t3 and x(t) = c(t) = 2
t2 − 3 when t = T, so

ċ(t) = − 4
t3 .
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Transversality Condition

f(t1) + [ċ(t1) − ẋ∗(t1)]
∂f

∂ẋ
(t1) = 0

f(t) = ẋ2t3 , replace t1 by T :

ẋ(T )2T 3 + 2ẋ(T )T 3[−4/T 3 + 2k/T 3] = 0

− 2k

T 3
T 3 + 2T 3[−4/T 3 + 2k/T 3] = 0

2k − 8 = 0 , k = 4.

Still have to determine T :

x(T ) lies on x = c(t) =
2

t2
− 3

x(T ) = 2/T 2 − 3 =
4

T 2
− 4

2

T 2
= 1 T =

√
2 (T > 1, so not −

√
t).

Consequently x∗(t) meets target curve at T =
√

2, when
x(T ) = −2.

Note that here there were 3 unknowns: 2 arb. constants
and T .
Three conditions

• x(1) = 0,
• Transversality condition,
• x(T ) = c(T ).
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Special Forms of Transversality:
# If x(t1) is fixed and t1 is variable.

Target curve here is x = c(t) = const. ċ(t) = 0 and the
transversality cond– simplifies to

f(t1) − ẋ∗(t1)
∂f

∂ẋ
(t1) = 0

x(t1) = x1

Able to solve for 2 constants and t1

# t1 fixed and x1 variable

Target curve is par-
allel to x-axis, ċ(t1)
is infinite.

If ċ(t1) is infinite, trans. condn.

1

ċ(t1)
f(t1) +

[

1 − ẋ∗(t1)

ċ(t1)

]

∂f

∂ẋ
(t1) = 0.
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Let ċ(t1) → ∞ here, transversality condn. simplifies to

∂f

∂ẋ
(t1) = 0

Example 2. Find the extremal of

J =

∫ T

0

(x2 + ẋ2)dt

when

(1) x(0) = 1, T = 2;
(2) x(0) = 1, x(T ) = 2;
(3) x(0) = 0, x(T ) = 2.

Solution. Since f does not involve t explicitly, we could
use the other form, but this is easy with the E-L eqn

∂f

∂x
− d

dt

(

∂f

∂ẋ

)

= 0

2x − d

dt
(2ẋ) = 0 , ẍ − x = 0.

λ2 − 1 = 0, λ = −1, +1 , e−t, et

x = Aet + Be−t

(1) x(0) = 1 ⇒ A + B = 1. Transv. condn. is
∂f

∂ẋ
(T ) = 0 ⇒ 2ẋ(T ) = 0 i.e. ẋ(2) = 0

Ae2 − Be−2 = 0 ⇒ B = Ae4
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The extremal is x = cosh(t−2)
cosh 2 ,

x(2) = 1/ cosh 2.

(2) x(0) = 1 ⇒ A + B = 1. Trans. Condn.

f(T ) − ẋ(T )
∂f

∂ẋ
(T ) = 0

(AeT + Be−T )2 + (AeT − Be−T )2 − 2(AeT − Be−T )2 = 0

2AB + 2AB = 0 ⇒ AB = 0.

So one of A, B must be zero

⇒ x = et or x = e−t.

But x(T ) = 2 ⇒ 2 = eT or 2 = e−T . However, if 2 = e−T ,
T < 0, which is impossible. Hence 2 = eT , T = ln 2.
The extremal is x = et, which has x = 2 at time T = ln 2.


