5.1

ty
e r* an extremum of J[x| = f(t,z,a)dt
to
& z* satisfies Euler-Lagrange (E-L):

of _d (9f\_,
%‘@(%%

If f independent of ¢ then E-L <

f — == = constant

0x

e Solutions of F— L (satisfying side conditions) called
EXTREMALS. Seek minimizing curves among the

extremals.

e Examples.

V1+ 2
Ex 2. Minimize / ¥dt.
xl/2
Use the second form of the £ — L equ.
—(1 + ) . ' i const
— = n .
x [z(1 + x2)]1/2

{x(1+ 23} Y2{(1 +4?) — &%} = const.

Hence
z(1+ 23?2 =
1

(5.1)

(5.2)



# Where (1 —|—a'32)1/ 2 occurs, we use a parametric tech-
nique to solve the DE.
Substitute £ = tan 6.

Thus (1 +4?%) = (1 +tan?60) = sec?§ = 2

cos? 0"
From (5.2),
T = ccos® 0. (5.37)

This gives x in terms of . What we will now do is obtain
t in terms of 6.

Differentiate (5.3) and obtain

d ¢ cos> 9) d—9 — —2ccosfsinf0 but & = tan 6 so

B @< dt
tanf = —2ccosfsinff <

1 = —2¢b cos? 0 = —ch(1 + cos 26)

x

= —69(1 + cos 20), a first order separable equation for 0 so

/dt: —c/(1+cos20)d9+K

1
t=—c(0+ §sin26’) + K.

Finally, setting k = ¢/2, | = K, and noting that x =
ccos? = c(1 + cos 260)/2 we obtain

xr = k(1 4 cos 20)
t =1— k(20 + sin 20)




[, k to be found from end conditions.

Important features of this example:
# f—x—=— = const. < FE — L eqn;
ox

# (1+ 3%)Y/2 occurs = substitute = tan
get a parametric form for x*(t).

Examples 3. Find the extremal of

Jh%:A%m+$%ﬁ,xm%:L

x(1l) =2.75
E — L eqn:
of _ 41911 _g
Or dt |0i]
0 d(t—|—2') 0
- €Tr) =
dt
= t+ 21 = 2c (a constant)
: 1
—xr=c— =t
L,
ix:ct—it +k
z(0)=1=k=1; x2(1)=275=c—.25+1
c=2
Extremal

ot 1zt2+1
r =20 — — :
4
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Example 4.

E — L eqn:

0= i{2(1 +1%)i} =0

1—i—t2a?—c

z(0) = g =D; (1) =7T:carctan1+g

T = carctant+D

|| 4>|>1
o]

+
2

Extremal

x(t) = 2arctant + g

Ex.5.

(z > 0) aﬁ(tf) =Ty

Here t; is fixed.



Solution. f = zi? does not involve t explicitly.
So - L &

of

f —ax—=- = const.
oz
ri? — .20 = const.
, C
o c, 72 ==

Let

2
§5C3/2:O{t—|—ﬁ
2 3/2
2 9/3 2 3/9
t—tf §xf/ —oztf+§x0/
271 3/2 3/2
a:§[xf/ —a:o/}/t
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Fixed Endpoint Minimize J[z j; f(t, x,x)dt where

(to, x(tg)) and (t1,x(t1)) are ﬁxed Let x* (¢ ) be a minimiz-
ing curve. Let

y =" (t) +en(t)
be a weak variation starting at (g, x(tp)) and ending at

(tl, CE(tl))

We write 0(s) for a term T if |T/s| = |O(s)/s| < k for
some constant k£ and s small. In this case we say the term
T is of order big O of s for small s. Thus 21_{1% O(s%)/s = 0.

We will show that the Euler-Lagrange Equation must be
satisfied. Consider

0< Iyl — Jla*] = AT

tl tl
— | fta en, i en)dt— | f(t ", i)dt
to to
ty
:/ (F(t, 2" +en, & +en) — (6, 2%, %)) dt
to

ty
= [ttt a4 falta # e+ (),

to
by Taylor’s Theorem below

t1 d
— / <fx(t,as*,d:*) - %fj;(t,x*,:b*)) endt + [fgb(t,x*,j:*)en]ié
to

+ 0(€?) integrating by parts...see below

ty
= [ (B i) = Gttt i) ) ende+ 0
; dt

since n(tg) = 0 = n(t1)



Since this holds for any function n satisfying
n(to) = 0 = n(t1) and any € it follows that Euler Equation
hold:

NOTE: By Taylor’s Theorem

f(t,x" +en, & +en) — f(t,z7,27)
— fx(tax*vx*)en + f-’lﬁ(t7 m*7:b*)67‘7 + O(€2>°

NOTE: Integration by parts

t1 t1
/ uvdt = [uv]ié — / vudt.
to tO

Setting v = f;(t,z*,2*) and v = e, so that v = en and
U= %fj;(t, x*,*), we obtain

t t

1 1 d

faolt, x*, &%)endt = [fi(t,x*,jj*)en]ié—/ - Ja(t, 2", 37)dt
to

to
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Lemma 5.1. Ifm(t) : [tg,t1] — R is a continuous function

and if

/ 60t dt = 0

to

for all C?-function n(t) with n(tg) = n(t1) = 0. Then
m(t) =0 for all t € [to,t1].

Proof. Assume that there is some a € (tp,t1) so that
m(a) # 0 (> 0). By the continuity of m, we can choose
a sufficiently small € > 0 such that m(t) > 0 (or m(t) < 0)
for all ¢t € [a — e,a + €]. Choose

[ (t—ate)late—t)? Vtela—cate]
77(?5)—{0 Vt € [tg,a —e) U (a+ e, 1]

Then

t1 a—+e€
/ m(t)n(t) dt = / m(t)n(t)dt >0

to —&

This is impossible. [



5.2 Variable Endpoint

Minimize J|x ft f(t,x,z)dt

(to, x(tg)) is ﬁxed (tl, (t1)) lies on given curve x = c(t)
(t1 unknown)

Let z*(¢) be a minimizing curve and suppose that it in-
tersects the target curve at ¢ = ¢;. Let

y =" (t) +en(t)

be a weak variation starting at (o, z(t9)) and reaching the
curve at

t:t1—|—AT.

We will show that the following transversality condition
must be satisfied.

Transversal of

f(t1) + (¢(ty) — a‘:*(tl))%(m) =0

condition

Solving E'— L eqn, gives two unknown constants. Condition
x(tg) = x gives one equation, the transversality condition
gives another equation so arbitrary constants can be found.
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y(t1 + A1) =™ (t1 + A1) + en(ty + A7)
= 2*(t1) + AT (t1) + en(ty) + 0(€?)
= c(t1 + AT) = c(ty) + ATé(ty) + 0(€?)

Noting x*(t1) = c(t1), ignoring O(e?) terms and
using the previous equation we obtain

en(ti) = [¢(t1) — 27 (t1)] AT (1)
Consider

AT = Jly] - Jz"]

tl—f—AT
— / f(t,x* +en, " + en)dt — f(t, o™, ™)dt

to to

t1—|—AT
= / f(t,x* +en, " + en)dt

t1
h af * ek af * .k : 2
_|-/to <%(t,x,x)en+%(t,$755)677>dt+0(€)
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Noting

/t1 (gf(t ¥, & )aﬁ—g—f(t ™, ") 7'7) dt

(t, 2™, 2" )endt + [%(t,x*,:&*)en]

t1

/0 to
d 0
/0 d_é?_ (t,x™, % )endt

d 0 th
[ [0y 2 ) et e 27l

and that

tl—l—AT
ANJ = / f(t,z™ +en, " + en)dt
ty
h 8f * af . 2
—|—/t0 (%(t,x,az)en—l—a (¢, z* :U)n)dt+0(e)

. of

_ “ i*)A 7]
f(tl,l',ilf) T+/to [8
+ [fa(t, 2, 2%)en],! + 0(?)

= flt, 2, &") AT + falty, 2™, 2" )en(t1) + 0(€).

(t, 2™, 2%) — — == (t, :c*,x*)] endt

Here we used z* is a solution of F— L eqn and n(tg) = 0.

Setting f(t1) := f(t1,2*(t1),2*(¢t1)) and substituting for
en(t1) from (1) we obtain

AT = Dr{f() + [e(t) — & (0] 92 (1) +0(e).
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d(AJ)

Note I

= 0 is called the first variation in J. Noticing

en(ty)

BT = et — & (00)

we show that if z*(¢) is a minimizer, then z*(¢) satisfies
transversality and Euler-Lagrange equation.

Definition. An extremal of minimizing J|x| with variable
endpoint < transversality + F — L equation.

T
Example 1. Find the extremal of/ *t3dt, z(1) = 0,
1

T > 1 is finite and z(T') lies on = = ¢(t) = & — 3.

Solution. From Ex.1 of the previous chapter 4, extremals
have the form

k

k
33(1):0:>l:—k:>:v:t—2—k.

Use the transversality condition to find the 2 unknowns &,
T. Now & = —2E and z(t) = c(t) = 2 —3 when t = T, so
ot) = — 5.
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Transversality Condition

f(t1) + [é(tr) — a‘:*(tl)]%(tl) =0
f(t) =2%t*, replacet; by T :
©(T)*T? + 2&(T)T3[—4/T3 + 2k/T3] = 0

2k
— T3 4 2T3[—4/T3 + 2k/T3] = 0

T3
2% —8=0, k=4

Still have to determine T':

Consequently z*(t) meets target curve at T = /2, when
x(T) = —-2.

Note that here there were 3 unknowns: 2 arb. constants
and T'.
Three conditions

e 2(1) =0,
e Transversality condition,

o =(T) = ¢(T).
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Special Forms of Transversality:
# 1If x(¢1) is fixed and t¢; is variable.

Target curve here is * = c¢(t) = const. ¢(t) = 0 and the
transversality cond— simplifies to

(1) = 8 (1) gh (1) = 0
ZC(tl) =T

Able to solve for 2 constants and t;

# t; fixed and z; variable

Target curve is par-
allel to z-axis, ¢(t1)

is infinite.
If ¢(tq1) is infinite, trans. condn.
1 t*(t1) ] Of
1— — 0.
Gy [ ) ] gi 1) =0



Let ¢(t1) — oo here, transversality condn. simplifies to

(2) z(0) =1, 33(1:) = 2;
x (T 2.

15

Solution. Since f does not involve t explicitly, we could

use the other form, but this is easy with the E-L eqn

ﬁ_i(ﬁ)_o
or dt \ox)

d
20— —(2)=0, &-x=0.

M —1=0, A=-1,+1, et ¢
x = Ae' + Be™?

(1) x(0)=1= A+ B =1. Transv. condn. is

%(T) — 0 = 25(T) = 0 ive. #(2) =0

Ae? — Be 2 =0= B = A¢*
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cosh(t—2)
cosh2 7

The extremal is x =

x(2) = 1/ cosh 2.

(2) z(0)=1= A+ B =1. Trans. Condn.
o Of
T)—z(T)=
F(1) (1) 22
(Aet 4+ Be 1)? 4 (Ae? — Be™1)? —2(Ae’ — Be )2 =0
2AB+2AB=0= AB=0.

(T) =0

So one of A, B must be zero
=zrx=¢e or x=e
But 2(T) =2 = 2 =¢l or 2 =¢"1. However, if 2 = e~ 1,

T < 0, which is impossible. Hence 2 = e, T' = In 2.
The extremal is x = e, which has x = 2 at time 7' = In 2.



