4.1: Revision of ODE

2nd order, constant coefficients

$$
a \ddot{x}+b \dot{x}+c x=f(t)
$$

- Solve homogeneous equation

$$
a \ddot{x}+b \dot{x}+c x=0
$$

to give $x_{h}(t)$ (two arbitrary constants)

- Find a "particular solution" of nonhomog.equ.
$x_{p}(t)$
- Complete solution

$$
x(t)=x_{h}(t)+x_{p}(t)
$$

$\#$ Homog. Eqn. $a \ddot{x}+b \dot{x}+c x=0$.
Look for solutions $x=e^{\lambda t}$

$$
\left(a \lambda^{2}+b \lambda+c\right) e^{\lambda t}=0
$$

Characteristic eqn. $a \lambda^{2}+b \lambda+c=0$

- 2 real distinct solutions λ_{1}, λ_{2}

$$
e^{\lambda_{1} t}, \quad e^{\lambda_{2} t}
$$

- $x_{h}(t)=A e^{\lambda_{1} t}+B e^{\lambda_{2} t}$
- double root $\lambda: e^{\lambda t}, t e^{\lambda t}$

$$
x_{h}(t)=e_{1}^{\lambda t}(A+B t)
$$

- complex solutions (complex conjugates)

$$
\begin{gathered}
\lambda=\alpha \pm i \beta \quad ; \quad e^{\alpha t} \cos \beta t, \quad e^{\alpha t} \sin \beta t \\
x_{h}(t)=A e^{\alpha t} \cos \beta t+B e^{\alpha t} \sin \beta t
\end{gathered}
$$

Ex 1. $\ddot{x}+x=0, \quad \lambda^{2}+1=0, \quad \lambda= \pm i$

$$
x(t)=A \cos t+B \sin t
$$

Ex 2.

$$
\begin{gathered}
\ddot{x}-2 \dot{x}-3 x=0 \\
\lambda^{2}-2 \lambda-3=0 \\
\lambda=3, \quad x=e^{3 t} \quad(\lambda-3)(\lambda+1)=0 \\
\\
x=-1, \quad x=e^{-t} \\
x_{h}(t)=A e^{-t}+B e^{3 t} .
\end{gathered}
$$

4.2

There are a number of techniques for finding particular solutions and we'll only look at

METHOD OF UNDETERMINED COEFFICIENTS
Only works for

$$
f(t)=\left\{\begin{array}{l}
\text { Polynomials in } t \\
e^{k t} \\
\cos \gamma t, \sin \gamma t
\end{array}\right.
$$

and combinations of these.
We would look for a particular solution of the form

$$
x_{p}(t)=\left\{\begin{array}{l}
K_{0}+K_{1} t+\cdots+K_{q} t^{q} \\
L \cos \gamma t+M \sin \gamma t \\
H e^{k t}
\end{array}\right.
$$

In particular, if

$$
\begin{equation*}
f(t)=t+t^{2}+5 \cos \gamma t+e^{2 t} \tag{}
\end{equation*}
$$

we look for a particular solution of the form

$$
x_{p}(t)=K_{0}+K_{1} t+K_{2} t^{2}+L \cos \gamma t+M \sin \gamma t+H e^{2 t}
$$

The coefficients are determined by differentiating and substituting on the D.E.

Example 1: $\ddot{x}+x=e^{2 t}+t^{2}$
Step 1.

$$
\begin{array}{ll}
\text { Homog. eqn. } \ddot{x}+x=0, & \lambda^{2}+1=0 \\
& \lambda= \pm i
\end{array}
$$

Solutions $\cos t, \sin t$

$$
x_{h}=A \cos t+B \sin t .
$$

Step 2. Undetermined coefficients

$$
\begin{aligned}
& x_{p}=K_{0}+K_{1} t+K_{2} t^{2}+H e^{2 t} \\
& \dot{x}_{p}=K_{1}+2 K_{2} t+2 H e^{2 t} \\
& \ddot{x}_{p}=2 K_{2}+4 H e^{2 t}
\end{aligned}
$$

Sub in DE:

$$
\begin{array}{rlrl}
2 K_{2} & +4 H e^{2 t}+K_{0}+K_{1} t+K_{2} t^{2}+H e^{2 t} \\
& =e^{2 t}+t^{2} & & \\
s 2 K_{2}+K_{0} & =0 & & \text { equating constants } \\
K_{1} & =0 & & \text { equating coefficients of } t
\end{array}
$$

$$
K_{2}=1, \quad 2+K_{0}=0, \quad K_{0}=-2 \text { equating coefficients of } t^{2}
$$

$$
5 H=1 ; \quad H=\frac{1}{5} . \quad \text { equating coefficients of } e^{2 t}
$$

$$
x_{p}(t)=-2+t^{2}+\frac{1}{5} e^{2 t} .
$$

Step 3.

$$
\begin{aligned}
x(t) & =x_{h}(t)+x_{p}(t) \\
& =A \cos t+B \sin t-2+t^{2}+\frac{1}{5} e^{2 t}
\end{aligned}
$$

Remark 1. Undetermined coefficients will not work for $f(t)$ not of the specific type.

Remark 2. Modification Rule.

If $f(t)$ is part of the general solution $x_{h}(t)$, modify by multiplying by t.

Example 2: $\quad \ddot{x}-2 \dot{x}-3 x=e^{3 t}$.

1. $\lambda^{2}-2 \lambda-3=0, \quad(\lambda-3)(\lambda+1)=0, \quad \lambda=-1,3 ;$

$$
e^{-t}, e^{3 t} ; \quad x_{h}(t)=A e^{-t}+B e^{3 t}
$$

2. $x_{p}(t)=H t e^{3 t} \quad$ (modified)

$$
\dot{x}_{p}=H(3 t+1) e^{3 t}, \quad \ddot{x}_{p}=H(9 t+6) e^{3 t}
$$

Subst. on DE

$$
\begin{aligned}
& H(9 t+6) e^{3 t}-2 H(3 t+1) e^{3 t}-3 H t e^{3 t}=e^{3 t} \\
& 6 H-2 H=1, \quad H=\frac{1}{4}, \quad x_{p}(t)=\frac{1}{4} t e^{3 t} \\
& x(t)=A e^{-t}+B e^{3 t}+\frac{1}{4} t e^{3 t} .
\end{aligned}
$$

Complete solution.

4.3.Optimization problems for functionals.

We use (t, x) for the coordinates of a point in the plane and $x=x(t)$ to represent the equation of a plan curve. Let $\left(t_{0}, x_{0}\right)$ and $\left(t_{1}, x_{1}\right)$ be two fixed points in the plane. A curve joining $\left(t_{0}, x_{0}\right)$ and $\left(t_{1}, x_{1}\right)$ is represented by $x=x(t)$ for $t_{0} \leq t \leq t_{1}$ with $x\left(t_{0}\right)=x_{0}$ and $x\left(t_{1}\right)=x_{1}$.

The length of a curve $x=x(t)$ joining $\left(t_{0}, x_{0}\right)$ and $\left(t_{1}, x_{1}\right)$ is

$$
L[x]=\int_{t_{0}}^{t_{1}} \sqrt{1+(\dot{x})^{2}} d t ; \quad \text { with } \quad \dot{x}=\frac{d x}{d t}
$$

Different type of optimization problems involving integrals of a family of curves :
(1) The classical isoperimetric problem:

A curve (closed) of length l.
What is the curve which which surrounds the greatest area?

Maximising "area" which depends an curve $x(t)$ (of length l) that encloses it.
(2) Minimizing energy
$\gamma: x(t)$. What is the curve for which the work (energy) is a mimimum for moving P from A to B ?

(3) Brachistochrone problem:

> A particle is sliding down the curve under gravity What is the shape of the curve so that the particle falls from A to B in minimum time?

Each of these problems is an optimization problem. However, the "variables" are functions $x(t)$ which define the curve.

A functional on a curve $x(t)$ joining the point

$$
\left(t_{0}, x_{0}\right) \text { to }\left(t_{1}, x_{1}\right) \text { is }
$$

$$
J[x]=\int_{t_{0}}^{t_{1}} f(t, x, \dot{x}) d t, \quad x\left(t_{0}\right)=x_{0}, \quad x\left(t_{1}\right)=x_{1}
$$

Here we suppose that f is differentiable with respect to each variable as many times as we require.

First the fixed end point problem $\left(t_{0}, x_{0}\right),\left(t_{1}, x_{1}\right)$ fixed.
Minimise $J[x]=\int_{t_{0}}^{t_{1}} f(t, x, \dot{x}) d t, x\left(t_{0}\right)=x_{0}, x\left(t_{1}\right)=x_{1}$.
That is, find a curve $x^{*}(t)$ satisfying

$$
J[x] \geq J\left[x^{*}\right]
$$

for all $x=x(t)$ satisfying the boundary conditions. where x^{*} is called a (global) minimizing curve
\# "close", variation and admissible curves.
\# Necessary condition for minimum
EULER-LAGRANGE EQUATION

To find a necessary condition, we require some additional assumptions and ideas.

The class of admissible curves:

$x(t)$ twice continuously diff'able, $x\left(t_{0}\right)=x_{0}, x\left(t_{1}\right)=x_{1}$. Seek minimising curve $x^{*}(t)$ in this class.

The problem: Find among the admissible curves, one x^{*} that gives a local minimum of $J[x]$. That is

$$
J[x] \geq J\left[x^{*}\right]
$$

for all admissible x close to x^{*}.
What do we mean by "close to" for curves $x(t)$?
WEAK VARIATION. Let $x^{*}(t)$ be a curve and $x(t)$ an admissible curve. If \exists small $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$ such that

$$
\begin{array}{ll}
\left|x^{*}(t)-x(t)\right|<\varepsilon_{1} & \text { for all } \\
\left|\dot{x}^{*}(t)-\dot{x}(t)\right|<\varepsilon_{2}, & t_{0} \leq t \leq t
\end{array}
$$

then $x(t)$ is said to be a weak variation of $x^{*}(t)$.
Weak local minimizer. A curve $x^{*}=x^{*}(t):\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ is called "Weakly local minimizer of functional if there are small $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$ such that

$$
J\left(x^{*}\right) \leq J(y)
$$

for all curve $y=y(t)$ satisfying the boundary conditions and

$$
\begin{array}{ll}
\left|x^{*}(t)-y(t)\right|<\varepsilon_{1} & \text { for all } \\
\left|\dot{x}^{*}(t)-\dot{y}(t)\right|<\varepsilon_{2}, & t_{0} \leq t \leq t
\end{array}
$$

STRONG VARIATION. $x^{*}(t), x(t)$ as above. There exists a small $\varepsilon>0$ such that $\left|x^{*}(t)-x(t)\right|<\varepsilon$ for all $t_{0} \leq t \leq t_{1}$. Then $x(t)$ is called a strong variation of $x^{*}(t)$.

Strong local minimizer (minimizing curve).

A curve $x^{*}=x^{*}(t):\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ is called" Weakly local minimizer of functional J if there is a small ε such that

$$
J\left[x^{*}\right] \leq J[y]
$$

for all curve $y=y(t)$ satisfying the boundary conditions and

$$
\left|x^{*}(t)-y(t)\right|<\varepsilon, \quad t_{0} \leq t \leq t
$$

Remark: A global minimizing curve is a strong locally minimizing curve. A strong local minimizing curve is a weak local minimizing curve.

A first necessary condition for a "weak local minimum" (i.e. a local minimum with respect to weak variations).

Theorem 4.1. In order that $x=x^{*}(t)$ should be a minimizing curve, (i.e. Minimize $J[x]=\int_{t_{0}}^{t_{1}} f(t, x, \dot{x}) d t$, $x\left(t_{0}\right)=x_{0}, x\left(t_{1}\right)=x_{1}$) in the class of C^{2} functions to the fixed endpoint problem it is necessary that

$$
\begin{equation*}
\frac{\partial f}{\partial x}-\frac{d}{d t}\left(\frac{\partial f}{\partial \dot{x}}\right)=0 \tag{4.1}
\end{equation*}
$$

at each point of $x=x^{*}(t)$.

A few remarks about Theorem 4.1.

Let $\eta:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ be a C^{1}-function of continuous first derivative with $\eta\left(t_{0}\right)=\eta\left(t_{1}\right)=0$. Then consider

$$
F(\varepsilon)=J(x+\varepsilon \eta)=\int_{t_{0}}^{t_{1}} f(t, x+\varepsilon \eta, \dot{x}+\varepsilon \dot{\eta}) d t
$$

By Theorem 1.1, $F^{\prime}(0)=0$ since $\varepsilon=0$ is a local minimal point of F. It follows from the Chain rule that

$$
\begin{equation*}
F^{\prime}(0)=\int_{t_{0}}^{t_{1}} \frac{\partial f}{\partial x} \eta+\frac{\partial f}{\partial \dot{x}} \frac{d \eta}{d t} d t=0 \tag{i}
\end{equation*}
$$

Integration by parts yields
(ii)

$$
\begin{aligned}
\int_{t_{0}}^{t_{1}} \frac{\partial f}{\partial \dot{x}} \eta^{\prime} d t & =\int_{t_{0}}^{t_{1}}\left(\frac{\partial f}{\partial \dot{x}} \eta\right)^{\prime} d t-\int_{t_{0}}^{t_{1}} \frac{d}{d t} \frac{\partial f}{\partial \dot{x}} \eta d t \\
& =-\int_{t_{0}}^{t_{1}} \frac{d}{d t} \frac{\partial f}{\partial \dot{x}} \eta d t
\end{aligned}
$$

due to the fact that $\eta\left(t_{0}\right)=\eta\left(t_{1}\right)=0$.
From (i)-(ii), we have

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}}\left[\frac{\partial f}{\partial x}-\frac{d}{d t}\left(\frac{\partial f}{\partial \dot{x}}\right)\right] \eta d t=0 \tag{iii}
\end{equation*}
$$

for all $\eta:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ of C^{1}-continuous functions with $\eta\left(t_{0}\right)=\eta\left(t_{1}\right)=0 . \quad \square$

Equation (4.1) is called Euler-Lagrange equation. This is an ODE in x, since f is known. Solutions of equation (4.1) are called EXTREMALS.

EXAMPLES 1. Find the extremal of

$$
J[x]=\int_{1}^{2} \dot{x}^{2} t^{3} d t, \quad \begin{aligned}
& x(1)=0 \\
& x(2)=3
\end{aligned}
$$

Solution

$$
f(t, x, \dot{x})=\dot{x}^{2} t^{3}
$$

Euler - Lagrange equation is $\frac{d}{d t} \frac{\partial f}{\partial p}$ Here $p=\dot{x}$, so $f=$ $f(t, x, p)$.

$$
0-\frac{d}{d t}\left\{2 \dot{x} t^{3}\right\}=0
$$

So $\dot{x} t^{3}=$ constant $=k$
Separable equation:

$$
\begin{gathered}
\int d x=\int \frac{k}{t^{3}} d t+l \\
x=\frac{K}{t^{2}}+l \\
x(1)=0 \Rightarrow K+l=0 \\
x(2)=3 \Rightarrow 3=\frac{K}{4}-K \\
12=-3 K, \quad K=-4 \\
x=4-\frac{4}{t^{2}}
\end{gathered}
$$

Solution is a curve joining
$(1,0)$ and $(2,3)$ which
is a candidate for minimizing $J[x]$.

Example 2. Brachistochrane:

Find the path of least
time on which a particle
descents from rest at A
to B by gravity.
Solution. Take $A=(0,0)$ as origin and measure vertically downwards and $B=(a, b)$. Say velocity v at depth x and arc-length

$$
v=\frac{d s}{d T}=\sqrt{1+\dot{x}^{2}}, \quad s(t)=\int_{0}^{t} \sqrt{1+\dot{x}^{2}(s)} d s
$$

Energy is conserved

$$
v=\frac{d s}{d T}=\sqrt{2 g x}
$$

Time from A to B is

$$
T[x]=\int_{A}^{B} d T=\int_{A}^{B} \frac{d s}{v}=\frac{1}{\sqrt{2 g}} \int_{0}^{a} \frac{\sqrt{1+\dot{x}^{2}}}{\sqrt{x}} d t
$$

Want to minimize

$$
J[x]=\int_{0}^{a} \frac{\sqrt{1+\dot{x}^{2}}}{\sqrt{x}} d t
$$

\# Integrand does not defend explicitly on t, Then

$$
f-\dot{x} \frac{\partial f}{\partial \dot{x}}=\text { const. }
$$

For, if $f=f(x, \dot{x})$,

$$
\begin{aligned}
\frac{d}{d t}\left(f-\dot{x} \frac{\partial f}{\partial \dot{x}}\right)= & \frac{\partial f}{\partial x} \dot{x}+\frac{\partial f}{\partial \dot{x}} \ddot{x}-\ddot{x} \frac{\partial f}{\partial \dot{x}}-\dot{x} \frac{d}{d t}\left(\frac{\partial f}{\partial \dot{x}}\right) \\
= & \dot{x}\left[\frac{\partial f}{\partial x}-\frac{d}{d t}\left(\frac{\partial f}{\partial \dot{x}}\right)\right]=0 \\
& \text { by Euler-Lagrange }
\end{aligned}
$$

