
4.1: Revision of ODE
2nd order, constant coefficients

aẍ + bẋ + cx = f(t)

• Solve homogeneous equation

aẍ + bẋ + cx = 0

to give xh(t) (two arbitrary constants)
• Find a “particular solution” of nonhomog.equ.

xp(t)
• Complete solution

x(t) = xh(t) + xp(t).

# Homog. Eqn. aẍ + bẋ + cx = 0.
Look for solutions x = eλt

(aλ2 + bλ + c)eλt = 0

Characteristic eqn. aλ2 + bλ + c = 0

• 2 real distinct solutions λ1, λ2

eλ1t , eλ2t

• xh(t) = Aeλ1t + Beλ2t

• double root λ : eλt, teλt

xh(t) = eλt(A + Bt)
1
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• complex solutions (complex conjugates)

λ = α ± iβ ; eαt cos βt , eαt sinβt

xh(t) = Aeαt cos βt + Beαt sin βt

Ex 1. ẍ + x = 0, λ2 + 1 = 0, λ = ±i

x(t) = A cos t + B sin t.

Ex 2.

ẍ − 2ẋ − 3x = 0

λ2 − 2λ − 3 = 0 (λ − 3)(λ + 1) = 0

λ = 3, x = e3t λ = −1, x = e−t

xh(t) = Ae−t + Be3t.
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4.2
There are a number of techniques for finding particular

solutions and we’ll only look at

METHOD OF UNDETERMINED COEFFICIENTS

Only works for

f(t) =











Polynomials in t

ekt

cos γt, sin γt

and combinations of these.
We would look for a particular solution of the form

xp(t) =











K0 + K1t + · · · + Kqt
q

L cos γt + M sin γt

Hekt.

In particular, if

(*) f(t) = t + t2 + 5 cos γt + e2t.

we look for a particular solution of the form

xp(t) = K0 + K1t + K2t
2 + L cos γt + M sin γt + He2t.

The coefficients are determined by differentiating and sub-
stituting on the D.E.
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Example 1: ẍ + x = e2t + t2

Step 1.

Homog. eqn. ẍ + x = 0, λ2 + 1 = 0

λ = ±i

Solutions cos t, sin t

xh = A cos t + B sin t.

Step 2. Undetermined coefficients

xp = K0 + K1t + K2t
2 + He2t

ẋp = K1 + 2K2t + 2He2t

ẍp = 2K2 + 4He2t

Sub in DE:

2K2 + 4He2t + K0 + K1t + K2t
2 + He2t

= e2t + t2

s2K2 + K0 = 0 equating constants

K1 = 0 equating coefficients of t

K2 = 1, 2 + K0 = 0, K0 = −2 equating coefficients of t2

5H = 1 ; H =
1

5
. equating coefficients of e2t

xp(t) = −2 + t2 +
1

5
e2t.
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Step 3.

x(t) = xh(t) + xp(t)

= A cos t + B sin t − 2 + t2 +
1

5
e2t.

Remark 1. Undetermined coefficients will not work for
f(t) not of the specific type.

Remark 2. Modification Rule.

If f(t) is part of the general solution xh(t), modify by mul-
tiplying by t.

Example 2: ẍ − 2ẋ − 3x = e3t.

1. λ2−2λ−3 = 0, (λ−3)(λ+1) = 0, λ = −1, 3;

e−t, e3t; xh(t) = Ae−t + Be3t.

2. xp(t) = Hte3t (modified)

ẋp = H(3t + 1)e3t , ẍp = H(9t + 6)e3t

Subst. on DE

H(9t + 6)e3t − 2H(3t + 1)e3t − 3Hte3t = e3t

6H − 2H = 1 , H =
1

4
, xp(t) =

1

4
te3t

x(t) = Ae−t + Be3t +
1

4
te3t.

Complete solution.
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4.3.Optimization problems for functionals.

We use (t, x) for the coordinates of a point in the plane
and x = x(t) to represent the equation of a plan curve.
Let (t0, x0) and (t1, x1) be two fixed points in the plane. A
curve joining (t0, x0) and (t1, x1) is represented by x = x(t)
for t0 ≤ t ≤ t1 with x(t0) = x0 and x(t1) = x1.

The length of a curve x = x(t) joining (t0, x0) and (t1, x1)
is

L[x] =

∫ t1

t0

√

1 + (ẋ)2 dt; with ẋ =
dx

dt
.

Different type of optimization problems involving inte-
grals of a family of curves :

(1) The classical isoperimetric problem:
A curve (closed) of length l.
What is the curve which
which surrounds the greatest area?

Maximising “area” which depends an curve x(t) (of
length l) that encloses it.

(2) Minimizing energy

γ : x(t). What is
the curve for which
the work (energy) is
a mimimum for mov-
ing P from A to B?
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(3) Brachistochrone problem:

A particle is sliding
down the
curve under gravity
What is the shape
of the curve so that
the particle falls from
A to B in minimum
time?

Each of these problems is an optimization problem.
However, the “variables” are functions x(t) which
define the curve.
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A functional on a curve x(t) joining the point

(t0, x0) to (t1, x1) is

J [x] =

∫ t1

t0

f(t, x, ẋ)dt , x(t0) = x0, x(t1) = x1

Here we suppose that f is differentiable with respect to
each variable as many times as we require.

First the fixed end point problem (t0, x0), (t1, x1) fixed.

Minimise J [x] =

∫ t1

t0

f(t, x, ẋ)dt, x(t0) = x0, x(t1) = x1.

That is, find a curve x∗(t) satisfying

J [x] ≥ J [x∗]

for all x = x(t) satisfying the boundary conditions. where
x∗ is called a (global) minimizing curve

# “close”, variation and admissible curves.

# Necessary condition for minimum
EULER-LAGRANGE EQUATION
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To find a necessary condition, we require some additional
assumptions and ideas.

The class of admissible curves:
x(t) twice continuously diff’able, x(t0) = x0, x(t1) = x1.
Seek minimising curve x∗(t) in this class.

The problem: Find among the admissible curves, one x∗

that gives a local minimum of J [x]. That is

J [x] ≥ J [x∗]

for all admissible x close to x∗.
What do we mean by “close to” for curves x(t)?

WEAK VARIATION. Let x∗(t) be a curve and x(t) an
admissible curve. If ∃ small ε1 > 0 and ε2 > 0 such that

|x∗(t) − x(t)| < ε1 for all

|ẋ∗(t) − ẋ(t)| < ε2, t0 ≤ t ≤ t,

then x(t) is said to be a weak variation of x∗(t).

Weak local minimizer. A curve x∗ = x∗(t) : [t0, t1] → R

is called “Weakly local minimizer of functional if there are
small ε1 > 0 and ε2 > 0 such that

J(x∗) ≤ J(y)

for all curve y = y(t) satisfying the boundary conditions
and

|x∗(t) − y(t)| < ε1 for all

|ẋ∗(t) − ẏ(t)| < ε2, t0 ≤ t ≤ t,
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STRONG VARIATION. x∗(t), x(t) as above. There
exists a small ε > 0 such that |x∗(t) − x(t)| < ε for all
t0 ≤ t ≤ t1. Then x(t) is called a strong variation of x∗(t).

Strong local minimizer (minimizing curve).
A curve x∗ = x∗(t) : [t0, t1] → R is called “Weakly local

minimizer of functional J if there is a small ε such that

J [x∗] ≤ J [y]

for all curve y = y(t) satisfying the boundary conditions
and

|x∗(t) − y(t)| < ε, t0 ≤ t ≤ t.

Remark: A global minimizing curve is a strong locally
minimizing curve. A strong local minimizing curve is a
weak local minimizing curve.

A first necessary condition for a “weak local minimum” (i.e.
a local minimum with respect to weak variations).

Theorem 4.1. In order that x = x∗(t) should be a min-

imizing curve, (i.e. Minimize J [x] =

∫ t1

t0

f(t, x, ẋ)dt,

x(t0) = x0, x(t1) = x1) in the class of C2 functions to
the fixed endpoint problem it is necessary that

(4.1)
∂f

∂x
− d

dt

(

∂f

∂ẋ

)

= 0

at each point of x = x∗(t).
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A few remarks about Theorem 4.1.
Let η : [t0, t1] → R be a C1-function of continuous first

derivative with η(t0) = η(t1) = 0. Then consider

F (ε) = J(x + εη) =

∫ t1

t0

f(t, x + εη, ẋ + εη̇) dt

By Theorem 1.1, F ′(0) = 0 since ε = 0 is a local minimal
point of F . It follows from the Chain rule that

(i) F ′(0) =

∫ t1

t0

∂f

∂x
η +

∂f

∂ẋ

dη

dt
dt = 0

Integration by parts yields

∫ t1

t0

∂f

∂ẋ
η′ dt =

∫ t1

t0

(

∂f

∂ẋ
η

)

′

dt −
∫ t1

t0

d

dt

∂f

∂ẋ
η dt

= −
∫ t1

t0

d

dt

∂f

∂ẋ
η dt

(ii)

due to the fact that η(t0) = η(t1) = 0.
From (i)-(ii), we have

(iii)

∫ t1

t0

[

∂f

∂x
− d

dt

(

∂f

∂ẋ

)]

η dt = 0

for all η : [t0, t1] → R of C1-continuous functions with
η(t0) = η(t1) = 0. �
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Equation (4.1) is called Euler-Lagrange equation. This
is an ODE in x, since f is known. Solutions of equation
(4.1) are called EXTREMALS.

EXAMPLES 1. Find the extremal of

J [x] =

∫

2

1

ẋ2t3dt,
x(1) = 0

x(2) = 3

Solution
f(t, x, ẋ) = ẋ2t3

Euler - Lagrange equation is
d

dt

∂f

∂p
Here p = ẋ, so f =

f(t, x, p).

0 − d

dt
{2ẋt3} = 0

So ẋt3 = constant = k

Separable equation:
∫

dx =

∫

k

t3
dt + l

x =
K

t2
+ l

x(1) = 0 ⇒K + l = 0

x(2) = 3 ⇒3 =
K

4
− K

12 = −3K, K = −4

x =4 − 4

t2
.
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Solution is a curve joining
(1, 0) and (2,3) which
is a candidate for minimizing J [x].

Example 2. Brachistochrane:
Find the path of least
time on which a particle
descents from rest at A

to B by gravity.

Solution. Take A = (0, 0) as origin and measure vertically
downwards and B = (a, b). Say velocity v at depth x and
arc-length

v =
ds

dT
=

√

1 + ẋ2, s(t) =

∫ t

0

√

1 + ẋ2(s) ds

Energy is conserved

v =
ds

dT
=

√

2gx.

Time from A to B is

T [x] =

∫ B

A

dT =

∫ B

A

ds

v
=

1√
2g

∫ a

0

√
1 + ẋ2

√
x

dt.

Want to minimize

J [x] =

∫ a

0

√
1 + ẋ2

√
x

dt.
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# Integrand does not defend explicitly on t, Then

f − ẋ
∂f

∂ẋ
= const.

For, if f = f(x, ẋ),

d

dt

(

f − ẋ
∂f

∂ẋ

)

=
∂f

∂x
ẋ +

∂f

∂ẋ
ẍ − ẍ

∂f

∂ẋ
− ẋ

d

dt

(

∂f

∂ẋ

)

= ẋ

[

∂f

∂x
− d

dt

(

∂f

∂ẋ

)]

= 0

by Euler-Lagrange


