4.1: Revision of ODE

2nd order, constant coefficients

$$a\ddot{x} + b\dot{x} + cx = f(t)$$

• Solve homogeneous equation

$$a\ddot{x} + b\dot{x} + cx = 0$$

to give $x_h(t)$ (two arbitrary constants)

- Find a "particular solution" of nonhomog.equ. $x_p(t)$
- Complete solution

$$x(t) = x_h(t) + x_p(t).$$

Homog. Eqn. $a\ddot{x} + b\dot{x} + cx = 0$. Look for solutions $x = e^{\lambda t}$

$$(a\lambda^2 + b\lambda + c)e^{\lambda t} = 0$$

Characteristic eqn. $a\lambda^2 + b\lambda + c = 0$

• 2 real distinct solutions λ_1 , λ_2

$$e^{\lambda_1 t}$$
 , $e^{\lambda_2 t}$

•
$$x_h(t) = Ae^{\lambda_1 t} + Be^{\lambda_2 t}$$

• double root λ : $e^{\lambda t}$, $te^{\lambda t}$

$$x_h(t) = e^{\lambda t} (A + Bt)$$
1

• complex solutions (complex conjugates)

$$\lambda = \alpha \pm i\beta \quad ; \quad e^{\alpha t} \cos \beta t \,, \quad e^{\alpha t} \sin \beta t$$
$$x_h(t) = A e^{\alpha t} \cos \beta t + B e^{\alpha t} \sin \beta t$$

Ex 1.
$$\ddot{x} + x = 0$$
, $\lambda^2 + 1 = 0$, $\lambda = \pm i$
 $x(t) = A\cos t + B\sin t$.

Ex 2.

$$\ddot{x} - 2\dot{x} - 3x = 0$$

$$\lambda^2 - 2\lambda - 3 = 0 \qquad (\lambda - 3)(\lambda + 1) = 0$$

$$\lambda = 3, \quad x = e^{3t} \qquad \lambda = -1, \quad x = e^{-t}$$

$$x_h(t) = Ae^{-t} + Be^{3t}.$$

4.2

There are a number of techniques for finding particular solutions and we'll only look at

METHOD OF UNDETERMINED COEFFICIENTS Only works for

$$f(t) = \begin{cases} \text{Polynomials in } t \\ e^{kt} \\ \cos \gamma t, \sin \gamma t \end{cases}$$

and combinations of these.

We would look for a particular solution of the form

$$x_p(t) = \begin{cases} K_0 + K_1 t + \dots + K_q t^q \\ L\cos\gamma t + M\sin\gamma t \\ He^{kt}. \end{cases}$$

In particular, if

(*)
$$f(t) = t + t^2 + 5\cos\gamma t + e^{2t}$$
.

we look for a particular solution of the form

$$x_p(t) = K_0 + K_1 t + K_2 t^2 + L \cos \gamma t + M \sin \gamma t + H e^{2t}.$$

The coefficients are determined by differentiating and substituting on the D.E. **Example 1**: $\ddot{x} + x = e^{2t} + t^2$ **Step 1**.

Homog. eqn.
$$\ddot{x} + x = 0$$
, $\lambda^2 + 1 = 0$
 $\lambda = \pm i$

Solutions $\cos t$, $\sin t$

$$x_h = A\cos t + B\sin t.$$

Step 2. Undetermined coefficients

$$x_{p} = K_{0} + K_{1}t + K_{2}t^{2} + He^{2t}$$
$$\dot{x}_{p} = K_{1} + 2K_{2}t + 2He^{2t}$$
$$\ddot{x}_{p} = 2K_{2} + 4He^{2t}$$

Sub in DE:

$$2K_2 + 4He^{2t} + K_0 + K_1t + K_2t^2 + He^{2t}$$

$$= e^{2t} + t^2$$

$$s2K_2 + K_0 = 0 \qquad \text{equating constants}$$

$$K_1 = 0 \qquad \text{equating coefficients of } t$$

$$K_2 = 1, \quad 2 + K_0 = 0, \qquad K_0 = -2 \text{ equating coefficients of } t^2$$

$$5H = 1; \quad H = \frac{1}{5}. \quad \text{equating coefficients of } e^{2t}$$

$$x_p(t) = -2 + t^2 + \frac{1}{5}e^{2t}.$$

Step 3.

$$x(t) = x_h(t) + x_p(t)$$

= $A \cos t + B \sin t - 2 + t^2 + \frac{1}{5}e^{2t}$.

Remark 1. Undetermined coefficients will not work for f(t) not of the specific type.

Remark 2. Modification Rule.

If f(t) is part of the general solution $x_h(t)$, modify by multiplying by t.

Example 2: $\ddot{x} - 2\dot{x} - 3x = e^{3t}$.

1.
$$\lambda^2 - 2\lambda - 3 = 0$$
, $(\lambda - 3)(\lambda + 1) = 0$, $\lambda = -1, 3;$
 $e^{-t}, e^{3t}; \quad x_h(t) = Ae^{-t} + Be^{3t}.$
2. $x_p(t) = Hte^{3t} \quad (modified)$
 $\dot{x}_p = H(3t + 1)e^{3t}, \quad \ddot{x}_p = H(9t + 6)e^{3t}$

Subst. on DE

$$H(9t+6)e^{3t} - 2H(3t+1)e^{3t} - 3Hte^{3t} = e^{3t}$$

$$6H - 2H = 1, \quad H = \frac{1}{4}, \quad x_p(t) = \frac{1}{4}te^{3t}$$

$$x(t) = Ae^{-t} + Be^{3t} + \frac{1}{4}te^{3t}.$$

Complete solution.

4.3. Optimization problems for functionals.

We use (t, x) for the coordinates of a point in the plane and x = x(t) to represent the equation of a plan curve. Let (t_0, x_0) and (t_1, x_1) be two fixed points in the plane. A curve joining (t_0, x_0) and (t_1, x_1) is represented by x = x(t)for $t_0 \le t \le t_1$ with $x(t_0) = x_0$ and $x(t_1) = x_1$.

The length of a curve x = x(t) joining (t_0, x_0) and (t_1, x_1) is

$$L[x] = \int_{t_0}^{t_1} \sqrt{1 + (\dot{x})^2} \, dt; \quad \text{with} \quad \dot{x} = \frac{dx}{dt}.$$

Different type of optimization problems involving integrals of a family of curves :

(1) The classical isoperimetric problem: A curve (closed) of length *l*. What is the curve which which surrounds the greatest area?

Maximising "area" which depends an curve x(t) (of length l) that encloses it.

(2) Minimizing energy

 γ : x(t). What is the curve for which the work (energy) is a minimum for moving P from A to B?

(3) Brachistochrone problem:

A particle is sliding down the curve under gravity What is the shape of the curve so that the particle falls from A to B in minimum time?

Each of these problems is an optimization problem. However, the "variables" are *functions* x(t) which define the curve. A functional on a curve x(t) joining the point

$$(t_0, x_0)$$
 to (t_1, x_1) is

$$J[x] = \int_{t_0}^{t_1} f(t, x, \dot{x}) dt, \quad x(t_0) = x_0, \quad x(t_1) = x_1$$

Here we suppose that f is differentiable with respect to each variable as many times as we require.

First the **fixed end point problem** $(t_0, x_0), (t_1, x_1)$ fixed. Minimise $J[x] = \int_{t_0}^{t_1} f(t, x, \dot{x}) dt, x(t_0) = x_0, x(t_1) = x_1.$ That is, find a curve $x^*(t)$ satisfying

$$J[x] \ge J[x^*]$$

for all x = x(t) satisfying the boundary conditions. where x^* is called a (global) minimizing curve

- # "close", variation and admissible curves.
- # Necessary condition for minimum EULER-LAGRANGE EQUATION

To find a necessary condition, we require some additional assumptions and ideas.

The class of admissible curves:

x(t) twice continuously diff'able, $x(t_0) = x_0$, $x(t_1) = x_1$. Seek minimising curve $x^*(t)$ in this class.

The **problem:** Find among the admissible curves, one x^* that gives a local minimum of J[x]. That is

$$J[x] \ge J[x^*]$$

for all admissible x close to x^* . What do we mean by "close to" for curves x(t)?

WEAK VARIATION. Let $x^*(t)$ be a curve and x(t) an admissible curve. If \exists small $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$ such that

$$|x^*(t) - x(t)| < \varepsilon_1 \qquad \text{for all} |\dot{x}^*(t) - \dot{x}(t)| < \varepsilon_2, \qquad t_0 \le t \le t,$$

then x(t) is said to be a weak variation of $x^*(t)$.

Weak local minimizer. A curve $x^* = x^*(t) : [t_0, t_1] \to \mathbb{R}$ is called "Weakly local minimizer of functional if there are small $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$ such that

$$J(x^*) \le J(y)$$

for all curve y = y(t) satisfying the boundary conditions and

$$\begin{aligned} |x^*(t) - y(t)| &< \varepsilon_1 \qquad \text{for all} \\ |\dot{x}^*(t) - \dot{y}(t)| &< \varepsilon_2, \qquad t_0 \le t \le t, \end{aligned}$$

STRONG VARIATION. $x^*(t)$, x(t) as above. There exists a small $\varepsilon > 0$ such that $|x^*(t) - x(t)| < \varepsilon$ for all $t_0 \le t \le t_1$. Then x(t) is called a strong variation of $x^*(t)$.

Strong local minimizer (minimizing curve).

A curve $x^* = x^*(t) : [t_0, t_1] \to \mathbb{R}$ is called "Weakly local minimizer of functional J if there is a small ε such that

$$J[x^*] \leq J[y]$$

for all curve y = y(t) satisfying the boundary conditions and

$$|x^*(t) - y(t)| < \varepsilon, \qquad t_0 \le t \le t.$$

Remark: A global minimizing curve is a strong locally minimizing curve. A strong local minimizing curve is a weak local minimizing curve.

A first necessary condition for a "weak local minimum" (i.e. a local minimum with respect to *weak variations*).

Theorem 4.1. In order that $x = x^*(t)$ should be a minimizing curve, (i.e. Minimize $J[x] = \int_{t_0}^{t_1} f(t, x, \dot{x}) dt$, $x(t_0) = x_0, x(t_1) = x_1$) in the class of C^2 functions to the fixed endpoint problem it is necessary that

(4.1)
$$\frac{\partial f}{\partial x} - \frac{d}{dt} \left(\frac{\partial f}{\partial \dot{x}} \right) = 0$$

at each point of $x = x^*(t)$.

A few remarks about Theorem 4.1.

Let $\eta : [t_0, t_1] \to \mathbb{R}$ be a C^1 -function of continuous first derivative with $\eta(t_0) = \eta(t_1) = 0$. Then consider

$$F(\varepsilon) = J(x + \varepsilon\eta) = \int_{t_0}^{t_1} f(t, x + \varepsilon\eta, \dot{x} + \varepsilon\dot{\eta}) dt$$

By Theorem 1.1, F'(0) = 0 since $\varepsilon = 0$ is a local minimal point of F. It follows from the Chain rule that

(i)
$$F'(0) = \int_{t_0}^{t_1} \frac{\partial f}{\partial x} \eta + \frac{\partial f}{\partial \dot{x}} \frac{d\eta}{dt} dt = 0$$

Integration by parts yields

(ii)

$$\int_{t_0}^{t_1} \frac{\partial f}{\partial \dot{x}} \eta' dt = \int_{t_0}^{t_1} \left(\frac{\partial f}{\partial \dot{x}}\eta\right)' dt - \int_{t_0}^{t_1} \frac{d}{dt} \frac{\partial f}{\partial \dot{x}} \eta dt$$
$$= -\int_{t_0}^{t_1} \frac{d}{dt} \frac{\partial f}{\partial \dot{x}} \eta dt$$

due to the fact that $\eta(t_0) = \eta(t_1) = 0$. From (i) (ii) we have

From (i)-(ii), we have

(iii)
$$\int_{t_0}^{t_1} \left[\frac{\partial f}{\partial x} - \frac{d}{dt} \left(\frac{\partial f}{\partial \dot{x}} \right) \right] \eta \, dt = 0$$

for all $\eta : [t_0, t_1] \to \mathbb{R}$ of C^1 -continuous functions with $\eta(t_0) = \eta(t_1) = 0$. \Box

Equation (4.1) is called Euler-Lagrange equation. This is an ODE in x, since f is known. Solutions of equation (4.1) are called *EXTREMALS*.

EXAMPLES 1. Find the extremal of

$$J[x] = \int_{1}^{2} \dot{x}^{2} t^{3} dt, \quad \begin{array}{l} x(1) = 0\\ x(2) = 3 \end{array}$$

Solution

$$f(t, x, \dot{x}) = \dot{x}^2 t^3$$

Euler - Lagrange equation is $\frac{d}{dt}\frac{\partial f}{\partial p}$ Here $p = \dot{x}$, so f = f(t, x, p).

$$0 - \frac{d}{dt} \{2\dot{x}t^3\} = 0$$

So $\dot{x}t^3 = \text{constant} = k$ Separable equation:

$$\int dx = \int \frac{k}{t^3} dt + l$$
$$x = \frac{K}{t^2} + l$$

$$\begin{aligned} x(1) &= 0 \Rightarrow K + l = 0 \\ x(2) &= 3 \Rightarrow 3 = \frac{K}{4} - K \\ 12 &= -3K, \quad K = -4 \\ x &= 4 - \frac{4}{t^2}. \end{aligned}$$

Solution is a curve joining (1,0) and (2,3) which is a candidate for minimizing J[x].

Example 2. Brachistochrane: Find the path of least time on which a particle descents from rest at Ato B by gravity.

Solution. Take A = (0, 0) as origin and measure vertically downwards and B = (a, b). Say velocity v at depth x and arc-length

$$v = \frac{ds}{dT} = \sqrt{1 + \dot{x}^2}, \quad s(t) = \int_0^t \sqrt{1 + \dot{x}^2(s)} \, ds$$

Energy is conserved

$$v = \frac{ds}{dT} = \sqrt{2gx}.$$

Time from A to B is

$$T[x] = \int_{A}^{B} dT = \int_{A}^{B} \frac{ds}{v} = \frac{1}{\sqrt{2g}} \int_{0}^{a} \frac{\sqrt{1+\dot{x}^{2}}}{\sqrt{x}} dt.$$

Want to minimize

$$J[x] = \int_0^a \frac{\sqrt{1+\dot{x}^2}}{\sqrt{x}} dt.$$

Integrand does not defend explicitly on t, Then

$$f - \dot{x}\frac{\partial f}{\partial \dot{x}} = \text{ const.}$$

For, if $f = f(x, \dot{x})$,

$$\frac{d}{dt}\left(f - \dot{x}\frac{\partial f}{\partial \dot{x}}\right) = \frac{\partial f}{\partial x}\dot{x} + \frac{\partial f}{\partial \dot{x}}\ddot{x} - \ddot{x}\frac{\partial f}{\partial \dot{x}} - \dot{x}\frac{d}{dt}\left(\frac{\partial f}{\partial \dot{x}}\right)$$
$$= \dot{x}\left[\frac{\partial f}{\partial x} - \frac{d}{dt}\left(\frac{\partial f}{\partial \dot{x}}\right)\right] = 0$$
by Euler-Lagrange