3. Minimization with constraints

Problem III. Minimize f(x) in R™ given that x satisfies
the equality constraints

gi(x)=c¢;, j=1,....,m<n,

where ¢, ..., ¢y are given numbers.

Theorem 3.1. Let f(z) and g;j(x) be defined and have
continuous second derivatives in some open region of R™.
Then necessary condition that a minimize f(x) with the
constraints

gj(x):Cj, j7=1,...m<n

18 that there exist m-Lagrange multipliers Ai,...,\m such
that

grad f+Z)\jgj =0 ata
j=1

(For the proof of Theorem 3.1, we refer to the book of
E. R. Pinch.)

Example 3.1. Minimize f(x) = 1 — 2% — x5 subject to
g(x) =29 — 1+ 2% = 0.

Solution. Using Theorem 3.1 with m = 1 and n = 2, there
is a Lagrange multiplier A such that

grad(f +Ag) =0
1



This is equivalent to
—2x1+2 1 =0 and —2x9+X=0.

There are three unknowns so we need another equation (i.e
the constrain itself):

Ty — 1427 =0.
Solving these equations we find the following solutions

$1:0, 33‘2:1, A=2

and
—:t—l —1 A=1
— To = — = 1.
. \/57 2 2,

Sketch the constraint curve and level set of f. Then you
find that the points (0, 1) and (j:%, 1) are the points where

curves of level sets of f touch the parabola of constraint.
It is clear that the minimum is at 1 = 0 and xo = 1.
(geometry behind?) [

Example 3.2: Find local extremal of
fz) =2y + a3 + 5

where

i +a5+15—-5=0 (1)
2425+ x5 -2 —3=0 (2)

g1()
g2()



e Lagrangian

L=Ff4+Xg1+ A292
=2y + o +
+ A (2] + 25+ 235 —5)
+ Xo(23 4 25 + 3 — 231 — 3)

e grad L =0

?)CC% + 2)\1£C1 —+ 2)\2(5171 — 1) =0
3%3 + 219 + 2X0x9 =0
31‘% + 2)\15133 + 2)\2(133 =0

e From (4), xo =0 or 3zo +2A; +2X2 =0
From (5), 3 = 0 or 3x3 4+ 2A1 +2X2 =0

IfSCQZO

i +25—-5=0

i 4+ a5 — 22, —3=0

—2x1+2=0 (1(a) — 2(a))

x1 = 1. Subst. this in (3) to obtain

3+ 2\ + 2)\2(0) =0, M\ = —3/2
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Subst. 1 = 1 in 1(a), 2% = 4, 3 = £2
23 = 42, in (5): 3.4 +(—3).2 4+ 2002 =0

= Ay = —3/2
r3 = —2,1n (5) 3.4 + (—3)(—2) — 44Xy =0
Ao = 9/2

(1,0,2), A1 =-3/2, Ay=-3/2 0
102, \=-32 aoop2 |20

If x3 = 0: from the constraint equations

i +15—-5=0 (1b)
242221, —3=0 (2b)

Again x; = 1 and \; = —3/2.
As before, substitute z1 = 1 in (1b) = 235 = 4, 15 = £2.
Obtain

(17270)7 A1 = _3/27 Ao = —3/2
(1,-2,0), M\ =-3/2,  Ay=09/2.

These and the other solutions (zry = x3 # 0) above are the
critical points of the problem.

Are these maxima or minima?
We need sufficient conditions to say.



Distinguish minima from maxima (sufficient conditions)

Minimise f(z1,z2,...,2,) subject to

gl(ajl,...,xn) C,

gm(«fCl, ) mn) = Cm

L=f+Xgi+Xg2+ -+ Angm.

Suppose that = a is a critical point
# grad L(a) = 0.

Let H; be the Hessian of L. This means that Hj involves
A1, ..., Ay as well as the aq, ..., a,.

#  BKTH h>0 at a
for all h # 0 such that A’ grad ¢; =0, for all 1 < i < m.

For g = (917' o 7gm)7 we define

oxq 0x1
B p— vg p— . o o o .
ox,, ox,,

Bordered Hessian

_(Hr B _
H—(B O),at:z:—a.

is a (m 4+ n) x (m + n)-matrix, where O is a m X m zero
matrix. Point a at which grad L = 0 and detH # 0 is called
a nondegenerate critical point.



Theorem 3.2. : (Nec. & Suff. for a minimum)

Let a be a non-degenerate critical point for f, subject to
g =c¢;, 1 =1,....m. A necessary and sufficient condition
that x = a s a point where f has a local minimum subject
to the constraints is that

hT"H; h >0

for all tangent vectors h. *
Sufficient condition for a local maximum is that

hTHLh <0,

for all tangent vectors h. *
* Recall vector h is tangent if hT grad g; = 0, for all i.

To solve constrained problems

# Construct L
# Find critical points a where grad L = 0.
# For x = a, check non-degeneracy

e H Bordered Hessian det H # 0

# Find h in tangent space
# Check sign of hT Hyh.

Example 3.3. :
Maximise xyz = f(x,y,z). Subject to

g:rx+y+z2z—1=0 (1)



Solution.

L(z,y,z) =ayz+ Mz +y+2— 1)

yz+A=0 (2)
xz+A=0 (3)
xy+A=0 (4)

Yz =Tz =2y = —A

Either x = y or z = 0 from the first.

If z=0, then A =0 and so zy = 0 and at least one of one
of x,y is zero. Note x = y = z = 0 does not satisfy (1).
Assume z = 0 and y # 0. Then from (1) y = 1 so (0,1,0)
is a solution.

By symmetry (1,0,0) and (0,0, 1) are solutions.

If 2 #£ 0 then x = y. Since we have already considered the
case r = 0 = y we may assume z = y # 0. From equations
two and three z =y sox =y = z..

Substitute on constraint: 3x =1

>r=y=2z=1/3 and A = —1/9.

check sufficiency at the critical point. (1/3,1/3,1/3) with
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A= —1/9.

L=xyz+ XNax+y+2z-—1)

0 2 y 0 1/3 1/3
Ho=|2 0 z|=]1/3 0 1/3
y = 0 /3 1/3 0

-0 1/3 1/3 17
H_[HL Vg]_ /3 0 1/3 1

- “11/3 1/3 0 1
L1 1 1 0]

Noting Cy— > Cy — C;, C3— > (3 — (1, where (). stands
for column r, does not change the determinant we obtain

0 1/3 1/3 1
1/3 —1/3 0 1
13 0 —1/3 1|7V
10 0 0

det H =

Hence (1/3, 1/3, 1/3) is a nondeg. crit. pt.
Find h on tangent space to g at a

1
h'Vg=0, [hihahs]|1|=0
1
:>h1—|—h2+h3:0
hl:f% h2:lL[/7 h3:_7_:u7 allfYaMER



hTHLh
0 1/3 1/3
=(y p —(y+tw)|1/3 0 1/3
1/3 1/3 0 —(v+p)
max = (y g —y—p) ;%

Finish above Example 3.2:

Maximise f: z3} + x5 + 23
Constraints ¢y : 22 4+ 25 +25 —5=0

go: ] + x5+ 25 — 22, — 3 =0.

We had found the critical points

(1,0,2), A1 =—3/2, Ay=—3/2
(1,0,—2), A1 =-3/2, Xy=09/2

(1,2,0), A1 =—3/2, Ay=—3/2
(1,-2,0), A =—3/2, Xy =09/2
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L=a3+a5 +23 4+ M\ (22 4+ 25 + 23 —5)
+ Ao (2] + 25 + 25 — 221 — 3)

_6331 + 2A1 + 29 0 0
H; = 0 6x9 + 2A1 + 29 0
_ 0 0 623 + 20 + 22X
_2[E1 2331 — 2
Vg1 = |2z2|, Vga=| 2
_2333 2333

Check, for each of the critical points, if

H;, Vg Vgo
H=|Vg{
Vgt 0

has nonzero determinate.

1
Check | 0 ,)\1:)\2:—3/2.

2

0 0 0 2 07

0O -6 0 0 O

H=]10 0 6 4 4

2 0 4 0 0

L0 0 4 0 O.
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det H=—-2x6x(—4) x (—=2) x (=16) # 0 So (1,0,2) is
non-degenerate

# Find h satisfying

hfVg, =0 at crit. point

hiVgs =0
2 0
(hl hg hg) 0l =0 and [hl hg hg] 0 =0
4 4
2h1 +4hg =0 . " "
4h3:0} 1=h3=0, ha=p
ht =10,p,0]. peER

~Y

# Check sign of h! Hph

0 0 0]7Jo0
0p0] |0 —6 0 |p| =—6u*<0.
0 0 6|10

Hence this critical point is local maximum.

Repeat the procedure for other critical points.
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Revision of ODEs
+# Separable 1st order

# Constant Coefficient 2nd order

e Homogeneous
e Nonhomogeneous

+# Separable

&= f(t)g(z)
dx
/@ :/f(t)dt+c.

EXAMPLES (1)
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dr/dt = (1+2%)/(1 —t%)

/ dx _/ dt n
1+22 | 1—¢2 ¢

1/2 1/2
t = dt
arctanx /(1—t+1+t) +c

1 1

= —§ln(1 —t) + §ln(1 +1t)+c
1—|—t 1/2

= [1——75] e

14t 1/2+
— cl .
1—-t

r = tan




