## 3. Minimization with constraints

Problem III. Minimize $f(x)$ in $\mathbb{R}^{n}$ given that $x$ satisfies the equality constraints

$$
g_{j}(x)=c_{j}, \quad j=1, \ldots, m<n
$$

where $c_{1}, \ldots, c_{m}$ are given numbers.
Theorem 3.1. Let $f(x)$ and $g_{j}(x)$ be defined and have continuous second derivatives in some open region of $\mathbb{R}^{n}$. Then necessary condition that a minimize $f(x)$ with the constraints

$$
g_{j}(x)=c_{j}, \quad j=1, \ldots, m<n
$$

is that there exist m-Lagrange multipliers $\lambda_{1}, \ldots, \lambda_{m}$ such that

$$
\operatorname{grad}\left(f+\sum_{j=1}^{m} \lambda_{j} g_{j}\right)=0 \quad \text { at a }
$$

(For the proof of Theorem 3.1, we refer to the book of E. R. Pinch.)

Example 3.1. Minimize $f(x)=1-x_{1}^{2}-x_{2}^{2}$ subject to $g(x)=x_{2}-1+x_{1}^{2}=0$.

Solution. Using Theorem 3.1 with $m=1$ and $n=2$, there is a Lagrange multiplier $\lambda$ such that

$$
\operatorname{grad}(f+\lambda g)=0
$$

This is equivalent to

$$
-2 x_{1}+2 \lambda x_{1}=0 \quad \text { and } \quad-2 x_{2}+\lambda=0
$$

There are three unknowns so we need another equation (i.e the constrain itself):

$$
x_{2}-1+x_{1}^{2}=0
$$

Solving these equations we find the following solutions

$$
x_{1}=0, \quad x_{2}=1, \quad \lambda=2
$$

and

$$
x_{1}= \pm \frac{1}{\sqrt{2}}, \quad x_{2}=\frac{1}{2}, \quad \lambda=1
$$

Sketch the constraint curve and level set of $f$. Then you find that the points $(0,1)$ and $\left( \pm \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ are the points where curves of level sets of $f$ touch the parabola of constraint. It is clear that the minimum is at $x_{1}=0$ and $x_{2}=1$. (geometry behind?)

Example 3.2: Find local extremal of

$$
f(x)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}
$$

where

$$
\begin{align*}
& g_{1}(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-5=0  \tag{1}\\
& g_{2}(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1}-3=0 \tag{2}
\end{align*}
$$

## - Lagrangian

$$
\begin{aligned}
L=f & +\lambda_{1} g_{1}+\lambda_{2} g_{2} \\
=x_{1}^{3} & +x_{2}^{3}+x_{3}^{3} \\
& \quad+\lambda_{1}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-5\right) \\
& +\lambda_{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{3}-2 x_{1}-3\right)
\end{aligned}
$$

- $\operatorname{grad} L=0$

$$
\begin{align*}
3 x_{1}^{2}+2 \lambda_{1} x_{1}+2 \lambda_{2}\left(x_{1}-1\right) & =0  \tag{3}\\
3 x_{2}^{2}+2 \lambda_{1} x_{2}+2 \lambda_{2} x_{2} & =0  \tag{4}\\
3 x_{3}^{3}+2 \lambda_{1} x_{3}+2 \lambda_{2} x_{3} & =0 \tag{5}
\end{align*}
$$

- From (4), $x_{2}=0$ or $3 x_{2}+2 \lambda_{1}+2 \lambda_{2}=0$

From (5), $x_{3}=0$ or $3 x_{3}+2 \lambda_{1}+2 \lambda_{2}=0$

If $x_{2}=0$

$$
\begin{gather*}
x_{1}^{2}+x_{3}^{2}-5=0  \tag{1a}\\
x_{1}^{2}+x_{3}^{2}-2 x_{1}-3=0  \tag{2a}\\
-2 x_{1}+2=0 \quad(1(a)-2(a))
\end{gather*}
$$

$x_{1}=1$. Subst. this in (3) to obtain

$$
3+2 \lambda_{1}+2 \lambda_{2}(0)=0, \quad \lambda_{1}=-3 / 2
$$

Subst. $x_{1}=1$ in $1(a), x_{3}^{2}=4, x_{3}= \pm 2$

$$
\begin{gathered}
x_{3}=+2, \text { in }(5): 3.4+(-3) \cdot 2+2 \lambda_{2} \cdot 2=0 \\
\Rightarrow \lambda_{2}=-3 / 2 \\
x_{3}=-2, \text { in }(5) 3.4+(-3)(-2)-4 \lambda_{2}=0 \\
\lambda_{2}=9 / 2
\end{gathered}
$$

$$
\left.\begin{array}{rll}
(1,0,2), & \lambda_{1}=-3 / 2, & \lambda_{2}=-3 / 2 \\
(1,0,-2), & \lambda_{1}=-3 / 2, & \lambda_{2}=9 / 2
\end{array}\right\} x_{2}=0
$$

If $x_{3}=0:$ from the constraint equations

$$
\begin{align*}
& x_{1}^{2}+x_{2}^{2}-5=0  \tag{1b}\\
& x_{1}^{2}+x_{2}^{2}-2 x_{1}-3=0 \tag{2b}
\end{align*}
$$

Again $x_{1}=1$ and $\lambda_{1}=-3 / 2$.
As before, substitute $x_{1}=1$ in (1b) $\Rightarrow x_{2}^{2}=4, x_{2}= \pm 2$.
Obtain

$$
\begin{array}{rll}
(1,2,0), & \lambda_{1}=-3 / 2, & \lambda_{2}=-3 / 2 \\
(1,-2,0), & \lambda_{1}=-3 / 2, & \lambda_{2}=9 / 2
\end{array}
$$

These and the other solutions $\left(x_{2}=x_{3} \neq 0\right)$ above are the critical points of the problem.
Are these maxima or minima?
We need sufficient conditions to say.

Distinguish minima from maxima (sufficient conditions) Minimise $f\left(x_{1}, x_{2}, \ldots, x_{a}\right)$ subject to

$$
g_{1}\left(x_{1}, \ldots, x_{n}\right)=c
$$

$$
\vdots
$$

$$
g_{m}\left(x_{1}, \ldots, x_{n}\right)=c_{m}
$$

$$
L=f+\lambda_{1} g_{1}+\lambda_{2} g_{2}+\cdots+\lambda_{m} g_{m}
$$

Suppose that $x=a$ is a critical point

$$
\# \quad \operatorname{grad} L(a)=0
$$

Let $H_{L}$ be the Hessian of L. This means that $H_{L}$ involves $\lambda_{1}, \ldots, \lambda_{m}$ as well as the $a_{1}, \ldots, a_{n}$.

$$
\# \quad h^{T} H_{L} h \geq 0 \quad \text { at } a
$$

for all $h \neq 0$ such that $h^{T} \operatorname{grad} g_{i}=0$, for all $1 \leq i \leq m$.
For $g=\left(g_{1}, \cdots, g_{m}\right)$, we define

$$
B=\nabla g=\left(\begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{m}}{\partial x_{1}} \\
\cdot & \cdots & \cdot \\
\frac{\partial g_{1}}{\partial x_{n}} & \cdots & \frac{\partial g_{m}}{\partial x_{n}}
\end{array}\right)
$$

Bordered Hessian

$$
H=\left(\begin{array}{cc}
H_{L} & B \\
B & O
\end{array}\right), \text { at } x=a
$$

is a $(m+n) \times(m+n)$-matrix, where $O$ is a $m \times m$ zero matrix. Point $a$ at which $\operatorname{grad} L=0$ and $\operatorname{det} H \neq 0$ is called a nondegenerate critical point.

Theorem 3.2. : (Nec. $\mathcal{E}$ Suff. for a minimum)
Let a be a non-degenerate critical point for $f$, subject to $g_{i}=c_{i}, i=1, \ldots, m$. A necessary and sufficient condition that $x=a$ is a point where $f$ has a local minimum subject to the constraints is that

$$
h^{T} H_{L} h \geq 0
$$

for all tangent vectors $h$. *
Sufficient condition for a local maximum is that

$$
h^{T} H_{L} h \leq 0,
$$

for all tangent vectors $h$. *

* Recall vector $h$ is tangent if $h^{T}$ grad $g_{i}=0$, for all i.

To solve constrained problems
\# Construct $L$
\# Find critical points $a$ where $\operatorname{grad} L=0$.
\# For $x=a$, check non-degeneracy

- $H$ Bordered Hessian $\operatorname{det} H \neq 0$
\# Find $h$ in tangent space
\# Check sign of $h^{T} H_{L} h$.
Example 3.3. :
Maximise xyz $=f(x, y, z)$. Subject to

$$
\begin{equation*}
g: x+y+z-1=0 \tag{1}
\end{equation*}
$$

## Solution.

$$
\begin{align*}
L(x, y, z) & =x y z+\lambda(x+y+z-1) \\
y z+\lambda & =0  \tag{2}\\
x z+\lambda & =0  \tag{3}\\
x y+\lambda & =0  \tag{4}\\
y z & =x z=x y=-\lambda
\end{align*}
$$

Either $x=y$ or $z=0$ from the first.
If $z=0$, then $\lambda=0$ and so $x y=0$ and at least one of one of $x, y$ is zero. Note $x=y=z=0$ does not satisfy (1).
Assume $x=0$ and $y \neq 0$. Then from (1) $y=1$ so $(0,1,0)$ is a solution.
By symmetry $(1,0,0)$ and $(0,0,1)$ are solutions.
If $z \neq 0$ then $x=y$. Since we have already considered the case $x=0=y$ we may assume $x=y \neq 0$. From equations two and three $z=y$ so $x=y=z$..
Substitute on constraint: $3 x=1$

$$
\Rightarrow x=y=z=1 / 3 \quad \text { and } \lambda=-1 / 9 .
$$

check sufficiency at the critical point. $(1 / 3,1 / 3,1 / 3)$ with

$$
\lambda=-1 / 9
$$

$$
\begin{aligned}
L & =x y z+\lambda(x+y+z-1) \\
H_{L} & =\left[\begin{array}{lll}
0 & z & y \\
z & 0 & x \\
y & x & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 \\
1 / 3 & 1 / 3 & 0
\end{array}\right] \\
\nabla g & =\operatorname{grad} g=[1,1,1]^{T} \\
H & =\left[\begin{array}{cc}
H_{L} & \nabla g \\
\nabla g^{T} & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 / 3 & 1 / 3 & 1 \\
1 / 3 & 0 & 1 / 3 & 1 \\
1 / 3 & 1 / 3 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Noting $C_{2}->C_{2}-C_{1}, C_{3}->C_{3}-C_{1}$, where $C_{r}$ stands for column $r$, does not change the determinant we obtain

$$
\operatorname{det} H=\left|\begin{array}{cccc}
0 & 1 / 3 & 1 / 3 & 1 \\
1 / 3 & -1 / 3 & 0 & 1 \\
1 / 3 & 0 & -1 / 3 & 1 \\
1 & 0 & 0 & 0
\end{array}\right| \neq 0
$$

Hence $(1 / 3,1 / 3,1 / 3)$ is a nondeg. crit. pt.
Find $h$ on tangent space to $g$ at $a$

$$
\begin{gathered}
h^{T} \nabla g=0, \quad\left[h_{1} h_{2} h_{3}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=0 \\
\Rightarrow h_{1}+h_{2}+h_{3}=0 \\
h_{1}=\gamma, \quad h_{2}=\mu, \quad h_{3}=-\gamma-\mu, \quad \text { all } \gamma, \mu \in \mathbb{R}
\end{gathered}
$$

Check

$$
\begin{aligned}
& h^{T} H_{L} h \\
= & \left(\begin{array}{lll}
\gamma & \mu & -(\gamma+\mu)
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 \\
1 / 3 & 1 / 3 & 0
\end{array}\right)\left(\begin{array}{c}
\gamma \\
\mu \\
-(\gamma+\mu)
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\max & =\left(\begin{array}{lll}
\gamma & \mu & -\gamma-\mu
\end{array}\right)\left(\begin{array}{c}
-\frac{\gamma}{3} \\
-\frac{\mu}{3} \\
\frac{\gamma+\mu}{3}
\end{array}\right) \\
& =\frac{-\gamma^{2}}{3}-\frac{\mu^{2}}{3}-\frac{(\gamma+\mu)^{2}}{3}<0
\end{aligned}
$$

Finish above Example 3.2:
Maximise $f: x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$
Constraints $g_{1}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-5=0$

$$
g_{2}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1}-3=0 .
$$

We had found the critical points

$$
\begin{array}{rll}
(1,0,2), & \lambda_{1}=-3 / 2, & \lambda_{2}=-3 / 2 \\
(1,0,-2), & \lambda_{1}=-3 / 2, & \lambda_{2}=9 / 2 \\
(1,2,0), & \lambda_{1}=-3 / 2, & \lambda_{2}=-3 / 2 \\
(1,-2,0), & \lambda_{1}=-3 / 2, & \lambda_{2}=9 / 2
\end{array}
$$

$$
\begin{aligned}
& L=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+\lambda_{1}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-5\right) \\
& +\lambda_{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1}-3\right) \\
& H_{L}=\left[\begin{array}{ccc}
6 x_{1}+2 \lambda_{1}+2 \lambda_{2} & 0 & 0 \\
0 & 6 x_{2}+2 \lambda_{1}+2 \lambda_{2} & 0 \\
0 & 0 & 6 x_{3}+2 \lambda_{1}+2 \lambda_{2}
\end{array}\right] \\
& \nabla g_{1}=\left[\begin{array}{l}
2 x_{1} \\
2 x_{2} \\
2 x_{3}
\end{array}\right], \quad \nabla g_{2}=\left[\begin{array}{c}
2 x_{1}-2 \\
2 x_{2} \\
2 x_{3}
\end{array}\right] .
\end{aligned}
$$

Check, for each of the critical points, if

$$
H=\left[\begin{array}{cccc}
H_{L} & \nabla g_{1} & & \nabla g_{2} \\
\nabla g_{1}^{T} & & & \\
\nabla g^{T} & & 0 &
\end{array}\right]
$$

has nonzero determinate.
Check $\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \lambda_{1}=\lambda_{2}=-3 / 2$.

$$
H=\left[\begin{array}{ccccc}
0 & 0 & 0 & 2 & 0 \\
0 & -6 & 0 & 0 & 0 \\
0 & 0 & 6 & 4 & 4 \\
2 & 0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 & 0
\end{array}\right]
$$

$\operatorname{det} H=-2 \times 6 \times(-4) \times(-2) \times(-16) \neq 0$ So $(1,0,2)$ is non-degenerate
\# Find $\underset{\sim}{h}$ satisfying

$$
\begin{aligned}
& {\underset{\sim}{r}}^{T} \nabla g_{1}=0 \quad \text { at crit. point } \\
& \underset{\sim}{h^{T}} \nabla g_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\left(\begin{array}{ll}
h_{1} & h_{2}
\end{array} h_{3}\right)\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right]=0 \quad \text { and } \quad\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
4
\end{array}\right]=0 \\
2 h_{1}+4 h_{3}=0 \\
4 h_{3}=0
\end{array}\right\} h_{1}=h_{3}=0, \quad h_{2}=\mu \\
& {\underset{\sim}{\sim}}^{T}=[0, \mu, 0] .
\end{aligned} \quad \mu \in \mathbb{R} \text {. }
$$

\# Check sign of $h^{T} H_{L} h$

$$
[0 \mu 0]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -6 & 0 \\
0 & 0 & 6
\end{array}\right]\left[\begin{array}{l}
0 \\
\mu \\
0
\end{array}\right]=-6 \mu^{2}<0
$$

Hence this critical point is local maximum.
Repeat the procedure for other critical points.

## Revision of ODEs

\# Separable 1st order
\# Constant Coefficient 2nd order

- Homogeneous
- Nonhomogeneous
\# Separable

$$
\begin{aligned}
\dot{x} & =f(t) g(x) \\
\int \frac{d x}{g(x)} & =\int f(t) d t+c .
\end{aligned}
$$

## EXAMPLES (1)

$$
\begin{aligned}
\frac{d x}{d t} & =-x t \\
\int \frac{d x}{x} & =-\int t d t+c \\
\ln x & =-t^{2} / 2+c \\
x & =A e^{-t^{2} / 2}
\end{aligned}
$$

(2)

$$
\begin{aligned}
d x / d t & =\left(1+x^{2}\right) /\left(1-t^{2}\right) \\
\int \frac{d x}{1+x^{2}} & =\int \frac{d t}{1-t^{2}}+c \\
\arctan x & =\int\left(\frac{1 / 2}{1-t}+\frac{1 / 2}{1+t}\right) d t+c \\
& =-\frac{1}{2} \ln (1-t)+\frac{1}{2} \ln (1+t)+c \\
& =\left[\frac{1+t}{1-t}\right]^{1 / 2}+c \\
x & =\tan \left[\left(\frac{1+t}{1-t}\right)^{1 / 2}+c\right]
\end{aligned}
$$

