
3. Minimization with constraints

Problem III. Minimize f(x) in R
n given that x satisfies

the equality constraints

gj(x) = cj , j = 1, ..., m < n,

where c1, ..., cm are given numbers.

Theorem 3.1. Let f(x) and gj(x) be defined and have
continuous second derivatives in some open region of R

n.
Then necessary condition that a minimize f(x) with the
constraints

gj(x) = cj , j = 1, ..., m < n

is that there exist m-Lagrange multipliers λ1,...,λm such
that

grad



f +
m

∑

j=1

λjgj



 = 0 at a

(For the proof of Theorem 3.1, we refer to the book of
E. R. Pinch.)

Example 3.1. Minimize f(x) = 1 − x2
1 − x2

2 subject to
g(x) = x2 − 1 + x2

1 = 0.

Solution. Using Theorem 3.1 with m = 1 and n = 2, there
is a Lagrange multiplier λ such that

grad(f + λg) = 0
1



2

This is equivalent to

−2x1 + 2λx1 = 0 and − 2x2 + λ = 0.

There are three unknowns so we need another equation (i.e
the constrain itself):

x2 − 1 + x2
1 = 0.

Solving these equations we find the following solutions

x1 = 0, x2 = 1, λ = 2

and

x1 = ± 1√
2
, x2 =

1

2
, λ = 1.

Sketch the constraint curve and level set of f . Then you
find that the points (0, 1) and (± 1√

2
, 1

2
) are the points where

curves of level sets of f touch the parabola of constraint.
It is clear that the minimum is at x1 = 0 and x2 = 1.
(geometry behind?) �

Example 3.2: Find local extremal of

f(x) = x3
1 + x3

2 + x3
3

where

g1(x) = x2
1 + x2

2 + x2
3 − 5 = 0 (1)

g2(x) = x2
1 + x2

2 + x2
3 − 2x1 − 3 = 0 (2)



3

• Lagrangian

L = f + λ1g1 + λ2g2

= x3
1 + x3

2 + x3
3

+ λ1(x
2
1 + x2

2 + x2
3 − 5)

+ λ2(x
2
1 + x2

2 + x3
3 − 2x1 − 3)

• grad L = 0

3x2
1 + 2λ1x1 + 2λ2(x1 − 1) = 0 (3)

3x2
2 + 2λ1x2 + 2λ2x2 = 0 (4)

3x3
3 + 2λ1x3 + 2λ2x3 = 0 (5)

• From (4), x2 = 0 or 3x2 + 2λ1 + 2λ2 = 0
From (5), x3 = 0 or 3x3 + 2λ1 + 2λ2 = 0

If x2 = 0

x2
1 + x2

3 − 5 = 0 (1a)

x2
1 + x2

3 − 2x1 − 3 = 0 (2a)

−2x1 + 2 = 0 (1(a) − 2(a))

x1 = 1. Subst. this in (3) to obtain

3 + 2λ1 + 2λ2(0) = 0, λ1 = −3/2.
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Subst. x1 = 1 in 1(a), x2
3 = 4, x3 = ±2

x3 = +2, in (5): 3.4 +(−3).2 + 2λ2.2 = 0
⇒ λ2 = −3/2

x3 = −2, in (5) 3.4 + (−3)(−2) − 4λ2 = 0
λ2 = 9/2

(1, 0, 2), λ1 = −3/2, λ2 = −3/2

(1, 0,−2), λ1 = −3/2, λ2 = 9/2

}

x2 = 0.

If x3 = 0: from the constraint equations

x2
1 + x2

2 − 5 = 0 (1b)

x2
1 + x2

2 − 2x1 − 3 = 0 (2b)

Again x1 = 1 and λ1 = −3/2.

As before, substitute x1 = 1 in (1b) ⇒ x2
2 = 4, x2 = ±2.

Obtain

(1, 2, 0), λ1 = −3/2, λ2 = −3/2

(1,−2, 0), λ1 = −3/2, λ2 = 9/2.

These and the other solutions (x2 = x3 6= 0) above are the
critical points of the problem.

Are these maxima or minima?

We need sufficient conditions to say.
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Distinguish minima from maxima (sufficient conditions)

Minimise f(x1, x2, ..., xa) subject to

g1(x1, ..., xn) = c,

...

gm(x1, ..., xn) = cm

L = f + λ1g1 + λ2g2 + · · · + λmgm.

Suppose that x = a is a critical point

# grad L(a) = 0.

Let HL be the Hessian of L. This means that HL involves
λ1, ..., λm as well as the a1, ..., an.

# hT HLh ≥ 0 at a

for all h 6= 0 such that hT grad gi = 0, for all 1 ≤ i ≤ m.

For g = (g1, · · · , gm), we define

B = ∇g =





∂g1

∂x1

· · · ∂gm

∂x1

· · · · ·
∂g1

∂xn

· · · ∂gm

∂xn





Bordered Hessian

H =

(

HL B
B O

)

, at x = a.

is a (m + n) × (m + n)-matrix, where O is a m × m zero
matrix. Point a at which gradL = 0 and detH 6= 0 is called
a nondegenerate critical point.
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Theorem 3.2. : (Nec. & Suff. for a minimum)

Let a be a non-degenerate critical point for f , subject to
gi = ci, i = 1, ..., m. A necessary and sufficient condition
that x = a is a point where f has a local minimum subject
to the constraints is that

hT HLh ≥ 0

for all tangent vectors h. ∗

Sufficient condition for a local maximum is that

hT HLh ≤ 0,

for all tangent vectors h. ∗

∗ Recall vector h is tangent if hT grad gi = 0, for all i.

To solve constrained problems

# Construct L
# Find critical points a where gradL = 0.
# For x = a, check non-degeneracy

• H Bordered Hessian det H 6= 0
# Find h in tangent space
# Check sign of hT HLh.

Example 3.3. :

Maximise xyz = f(x, y, z). Subject to

g : x + y + z − 1 = 0 (1)
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Solution.

L(x, y, z) = xyz + λ(x + y + z − 1)

yz + λ = 0 (2)

xz + λ = 0 (3)

xy + λ = 0 (4)

yz = xz = xy = −λ

Either x = y or z = 0 from the first.

If z = 0, then λ = 0 and so xy = 0 and at least one of one
of x, y is zero. Note x = y = z = 0 does not satisfy (1).
Assume x = 0 and y 6= 0. Then from (1) y = 1 so (0, 1, 0)
is a solution.
By symmetry (1, 0, 0) and (0, 0, 1) are solutions.

If z 6= 0 then x = y. Since we have already considered the
case x = 0 = y we may assume x = y 6= 0. From equations
two and three z = y so x = y = z..

Substitute on constraint: 3x = 1

⇒ x = y = z = 1/3 and λ = −1/9.

check sufficiency at the critical point. (1/3, 1/3, 1/3) with
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λ = −1/9.

L = xyz + λ(x + y + z − 1)

HL =





0 z y
z 0 x
y x 0



 =





0 1/3 1/3
1/3 0 1/3
1/3 1/3 0





∇g = grad g = [1, 1, 1]T

H =

[

HL ∇g
∇gT 0

]

=







0 1/3 1/3 1
1/3 0 1/3 1
1/3 1/3 0 1
1 1 1 0







Noting C2− > C2 − C1, C3− > C3 − C1, where Cr stands
for column r, does not change the determinant we obtain

detH =

∣

∣

∣

∣

∣

∣

∣

0 1/3 1/3 1
1/3 −1/3 0 1
1/3 0 −1/3 1
1 0 0 0

∣

∣

∣

∣

∣

∣

∣

6= 0

Hence (1/3, 1/3, 1/3) is a nondeg. crit. pt.
Find h on tangent space to g at a

hT∇g = 0, [h1 h2 h3]





1
1
1



 = 0

⇒ h1 + h2 + h3 = 0

h1 = γ, h2 = µ, h3 = −γ − µ, all γ, µ ∈ R
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Check

hT HLh

= ( γ µ −(γ + µ) )





0 1/3 1/3
1/3 0 1/3
1/3 1/3 0









γ
µ

−(γ + µ)





max = ( γ µ − γ − µ )





−γ
3

−µ
3

γ+µ
3





=
−γ2

3
− µ2

3
− (γ + µ)2

3
< 0

Finish above Example 3.2:

Maximise f : x3
1 + x3

2 + x3
3

Constraints g1 : x2
1 + x2

2 + x2
3 − 5 = 0

g2 : x2
1 + x2

2 + x2
3 − 2x1 − 3 = 0.

We had found the critical points

(1, 0, 2), λ1 = −3/2, λ2 = −3/2

(1, 0,−2), λ1 = −3/2, λ2 = 9/2

(1, 2, 0), λ1 = −3/2, λ2 = −3/2

(1,−2, 0), λ1 = −3/2, λ2 = 9/2
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L = x3
1 + x3

2 + x3
3 + λ1(x

2
1 + x2

2 + x2
3 − 5)

+λ2(x
2
1 + x2

2 + x2
3 − 2x1 − 3)

HL =





6x1 + 2λ1 + 2λ2 0 0
0 6x2 + 2λ1 + 2λ2 0
0 0 6x3 + 2λ1 + 2λ2





∇g1 =





2x1

2x2

2x3



 , ∇g2 =





2x1 − 2
2x2

2x3



 .

Check, for each of the critical points, if

H =





HL ∇g1 ∇g2

∇gT
1

∇gT 0





has nonzero determinate.

Check





1
0
2



, λ1 = λ2 = −3/2.

H =











0 0 0 2 0
0 −6 0 0 0
0 0 6 4 4
2 0 4 0 0
0 0 4 0 0
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det H = −2 × 6 × (−4) × (−2) × (−16) 6= 0 So (1, 0, 2) is
non-degenerate

# Find h
∼

satisfying

h
∼

T∇g1 = 0 at crit. point

h
∼

T∇g2 = 0

(h1 h2 h3)





2
0
4



 = 0 and [h1 h2 h3]





0
0
4



 = 0

2h1 + 4h3 = 0

4h3 = 0

}

h1 = h3 = 0, h2 = µ

h
∼

T = [0, µ, 0]. µ ∈ R

# Check sign of hT HLh

[0µ 0]





0 0 0
0 −6 0
0 0 6









0
µ
0



 = −6µ2 < 0.

Hence this critical point is local maximum.

Repeat the procedure for other critical points.
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Revision of ODEs

# Separable 1st order

# Constant Coefficient 2nd order

• Homogeneous
• Nonhomogeneous

# Separable

ẋ = f(t)g(x)
∫

dx

g(x)
=

∫

f(t)dt + c.

EXAMPLES (1)

dx

dt
= −xt

∫

dx

x
= −

∫

t dt + c

ln x = −t2/2 + c

x = Ae−t2/2
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(2)

dx/dt = (1 + x2)/(1 − t2)
∫

dx

1 + x2
=

∫

dt

1 − t2
+ c

arctan x =

∫ (

1/2

1 − t
+

1/2

1 + t

)

dt + c

= −1

2
ln(1 − t) +

1

2
ln(1 + t) + c

=

[

1 + t

1 − t

]1/2

+ c

x = tan

[

(

1 + t

1 − t

)1/2

+ c

]

.


